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Splendors and miseries

of Π0
1 classes
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• A Π0
1 class (⊆ 2ω) is a family of sets (reals)

which can be expressed as the family of

infinite paths through a recursive tree

T ⊆ 2<ω.

• Π0
1 classes: the solution sets to many

problems in logic, combinatorics,

algebra and other areas.

• Typical examples

– the set of complete extensions of a given

axiomatizable theory in first-order logic

– the class of sets which separate a pair of

disjoint r.e. sets.

• There are nonempty Π0
1 classes with no

recursive element
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• (Kreisel, Shoenfield) Every nonempty Π0
1

class has an element of degree ≤ 0′

• (Jockusch, Soare) Every nonempty Π0
1 class

has

i) an element of low degree (Low Basis

Theorem)

ii) an element of r.e. degree

• Interesting structure of the (inclusion)

lattice of Π0
1 classes (in some way

analogous to the lattice of Π0
1 subsets of ω).

There are various kinds of ”slim” Π0
1

classes (thin, small, minimal, ....).

Here: ”thick” Π0
1 classes.

4



The relation <<

Definition (Simpson)

b << a means that every infinite tree

T ⊆ 2<ω of degree ≤ b has an infinite path of

degree ≤ a.

Definition

1. A function f ∈ ωω is called DNR if

f (x) 6= ϕx(x) for all x.

2. Especially: DNR2 = the class of 0-1

valued DNR functions (i.e. f ∈ 2ω)
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Theorem (D. Scott and others)

The following conditions are equivalent:

1. a is a degree of a DNR2 function

2. a >> 0

3. a is a degree of a complete extension of PA

4. a is a degree of a set separating some

effectively inseparable pair of r.e. sets.

Remark

DNR2 is a kind of a ”universal” Π0
1 class

DNR2 functions are also called PA sets and

degrees >> 0 are called PA degrees.

(Simpson) Partial ordering << is dense.

Question

Is << first-order definable in D (partial

ordering of the degrees)?
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PA degrees (i.e. >> 0) can be used for a

natural definition of 0′.

0′ = inf { a ∪ b : (a,b) is a minimal pair

of degrees >> 0 }.
Proof. Idea:

1. Split a maximal set A s.t. A dominates all

p. r. functions into two nonrecursive r.e.

sets A1, A2

Sep (A1, A2) is a Π0
1 class without recursive

members sup of any two members 6=∗ is

above 0′.

2. in fact, a ∪ b > 0′ (for a,b as above)

since no ∆0
2 DNR2 (or DNR) can form a

minimal pair
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Or:

0′ = inf { a : 0 << a &

∀c(0 < c ≤ a → ∃b(0 << b ≤ a &

(c 6≤ b)))}

i.e. if a >> 0 & a 6≥ 0′

then for some c, 0 < c < a

all PA b below a are above c.

Comment : More on that later.

8



The role of DNR2 functions ( = PA sets).

Important: Coding

Finitary coding

For any nonempty Π0
1 class A ⊆ DNR2

∃x0∃f0, f1 ∈ A (fi(x0) = i ; i = 0, 1)

i.e. both values 0, 1 are consistent

with A at x0

(”undecidable formula”)

proof: Gödel incompleteness phenomenon
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Infinitary coding

For any nonempty Π0
1 class A ⊆ DNR2

there is a recursive sequence (increasing)

(xi : i ∈ ω) s.t.

∀C∃f ∈ A (f (xi) = C(i) for all i)

(i.e. any infinite binary information is

consistent with A at places given by xi)

(”flexible column”)

Variants

static or dynamic coding (i.e. combined with

an r.e. set)
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Remark

By coding a recursive information

(by this way) we keep Π0
1 classes ⊆ DNR2.

(Typically: Σ0
2 or Π0

2 event).

This phenomenon is implicit in the connection

of DNR2 functions (i.e. PA sets) to r.e. sets.

Examples

Theorem (K, 86-87)

For every DNR2 (even DNR) f ≤T ∅′ there is

a nonrecursive r.e. set A recursive in f (A is

even PS).

Remark

This gives a priority-free solution to Post’s

problem.

Similar techniques give: Friedberg-Muchnik

and standard finite-injury argument.
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For ∅′′-arguments one needs ”infinitary”

coding into DNR2 functions (i.e. PA sets).

Typical example: Minimal pair construction

Fact

There are two PA sets A1, A2 below ∅′′, s.t.

(A1, A2) form a minimal pair and each Ai

bounds a nonrecursive r.e. set Bi.

Thus, (B1, B2) form a minimal pair of r.e.

sets.

Remark

1) Minimality conditions are satisfied

explicitely for PA sets rather than for r.e. sets.

2) Easy to combine with jump classes,

avoiding an upper cone, etc.

3) There is no minimal pair of PA sets below

∅′.
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Proposition

For any ∅′′-recursive sequence of ∅′ -indices of

DNR2 functions fi ≤T ∅′ there is a

nonrecursive r.e. set A recursive in all fi.

Question

Does for every r.e. set A <T ∅′ exist

incomplete PA set <T ∅′ which is above A ?

(a witness of an incompleteness of A).

Answer: NO.
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Theorem (Slaman, K, unpublished)

There is low2 r.e set A s.t. A joins to ∅′ every

DNR function ≤T ∅′,
i.e. A⊕ f ≡T ∅′ for all such f .

Remark

Such A cannot be low. In fact, for every low A

there is always a low PA above.

Hint: code A into a Π0
1 class of PA sets

”in one step” and apply relativized LBT.
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Coding into random (= chaotic) objects is

more ”complicated” and limited.

