PA sets, 1-random sets,
 Π_{1}^{0} classes

Antonín Kučera

Charles University

Prague

Splendors and miseries

of Π_{1}^{0} classes

- A Π_{1}^{0} class $\left(\subseteq 2^{\omega}\right)$ is a family of sets (reals) which can be expressed as the family of infinite paths through a recursive tree $T \subseteq 2^{<\omega}$.
- Π_{1}^{0} classes: the solution sets to many problems in logic, combinatorics, algebra and other areas.
- Typical examples
- the set of complete extensions of a given axiomatizable theory in first-order logic
- the class of sets which separate a pair of disjoint r.e. sets.
- There are nonempty Π_{1}^{0} classes with no recursive element
- (Kreisel, Shoenfield) Every nonempty Π_{1}^{0} class has an element of degree $\leq \mathbf{0}^{\prime}$
- (Jockusch, Soare) Every nonempty Π_{1}^{0} class has
i) an element of low degree (Low Basis

Theorem)
ii) an element of r.e. degree

- Interesting structure of the (inclusion)
lattice of Π_{1}^{0} classes (in some way analogous to the lattice of Π_{1}^{0} subsets of ω).

There are various kinds of "slim" Π_{1}^{0} classes (thin, small, minimal,). Here: "thick" Π_{1}^{0} classes.

The relation \ll
Definition (Simpson)
$\mathbf{b} \ll \mathbf{a}$ means that every infinite tree
$T \subseteq 2^{<\omega}$ of degree $\leq \mathbf{b}$ has an infinite path of degree $\leq \mathbf{a}$.

Definition

1. A function $f \in \omega^{\omega}$ is called DNR if $f(x) \neq \varphi_{x}(x)$ for all x.
2. Especially: $\mathbf{D N R}_{2}=$ the class of $0-1$ valued DNR functions (i.e. $f \in 2^{\omega}$)

Theorem (D. Scott and others)

The following conditions are equivalent:

1. \mathbf{a} is a degree of a DNR_{2} function
2. $\mathbf{a} \gg \mathbf{0}$
3. \mathbf{a} is a degree of a complete extension of PA
4. \mathbf{a} is a degree of a set separating some effectively inseparable pair of r.e. sets.

Remark

DNR_{2} is a kind of a "universal" Π_{1}^{0} class
DNR_{2} functions are also called PA sets and degrees $\gg \mathbf{0}$ are called PA degrees.
(Simpson) Partial ordering \ll is dense.

Question

Is \ll first-order definable in \mathcal{D} (partial ordering of the degrees)?

PA degrees (i.e. $\gg \mathbf{0}$) can be used for a natural definition of $\mathbf{0}^{\prime}$.
$\mathbf{0}^{\prime}=\inf \{\mathbf{a} \cup \mathbf{b}:(\mathbf{a}, \mathbf{b})$ is a minimal pair of degrees $\gg \mathbf{0}\}$.
Proof. Idea:

1. Split a maximal set A s.t. \bar{A} dominates all
p. r. functions into two nonrecursive r.e. sets A_{1}, A_{2}

Sep $\left(A_{1}, A_{2}\right)$ is a Π_{1}^{0} class without recursive members sup of any two members $\not{ }^{*}$ is above $\mathbf{0}^{\prime}$.
2. in fact, $\mathbf{a} \cup \mathbf{b}>\mathbf{0}^{\prime}$ (for \mathbf{a}, \mathbf{b} as above) since no $\Delta_{2}^{0} \mathrm{DNR}_{2}$ (or DNR) can form a minimal pair

Or:

$$
\begin{gathered}
\mathbf{0}^{\prime}=\inf \{\mathbf{a}: \mathbf{0} \ll \mathbf{a} \& \\
\forall \mathbf{c}(\mathbf{0}<\mathbf{c} \leq \mathbf{a} \rightarrow \exists \mathbf{b}(\mathbf{0} \ll \mathbf{b} \leq \mathbf{a} \& \\
(\mathbf{c} \not \leq \mathbf{b})))\}
\end{gathered}
$$

i.e. if $\quad \mathbf{a} \gg \mathbf{0} \quad \& \quad \mathbf{a} \nsupseteq \mathbf{0}^{\prime}$
then for some $\mathbf{c}, \mathbf{0}<\mathbf{c}<\mathbf{a}$
all PA below are above \mathbf{c}.

Comment: More on that later.

