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Enumeration Degrees

Introduced by Friedberg and Rogers in 1959.
A is enumeration reducible to B (A ≤e B) if we can
enumerate A given any enumeration of B.

Definition
A ≤e B iff there is c.e. set Φ such that
A = ΦB = {x : ∃〈x ,P〉 ∈ Φ (P finite and P ⊆ B)}

Similar to Turing reducibility:
A ≤T B iff for ∀x A(x) = ΦB(x) = y
And ΦB(x) = y iff ∃〈x , y ,P,N〉 ∈ Φ (P ⊆ B and N ⊆ B).

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

Introduction
Justification
Basic Definitions and Global Theorems
Σ0

2-enumeration Degrees

Enumeration Degrees

Introduced by Friedberg and Rogers in 1959.
A is enumeration reducible to B (A ≤e B) if we can
enumerate A given any enumeration of B.

Definition
A ≤e B iff there is c.e. set Φ such that
A = ΦB = {x : ∃〈x ,P〉 ∈ Φ (P finite and P ⊆ B)}

Similar to Turing reducibility:
A ≤T B iff for ∀x A(x) = ΦB(x) = y
And ΦB(x) = y iff ∃〈x , y ,P,N〉 ∈ Φ (P ⊆ B and N ⊆ B).

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

Introduction
Justification
Basic Definitions and Global Theorems
Σ0

2-enumeration Degrees

Enumeration Degrees

Introduced by Friedberg and Rogers in 1959.
A is enumeration reducible to B (A ≤e B) if we can
enumerate A given any enumeration of B.

Definition
A ≤e B iff there is c.e. set Φ such that
A = ΦB = {x : ∃〈x ,P〉 ∈ Φ (P finite and P ⊆ B)}

Similar to Turing reducibility:
A ≤T B iff for ∀x A(x) = ΦB(x) = y
And ΦB(x) = y iff ∃〈x , y ,P,N〉 ∈ Φ (P ⊆ B and N ⊆ B).

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

Introduction
Justification
Basic Definitions and Global Theorems
Σ0

2-enumeration Degrees

Enumeration Degrees

Introduced by Friedberg and Rogers in 1959.
A is enumeration reducible to B (A ≤e B) if we can
enumerate A given any enumeration of B.

Definition
A ≤e B iff there is c.e. set Φ such that
A = ΦB = {x : ∃〈x ,P〉 ∈ Φ (P finite and P ⊆ B)}

Similar to Turing reducibility:
A ≤T B iff for ∀x A(x) = ΦB(x) = y
And ΦB(x) = y iff ∃〈x , y ,P,N〉 ∈ Φ (P ⊆ B and N ⊆ B).

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

Introduction
Justification
Basic Definitions and Global Theorems
Σ0

2-enumeration Degrees

Enumeration Degrees

Introduced by Friedberg and Rogers in 1959.
A is enumeration reducible to B (A ≤e B) if we can
enumerate A given any enumeration of B.

Definition
A ≤e B iff there is c.e. set Φ such that
A = ΦB = {x : ∃〈x ,P〉 ∈ Φ (P finite and P ⊆ B)}

Similar to Turing reducibility:
A ≤T B iff for ∀x A(x) = ΦB(x) = y
And ΦB(x) = y iff ∃〈x , y ,P,N〉 ∈ Φ (P ⊆ B and N ⊆ B).

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

Introduction
Justification
Basic Definitions and Global Theorems
Σ0

2-enumeration Degrees

Applications

Analysis of Types in Effective Model Theory.
Existentially Closed Groups in Computable Group Theory.
Computable Analysis.
And much, much more!!!
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Enumeration Degrees: Global Structure

Notation
De is the set of all e-degrees.
DT is the set of all Turing-degrees.

Fact
Minimal element is 0e = the set of all c.e. sets.

Definition
dege(A) ∨ dege(B) =def dege(A⊕ B)

Theorem (Case, 1971)
Every countable ideal in De has an exact pair.
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DT as a Substructure of De.