The role of DNR_{2} functions ($=\mathrm{PA}$ sets).
Important: Coding

Finitary coding

For any nonempty Π_{1}^{0} class $\mathcal{A} \subseteq \mathbf{D N R}_{2}$

$$
\exists x_{0} \exists f_{0}, f_{1} \in \mathcal{A}\left(f_{i}\left(x_{0}\right)=i ; i=0,1\right)
$$

i.e. both values 0,1 are consistent with \mathcal{A} at x_{0}
("undecidable formula")
proof: Gödel incompleteness phenomenon

Infinitary coding

For any nonempty Π_{1}^{0} class $\mathcal{A} \subseteq \mathbf{D N R}_{2}$
there is a recursive sequence (increasing) ($\left.x_{i}: i \in \omega\right)$ s.t.
$\forall C \exists f \in \mathcal{A}\left(f\left(x_{i}\right)=C(i)\right.$ for all $\left.i\right)$
(i.e. any infinite binary information is consistent with \mathcal{A} at places given by x_{i})
("flexible column")

Variants

static or dynamic coding (i.e. combined with an r.e. set)

Remark

By coding a recursive information
(by this way) we keep Π_{1}^{0} classes $\subseteq \mathbf{D N R}_{2}$.
(Typically: Σ_{2}^{0} or Π_{2}^{0} event).
This phenomenon is implicit in the connection of DNR_{2} functions (i.e. PA sets) to r.e. sets. Examples

Theorem (K, 86-87)

For every DNR_{2} (even DNR) $f \leq_{T} \emptyset^{\prime}$ there is a nonrecursive r.e. set A recursive in $f(A$ is even PS).

Remark

This gives a priority-free solution to Post's problem.

Similar techniques give: Friedberg-Muchnik and standard finite-injury argument.

For $\emptyset^{\prime \prime}$-arguments one needs "infinitary" coding into DNR_{2} functions (i.e. PA sets).

Typical example: Minimal pair construction Fact

There are two PA sets A_{1}, A_{2} below $\emptyset^{\prime \prime}$, s.t. $\left(A_{1}, A_{2}\right)$ form a minimal pair and each A_{i} bounds a nonrecursive r.e. set B_{i}.

Thus, $\left(B_{1}, B_{2}\right)$ form a minimal pair of r.e. sets.

Remark

1) Minimality conditions are satisfied explicitely for PA sets rather than for r.e. sets.
2) Easy to combine with jump classes, avoiding an upper cone, etc.
3) There is no minimal pair of PA sets below \emptyset^{\prime}.

Proposition

For any $\emptyset^{\prime \prime}$-recursive sequence of \emptyset^{\prime}-indices of DNR_{2} functions $f_{i} \leq_{T} \emptyset^{\prime}$ there is a nonrecursive r.e. set A recursive in all f_{i}.

Question

Does for every r.e. set $A<_{T} \emptyset^{\prime}$ exist incomplete PA set $<_{T} \emptyset^{\prime}$ which is above A ?
(a witness of an incompleteness of A).
Answer: NO.

Theorem (Slaman, K, unpublished)
There is low 2 r.e set A s.t. A joins to \emptyset^{\prime} every
DNR function $\leq_{T} \emptyset^{\prime}$,
i.e. $A \oplus f \equiv_{T} \emptyset^{\prime}$ for all such f.

Remark

Such A cannot be low. In fact, for every low A there is always a low PA above.

Hint: code A into a Π_{1}^{0} class of PA sets "in one step" and apply relativized LBT.

Coding into random (= chaotic) objects is more "complicated" and limited.

Algorithmic randomness

Main approaches:

- stochasticity (frequency stability)
- chaoticness (Kolmogorov complexity)
- typicalness (measure - theoretic approach)

Kolmogorov complexity:
plain: $C(y)=\min \{|x|: U(x)=y\}$
where U is a universal TM
prefix free: $K(y)=\min \{|x|: U(x)=y\}$
where U is now a universal prefix-free TM

Definition

A set A is 1-random (Chaitin-random) if $K(A \upharpoonright n) \geq n+c \quad$ for all n.

Measure-theoretic approach.
Definition
A class $\mathcal{A} \subseteq 2^{\omega}$ is of Σ_{1}^{0} measure zero if there is a computable sequence of (indices of)
Σ_{1}^{0} classes $\quad\left\{\mathcal{B}_{n}: n \in \omega\right\}$ s.t.
$\mathcal{B}_{n} \supseteq \mathcal{B}_{n+1}$ for all n
$\mu\left(\mathcal{B}_{n}\right) \leq 2^{-n}$ for all n
$\mathcal{A} \subseteq \bigcap_{n} \mathcal{B}_{n}$
Remark: such sequence is called Martin-Löf test.