Definition
Define the embedding ι : DT ↪→ De by
ι : degT (A) 7→ dege(A⊕ A).

Fact

ι is an order preserving map: A ≤T B ⇔ A⊕ A ≤e B ⊕ B.

Definition
range(ι) = TOT = the set of total enumeration degrees.
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Facts about De

Theorem (Gutteridge, 1971)
De has no minimal elements.

Definition
A degree a is quasi-minimal if a > 0e and for all b ∈TOT, b ≤ a
implies b = 0e.

Theorem (Cooper, 1989)
De is not dense.

Theorem (Calhoun, Slaman, 1996)

There exist Π0
2-degrees a,b such that a < b and (a,b) = ∅.
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Defining the Jump

Definition
We define the enumeration jump as follows:

KA =def
{

x : x ∈ ΦA
x
}

J(A) = KA ⊕ KA

0′e = dege(J(∅)) = dege(K )

Theorem (Cooper, 1984)

A is Σ0
2 iff A ≤e J(∅).

Theorem (Cooper, 1984)

The Σ0
2-enumeration degrees are dense.
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Undecidability of Complete Theories

Given a theory, we can ask the following questions:

Question
Is the theory undecidable?

Question
What is the n, if any, s.t. the Πn-theory is decidable and the
Πn+1-theory is undecidable?
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Example

Theorem

The Π1-theory of Σ0
2-enumeration degrees decidable (in the

language of {≤}).

Proof.
Σ1 sentence ψ is of the form ∃xϕ(x).
ϕ(x) describes an ordering on x .
Can embed any finite p.o. in the Σ0

2-enumeration degrees.
If ϕ(x) describes a p.o., ψ is true, otherwise ¬ψ is true.
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Hereditarily Undecidable

Definition
Sets A and B are computably inseparable if there is no
computable set C with A ⊆ C and B ∩ C = ∅.

Definition

A set S of first order sentences is Hereditarily Undecidable if S
and S ∩ V are computably inseparable (V all valid sentences in
language of S).
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Elementary Definability

Given classes of structures C, D in relational languages LC and
LD, without equality, we make the following definitions:

Definition
1 A Σk -scheme s(p) for LC , in LD, consists of Σk -formulas in
LD that code the universe, each relation R ∈ LC and the
negation of R.

2 α(p) is a Πk+1-correctness condition for s if it codes #1 in
LD.

3 C is Σk -elementary definable w/ parameters in D if ∃
Σk -scheme s s.t. for all C ∈ C there is D ∈ D and p ∈ D s.t.

(a) D � α(p)

(b) C ∼= C̃ structure in D defined by s and p.
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1 A Σk -scheme s(p) for LC , in LD, consists of Σk -formulas in
LD that code the universe, each relation R ∈ LC and the
negation of R.

2 α(p) is a Πk+1-correctness condition for s if it codes #1 in
LD.

3 C is Σk -elementary definable w/ parameters in D if ∃
Σk -scheme s s.t. for all C ∈ C there is D ∈ D and p ∈ D s.t.

(a) D � α(p)
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How to Show Theory Fragment is Undecidable

Lemma (Nies Transfer Lemma, 1996)
(For k ≥ 1, r ≥ 2.)
If C is Σk -elementary definable with parameters in D and the
Πr+1-theory of C hereditarily undecidable then the Πr+k -theory
of D hereditarily undecidable.
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Theory of the Σ0
2-enumeration degrees is Undecidable

Theorem (Slaman, Woodin, 1997)

The First order theory of the Σ0
2-enumeration degrees in

language {≤} is undecidable.

Proof.
Finite Graphs are Σ2-elementary definable in
Σ0

2-enumeration degrees with parameters.
The Π4-theory of Finite Graphs is hereditarily undecidable.
Nies Transfer Lemma tells us that Π3+2 = Π5-theory is
hereditarily undecidable.
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Π3-Theory of Σ0
2-enumeration degrees is Undecidable

To show this, need theory that is:
Π3-hereditarily undecidable and
Σ1-elementary definable in Σ0

2-enumeration degrees
The Theory

Theorem (Nies, 1996)
The Σ2- (and hence Π3-) theory of the finite bipartite graphs
with nonempty left and right domains in the language of one
binary relation, but without equality, is hereditarily undecidable.
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Coding the Universe I

Theorem (Ahmad, Lachlan, 1998)

(Ahmad Pair) There exists Σ0
2-enumeration degrees a,b such

that a 6≤ b but ∀x < a, x ≤ b.
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Coding the Universe II

Fix Domains L = {0, . . . ,n} and R =
{

0̃, . . . , m̃
}

.
Build a, b, a0, . . . , an such that:

1 a 6≤ b and ai 6≤ b
2 ∀x < a, x ≤ b or x ≥ ai for some i ∈ L

a0, . . . , an specified by a and b (Π1-formula):

ϕ(x) = x < a ∧ x 6≤ b ∧ ∀y ≤ x (y 6≤ b → y = x)

Not good enough, we need a Σ1-formula.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

Main Theorem
Requirements
Grand Finale
Future Research

Coding the Universe II

Fix Domains L = {0, . . . ,n} and R =
{

0̃, . . . , m̃
}

.
Build a, b, a0, . . . , an such that:

1 a 6≤ b and ai 6≤ b
2 ∀x < a, x ≤ b or x ≥ ai for some i ∈ L

a0, . . . , an specified by a and b (Π1-formula):

ϕ(x) = x < a ∧ x 6≤ b ∧ ∀y ≤ x (y 6≤ b → y = x)

Not good enough, we need a Σ1-formula.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

Main Theorem
Requirements
Grand Finale
Future Research

Coding the Universe II

Fix Domains L = {0, . . . ,n} and R =
{

0̃, . . . , m̃
}

.
Build a, b, a0, . . . , an such that:

1 a 6≤ b and ai 6≤ b
2 ∀x < a, x ≤ b or x ≥ ai for some i ∈ L

a0, . . . , an specified by a and b (Π1-formula):

ϕ(x) = x < a ∧ x 6≤ b ∧ ∀y ≤ x (y 6≤ b → y = x)

Not good enough, we need a Σ1-formula.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

Main Theorem
Requirements
Grand Finale
Future Research

Coding the Universe II

Fix Domains L = {0, . . . ,n} and R =
{

0̃, . . . , m̃
}

.
Build a, b, a0, . . . , an such that:

1 a 6≤ b and ai 6≤ b
2 ∀x < a, x ≤ b or x ≥ ai for some i ∈ L

a0, . . . , an specified by a and b (Π1-formula):

ϕ(x) = x < a ∧ x 6≤ b ∧ ∀y ≤ x (y 6≤ b → y = x)

Not good enough, we need a Σ1-formula.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

Main Theorem
Requirements
Grand Finale
Future Research

Coding the Universe II

Fix Domains L = {0, . . . ,n} and R =
{

0̃, . . . , m̃
}

.
Build a, b, a0, . . . , an such that:

1 a 6≤ b and ai 6≤ b
2 ∀x < a, x ≤ b or x ≥ ai for some i ∈ L

a0, . . . , an specified by a and b (Π1-formula):

ϕ(x) = x < a ∧ x 6≤ b ∧ ∀y ≤ x (y 6≤ b → y = x)

Not good enough, we need a Σ1-formula.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

Main Theorem
Requirements
Grand Finale
Future Research

Coding the Universe II

Fix Domains L = {0, . . . ,n} and R =
{

0̃, . . . , m̃
}

.
Build a, b, a0, . . . , an such that:

1 a 6≤ b and ai 6≤ b
2 ∀x < a, x ≤ b or x ≥ ai for some i ∈ L

a0, . . . , an specified by a and b (Π1-formula):

ϕ(x) = x < a ∧ x 6≤ b ∧ ∀y ≤ x (y 6≤ b → y = x)

Not good enough, we need a Σ1-formula.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