Definition

A set A is 1-random (ML-random) if it passes all ML-tests, i.e. $\{A\}$ is not of Σ_{1}^{0} measure zero.

Theorem (ML)

There is a universal ML-test $\quad\left\{\mathcal{U}_{n}: n \in \omega\right\}$.

Fact

- 1-random sets form a Σ_{2}^{0} class $\left(=\bigcup_{n} \overline{\mathcal{U}}_{n}\right)$
- 1-Rand $=\left\{\sigma * A: A \in \overline{\mathcal{U}}_{0} \& \sigma \in 2^{<\omega}\right\}$

Remark:
i) work with Π_{1}^{0} classes of a positive measure
ii) another kind of "thick" Π_{1}^{0} classes.

Theorem (Schnorr)

A set A is 1 -random (ML-random) iff A is
Chaitin-random.

Theorem (K)

For every Π_{1}^{0} class \mathcal{A} with $\mathcal{A} \cap \overline{\mathcal{U}}_{n} \neq \emptyset$ (given n) there is (effectively) x s.t. $\mu(\mathcal{A})>2^{-x}$.
Remark: weak Gödel's incompleteness phenomenon.

Theorem (Kučera, Gacs)

1. Any set is $w t t$-reducible to a 1 -random set
2. $\left\{\mathbf{a}: \mathbf{a} \geq \mathbf{0}^{\prime}\right\} \subseteq 1$-random degrees.

Remark

The complexity of coding is, r.sp., of degree $\mathbf{0}^{\prime}$.

A weaker result (K):
1-random degrees are not closed upwards.
A stronger result (Stephan):
PA degrees and 1-random degrees coincide only and precisely above $\mathbf{0}^{\prime}$.

Theorem (Calude, Nies)

R.e. 1-random reals are $w t t$-complete.
R.sp., when working with 1-randoms above \emptyset^{\prime} no serious problem with coding (and/or decoding).

Theorem (K, 1987)

1. There is a high incomplete 1-random set,
2. 1-random sets are in all low-high hierarchy classes,
3. Easy to combine with avoiding an upper cone.

Remark

Here $A<_{T} \emptyset^{\prime}$ but A^{\prime} is used to overcome incompleteness of A (to decode).

Natural question:
To what extent it is possible to code an infinitary information into incomplete 1-randoms. In other words, for which incomplete B there is an incomplete 1 -random Z s.t. $B<_{T} Z$.

Fact

For no incomplete PA set A there is an incomplete 1-random set Z above A.
(Easy corollary of Stephan's result.)

Theorem

For every incomplete 1 -random A there is an incomplete 1-random Z s.t. $A<_{T} Z$.

Idea:

1) to code "chaos" into "chaos"
2) $Z=A \oplus B$
3) B is constructed by using the following strong useful result (and relativized LBT).
Theorem (van Lambalgen)
1. $X \oplus Y$ 1-random implies X is

1-random in Y
2. X is 1-random in Y and Y is 1-random implies $X \oplus Y$ is 1-random.

An important special case (of coding) concerns lowness and K-triviality.

Definition

1) Low(MLRand) denotes the class of sets A
s.t. 1 - Rand $^{A}=1$-Rand
2) \mathcal{K} denotes K-trivials, i.e. the class of sets A
s.t. $K(A \upharpoonright n) \leq K(n)+c$ for all n
3) Low for K denotes the class of sets A s.t.
$K(y) \leq K^{A}(y)+c \quad$ for all y,
4) A set A is a basis for 1 -Rand if $A \leq_{T} Z$ for some Z s.t $Z \in 1$-Rand ${ }^{A}$.

By excellent results by Nies, Hirschfeldt,
Downey, ... all these classes are the same.

Theorem

$\operatorname{Low}($ MLRand $)=\mathcal{K}=$ low for $K=$
= Bases for 1-Rand.

History: such sets exist.
K-trivial: $\Delta_{2}^{0} \quad$ Solovay (a complicated proof)
Low(MLRand): r.e. Terwijn, Kučera (short and easy construction)
K-trivial: r.e. Downey, Kummer (similar as above)
Low for K : r.e. Muchnik
Basis for 1-Rand: r.e. Kučera

Facts:

All are Δ_{2}^{0} (Nies)
All are low (Kučera: $G L_{1}$, thus low by the above)
All are superlow, i.e. $A^{\prime} \leq_{t t} \emptyset^{\prime}(N i e s)$

Question:

A nice characterization of this class?