Main Theorem
Requirements
Grand Finale
Future Research

Coding the Universe II

Fix Domains L = {0, . . . ,n} and R =
{

0̃, . . . , m̃
}

.
Build a, b, a0, . . . , an such that:

1 a 6≤ b and ai 6≤ b
2 ∀x < a, x ≤ b or x ≥ ai for some i ∈ L

a0, . . . , an specified by a and b (Π1-formula):

ϕ(x) = x < a ∧ x 6≤ b ∧ ∀y ≤ x (y 6≤ b → y = x)

Not good enough, we need a Σ1-formula.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

Main Theorem
Requirements
Grand Finale
Future Research

Coding the Universe III

Build degree c such that:

1 c 6≤ ai

2 c ≤ ai ∨ aj , i 6= j .

Represent i ∈ L by [ai ,a)− [c,0′e] (∆0-formula):

ϕ(x) = x < a ∧ x 6≤ b ∧ x 6≥ c

Remark
Each element of each domain is now represented by an
equivalence class of degrees.
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Coding the Edge Relationship

Construct degrees e0, e1 s.t for i ∈ L, ı̃ ∈ R:

1 E(i , ı̃) iff e0 ≤ ai ∨ ãı̃ iff e1 6≤ ai ∨ ãı̃.
2 ¬E(i , ı̃) iff e0 6≤ ai ∨ ãı̃ iff e1 ≤ ai ∨ ãı̃.

Allows Σ1-definition of edge relationship:

1 E(x , x̃) ⇔
(∃y ≤ x) (∃ỹ ≤ x̃) (∃z) (z ≥ y ∧ z ≥ ỹ ∧ z 6≥ e1)

2 ¬E(x , x̃) ⇔
(∃y ≤ x) (∃ỹ ≤ x̃) (∃z) (z ≥ y ∧ z ≥ ỹ ∧ z 6≥ e0)
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2 ¬E(x , x̃) ⇔
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2 ¬E(i , ı̃) iff e0 6≤ ai ∨ ãı̃ iff e1 ≤ ai ∨ ãı̃.
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Allows Σ1-definition of edge relationship:

1 E(x , x̃) ⇔
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2 ¬E(i , ı̃) iff e0 6≤ ai ∨ ãı̃ iff e1 ≤ ai ∨ ãı̃.
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Conclusion:

Theorem
Finite Bipartite Graphs are Σ1-elementary definable in
Σ0

2-enumeration degrees with parameters (a,b,c, ã, b̃, c̃,e0,e1).

Corollary

The Π3-theory of Σ0
2-enumeration degrees is undecidable.

Question
Can we do better?
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A new requirement

Lemma (Cooper, McEvoy 1985)

A set A is low if and only if B ≤e A implies that B is ∆0
2.

Modify the construction so that

1 a ∨ ã is low.

We now have that

Parameters a, a0, . . . , an, c, e0, e1 are now low (∆0
2).

Parameter b is ∆0
2 (but cannot be low) (Ahmad, 1998).
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Corollary

Π3-theory of the ∆0
2-enumeration degrees is undecidable.

Corollary
If M is a substructure of the enumeration degrees which
contains the ∆0

2-degrees, then the Π3-theory of the M is
undecidable.
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Open Questions

1 Is the Π2-theory of the Σ0
2-enumeration degrees decidable?

2 Is the Π2-theory of the ∆0
2-enumeration degrees decidable?

3 Is the theory of Σ0
2-enumeration degrees as complex as the

theory of (ω,+,×)?
4 What about decidability in other languages?
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The Π2-theory of the Σ0
2-enumeration degrees

We can translate a Π2-sentence to the question:

Given partial orders P, Q0, . . . , Qn, with P ⊆ Qi , does
every embedding of P into the degree structure extend to
an embedding of one of the Qi?

Theorem (Lempp, Slaman, Sorbi, to appear)
Extension of Embeddings subproblem (n = 0) in
Σ0

2-enumeration degrees is decidable.
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Continuity of Cupping

Ahmad pointed out that if we can decide if there is an
Ahmad pair whose join is complete then can decide all
sentences of the form

∀x ∀y ∃z ∃w ϕ(x , y , z,w).