Theorem (Stephan)
If B is r.e., $B \leq_{T} Z$ for some 1-random Z s.t $\emptyset^{\prime} \not \mathbb{Z}_{T} Z$, then Z is 1 -random in B. Thus, B is a basis for 1-Rand.
[It doesn't hold, in general, without the assumption " B is r.e." (take 1-randoms).]

Corollary (Nies, Hirschfeldt)

Such B is K-trivial.

Thus, incomplete r.e. sets which have an incomplete 1-random set above are necessarily K-trivial.

Theorem (K)

Z incomplete Δ_{2}^{0} and 1-random (even DNR) then there is r.e. and nonrecursive $B \leq_{T} Z$.

Corollary Such B is K-trivial .

Nies and Stephan asked: Is this, in fact, a characterization of K-trivials?

Question (Nies, Stephan)

Given K-trivial set B is there a 1 -random incomplete Z above B ?

Note. Important case: B r.e. (Nies).
Problem: how to combine coding with LBT when working with 1 -randoms ?

A big problem connected with coding into chaos.

Theorem (Nies)

K-trivial sets form a Σ_{3}^{0} ideal in the Δ_{2}^{0}
T -degrees, generated by its r.e. members.
(Like any such Σ_{3}^{0} ideal)
$\mathcal{K} \subseteq[\mathbf{0}, \mathbf{b}]$ for some r.e. $\mathrm{low}_{2} \mathbf{b}$.

Remark (The role of PA again)
There is a PA set A s.t.

- $A^{\prime \prime} \equiv_{T} \emptyset^{\prime \prime}$
- A is above all sets in \mathcal{K}
- there is a low 2 r.e. set below A which is also above all \mathcal{K}.

A stronger version of the preceding question (of Nies and Stephan):

Is there a low 1-random set above a given K-trivial set ?

Another question:
Is there a low (low PA) A above all sets in \mathcal{K} ?
Probably difficult.

Easy fact

For every nonrecursive Z there is a PA set A s.t. $Z \oplus A \equiv_{T} A^{\prime} \quad\left(\right.$ and $A \leq_{T} Z \oplus \emptyset^{\prime}$.)

Proof: 1) it follows from Posner-Robinson and relativized LBT, (but we wish to have more)
2) a direct construction.

Take a flexible column in a Π_{1}^{0} class
$\mathcal{B} \subseteq \mathrm{DNR}_{2}$, code A bit by bit into it and
$\emptyset^{\prime} \oplus A$ will find a finite piece σ of A which

- either is a bound for a Σ_{1}^{0} witness
- or $\sigma * 0$ and $\sigma * 1$ can be used for
$\left(\Pi_{1}^{0}\right)$ forcing of a Π_{1}^{0} event.
Decoding: first difference from A.

Key: A cannot be an isolated path through a recursive tree.

Crucial: Since DNR_{2} is a 'universal' Π_{1}^{0} class, Π_{1}^{0} restriction over \mathcal{B} is still a Π_{1}^{0} subclass of DNR_{2}.

Theorem If Z is not $\Delta_{n}^{0}(n \geq 1)$ then there is a PA set A s.t. $Z \oplus A \equiv_{T} A^{(n)}$,
where $A \leq_{T} Z \oplus \emptyset^{(n)}$.

Remark

Slaman and Shore proved such a result (without PA) and used that (for $n=2$) for defining the jump. They used Kumabe-Slaman forcing.

Proof: 1) It follows from Slaman-Shore result and relativized LBT.

But a direct construction which would be adaptable for other "fat" Π_{1}^{0} classes is desirable.
2) Working conjecture: such a construction is possible.

PA versus 1-Rand:

Case $n=2$ (the double jump)

1) Fact (for the first jump):
A not Δ_{2}^{0} implies that there is
a 1-random set B s.t. $A \oplus B \equiv_{T} B^{\prime}$
where $B \leq_{T} A \oplus \emptyset^{\prime}$
2) working conjecture:
A not Δ_{2}^{0} implies that there is
a 1-random B s.t. $A \oplus B \equiv_{T} B^{\prime \prime}$
where $B \leq_{T} A \oplus \emptyset^{\prime \prime}$
(Here we would need an adaptable
construction for fat Π_{1}^{0} classes).