Theorem (Ambos-Spies, Lachlan, Soare, 1993)

If a and b are c.e. Turing degrees such that a ∨ b = 0′, then
there exists a c.e. Turing degree c < a such that c ∨ b = 0′.

If this is true in the Σ0
2-enumeration degrees then no

Ahmad pair joins to 0′e.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

The Π2-theory
Continuity of Cupping
Non-splitting Degrees

Continuity of Cupping

Ahmad pointed out that if we can decide if there is an
Ahmad pair whose join is complete then can decide all
sentences of the form

∀x ∀y ∃z ∃w ϕ(x , y , z,w).

Theorem (Ambos-Spies, Lachlan, Soare, 1993)

If a and b are c.e. Turing degrees such that a ∨ b = 0′, then
there exists a c.e. Turing degree c < a such that c ∨ b = 0′.

If this is true in the Σ0
2-enumeration degrees then no

Ahmad pair joins to 0′e.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

The Π2-theory
Continuity of Cupping
Non-splitting Degrees

Continuity of Cupping

Ahmad pointed out that if we can decide if there is an
Ahmad pair whose join is complete then can decide all
sentences of the form

∀x ∀y ∃z ∃w ϕ(x , y , z,w).

Theorem (Ambos-Spies, Lachlan, Soare, 1993)

If a and b are c.e. Turing degrees such that a ∨ b = 0′, then
there exists a c.e. Turing degree c < a such that c ∨ b = 0′.

If this is true in the Σ0
2-enumeration degrees then no

Ahmad pair joins to 0′e.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

The Π2-theory
Continuity of Cupping
Non-splitting Degrees

Continuity of Cupping

Ahmad pointed out that if we can decide if there is an
Ahmad pair whose join is complete then can decide all
sentences of the form

∀x ∀y ∃z ∃w ϕ(x , y , z,w).

Theorem (Ambos-Spies, Lachlan, Soare, 1993)

If a and b are c.e. Turing degrees such that a ∨ b = 0′, then
there exists a c.e. Turing degree c < a such that c ∨ b = 0′.

If this is true in the Σ0
2-enumeration degrees then no

Ahmad pair joins to 0′e.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

The Π2-theory
Continuity of Cupping
Non-splitting Degrees

(Dis)Continuity of Cupping

Theorem

There exist Σ0
2-enumeration degrees a and b such that

a ∨ b = 0′e and for all c < a, c ∨ b < 0′e. (We call a a minimal
cupping companion for b.)

Remark
The set of minimal cupping companions for b is an antichain.
Very Useful.
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Non-splitting Degrees I

Definition
a is non-splitting if for all b,c < a, b ∨ c < a.

Used in Ahmad pairs. We need better understanding of
Ahmad pairs if we wish to settle the decidability of the
Π2-theory.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

The Π2-theory
Continuity of Cupping
Non-splitting Degrees

Non-splitting Degrees I

Definition
a is non-splitting if for all b,c < a, b ∨ c < a.

Used in Ahmad pairs. We need better understanding of
Ahmad pairs if we wish to settle the decidability of the
Π2-theory.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

The Π2-theory
Continuity of Cupping
Non-splitting Degrees

Non-splitting Degrees I

Definition
a is non-splitting if for all b,c < a, b ∨ c < a.

Used in Ahmad pairs. We need better understanding of
Ahmad pairs if we wish to settle the decidability of the
Π2-theory.

T. Kent Enumeration Degrees



Background
Decidability

Main Theorem
Closing the Gap

The Π2-theory
Continuity of Cupping
Non-splitting Degrees

Non-splitting Degrees II

Theorem (Kent, Sorbi)

There exists a properly Σ0
2 non-splitting degree.

Theorem (Kent, Sorbi)

Every ∆0
2-degree bounds a non-splitting degree.

Question

Does every Σ0
2-degree bound a non-splitting degree?
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