Class : Δ_{2}^{0} and $n=1$ (the first jump)

case: K-trivials.
(Nies) some K-trivials A cannot be joined above \emptyset^{\prime} by any incomplete 1-random set, i.e. $A \oplus B \not ¥_{T} \emptyset^{\prime}$ for all 1-random $B \not ¥_{T} \emptyset^{\prime}$ and thus, $A \oplus B \not \gtrless_{T} B^{\prime}$ for all 1-random B Theorem (Nies) If Y is 1 -random and Δ_{2}^{0} then there is a (necessarily) K-trivial A s.t. $A \oplus Z \geq_{T} Y$ implies $Z \geq_{T} Y$ for all 1-random Z.

Question: All K-trivials ?
case: not K-trivials (still Δ_{2}^{0})
Then for such A
$A \oplus B \equiv_{T} A^{\prime}$ for some 1-random B.
Question: Can for any such A for some
1-random B hold
$A \oplus B \equiv_{T} B^{\prime}$? (and $B<_{T} \emptyset^{\prime}$?)

Definition A degree \mathbf{a} is cuppable (resp. ${ }^{* *}$-cuppable) if for every $\mathbf{b}, \mathbf{a}>\mathbf{b}>\mathbf{0}$ there is a degree \mathbf{c} (resp. a ${ }^{* *}$-degree \mathbf{c}) with $\mathbf{c}<\mathbf{a}$ s.t. $\mathbf{b} \cup \mathbf{c}=\mathbf{a}$.

By the same argument (as for the first jump) we can get.

Theorem Every $\mathbf{a} \geq \mathbf{0}^{\prime}$ is PA-cuppable, moreover, for any nonzero \mathbf{c} below \mathbf{a} there is a PA degree \mathbf{b} s.t. $\mathbf{c} \cup \mathbf{b}=\mathbf{b}^{\prime}=\mathbf{a}$ But (due to very slim Π_{1}^{0} classes, see pages 7,8) Fact No PA a $\not \geq \mathbf{0}^{\prime}$ is PA-cuppable.

Question Which incomplete PA degrees are (at least) cuppable?
(Posner: Every sufficiently high degree is cuppable).

Theorem (K)

Any degree $\mathbf{a} \gg \mathbf{0}$ has the cupping property, i.e. can be (nontrivially) joined to any greater degree (even by a degree $\gg \mathbf{0}$).

Fact

For any $\Delta_{2}^{0} 1$-random $Z, Z=Z_{0} \oplus Z_{1}$, there is always a K-trivial B below both Z_{0}, Z_{1}.

Question

If B is K-trivial, is it always possible to (recursively) split above B any $\Delta_{2}^{0} 1$-random Z s.t. $B \leq_{T} Z$?

1-randoms arise by a special diagonalization of (some) Σ_{1}^{0} objects (similarly for $n>1$).

Proposition

For every n-random set A there is a n-DNR function f s.t. $f \leq_{T} A\left(\right.$ or $\left.\equiv_{T}\right)$.
Hint. use a binary representation of $\varphi_{x}(x)$ or $\varphi_{x}^{\emptyset^{(n)}}(x)$ for an approximation in measure.

Remark

Similarly with n-FPF functions instead of n -DNR, where n -FPF functions are defined as follows:
$n=0 \quad W_{f(x)} \neq W_{x}$
$n=1 \quad W_{f(x)} \not \neq^{*} W_{x}$
$n \geq 2 \quad W_{f(x)}^{(n-2)} \neq{ }_{T} W_{x}^{(n-2)}$.

Definition

A Scott set is a nonempty set $F \subseteq 2^{\omega}$ s.t.
whenever $T \subseteq 2^{<\omega}$ is an infinite tree recursive in a finite join of elements of F, then

$$
[T] \cap F \neq \emptyset .
$$

Remark

Sets representable in a complete extension of PA form a Scott set (Scott).

Question (H. Friedman)

Given a Scott set F and nonrecursive set $X \in F$, is there $Y \in F$ s.t. X and Y are T-incomparable?

Theorem (Slaman, K, based on others)
The positive answer.
It is based on the following.

Proposition

For any $\mathbf{b} \neq \mathbf{0}$ there is an infinite \mathbf{b}-recursive tree $T \subseteq 2^{<\omega}$ s.t. every infinite path through T has degree incomparable with \mathbf{b}.

Idea - two cases (given $X \in \mathbf{b}$):
i) X is not a basis for 1-Rand : use sets 1-random in X to avoid both lower and upper cone of X
ii) X is a basis for 1-Rand: by deep results of Nies, Hirschfeldt and others such X is Δ_{2}^{0} and low for K. Slaman produced the desired tree for this case (finite injury for avoiding an upper cone and making all paths not low for K).

THANK YOU!