Algorithmic randomness

Main approaches:

• stochasticity (frequency stability)

• chaoticness (Kolmogorov complexity)

• typicalness (measure - theoretic approach)

Kolmogorov complexity:

plain: C(y) = min{|x| : U(x) = y}
where U is a universal TM

prefix free: K(y) = min{|x| : U(x) = y}
where U is now a universal prefix-free TM

Definition

A set A is 1-random (Chaitin-random) if

K(A � n) ≥ n + c for all n.
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Measure-theoretic approach.

Definition

A class A ⊆ 2ω is of Σ0
1 measure zero if there

is a computable sequence of (indices of)

Σ0
1 classes { Bn : n ∈ ω } s.t.

Bn ⊇ Bn+1 for all n

µ(Bn) ≤ 2−n for all n

A ⊆
⋂

n Bn

Remark: such sequence is called Martin-Löf

test.

Definition

A set A is 1-random (ML-random) if it passes

all ML-tests, i.e. {A} is not of Σ0
1 measure

zero.

Theorem (ML)

There is a universal ML-test { Un : n ∈ ω }.
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Fact

• 1-random sets form a Σ0
2 class (=

⋃
n Un)

• 1-Rand = { σ ∗ A : A ∈ U0 & σ ∈ 2<ω}

Remark:

i) work with Π0
1 classes of a positive measure

ii) another kind of ”thick” Π0
1 classes.

Theorem (Schnorr)

A set A is 1-random (ML-random) iff A is

Chaitin-random.
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Theorem (K)

For every Π0
1 class A with A ∩ Un 6= ∅ (given

n) there is (effectively) x s.t. µ(A) > 2−x.

Remark: weak Gödel’s incompleteness

phenomenon.

Theorem (Kučera, Gacs)

1. Any set is wtt-reducible to a 1-random set

2. { a : a ≥ 0′ } ⊆ 1-random degrees.

Remark

The complexity of coding is, r.sp., of degree 0′.

A weaker result (K):

1-random degrees are not closed upwards.

A stronger result (Stephan):

PA degrees and 1-random degrees coincide

only and precisely above 0′.
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Theorem (Calude, Nies)

R.e. 1-random reals are wtt-complete.

R.sp., when working with 1-randoms above ∅′

no serious problem with coding (and/or

decoding).

Theorem (K, 1987)

1. There is a high incomplete 1-random set,

2. 1-random sets are in all low-high hierarchy

classes,

3. Easy to combine with avoiding an upper

cone.

Remark

Here A <T ∅′ but A′ is used to overcome

incompleteness of A (to decode).

19



Natural question:

To what extent it is possible to code an

infinitary information into incomplete

1-randoms. In other words, for which

incomplete B there is an incomplete 1-random

Z s.t. B <T Z .

Fact

For no incomplete PA set A there is an

incomplete 1-random set Z above A.

(Easy corollary of Stephan’s result.)

Theorem

For every incomplete 1-random A there is an

incomplete 1-random Z s.t. A <T Z.
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Idea:

1) to code ”chaos” into ”chaos”

2) Z = A⊕B

3) B is constructed by using the following

strong useful result (and relativized LBT).

Theorem (van Lambalgen)

1. X ⊕ Y 1-random implies X is

1-random in Y

2. X is 1-random in Y and Y is 1-random

implies X ⊕ Y is 1-random.

An important special case (of coding) concerns

lowness and K-triviality.
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Definition

1) Low(MLRand) denotes the class of sets A

s.t. 1-RandA = 1-Rand

2) K denotes K-trivials, i.e. the class of sets A

s.t. K(A � n) ≤ K(n) + c for all n

3) Low for K denotes the class of sets A s.t.

K(y) ≤ KA(y) + c for all y,

4) A set A is a basis for 1-Rand if A ≤T Z for

some Z s.t Z ∈ 1-RandA.

By excellent results by Nies, Hirschfeldt,

Downey, ... all these classes are the same.

Theorem

Low(MLRand) = K = low for K =

= Bases for 1-Rand.
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History: such sets exist.

K-trivial: ∆0
2 Solovay (a complicated proof)

Low(MLRand): r.e. Terwijn, Kučera (short

and easy construction)

K-trivial: r.e. Downey, Kummer (similar as

above)

Low for K: r.e. Muchnik

Basis for 1-Rand: r.e. Kučera

Facts:

All are ∆0
2 (Nies)

All are low (Kučera: GL1, thus low by the

above)

All are superlow, i.e. A′ ≤tt ∅′ (Nies)

Question:

A nice characterization of this class?
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Theorem (Stephan)

If B is r.e., B ≤T Z for some 1-random Z s.t

∅′ 6≤T Z, then Z is 1-random in B. Thus, B is

a basis for 1-Rand.

[It doesn’t hold, in general, without the

assumption ”B is r.e.” (take 1-randoms).]

Corollary (Nies, Hirschfeldt)

Such B is K-trivial.

Thus, incomplete r.e. sets which have an

incomplete 1-random set above are necessarily

K-trivial.
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Theorem (K)

Z incomplete ∆0
2 and 1-random (even DNR)

then there is r.e. and nonrecursive B ≤T Z.

Corollary Such B is K-trivial .

Nies and Stephan asked: Is this, in fact,

a characterization of K-trivials?

Question (Nies, Stephan)

Given K-trivial set B is there a 1-random

incomplete Z above B ?

Note. Important case: B r.e. (Nies).

Problem: how to combine coding with LBT

when working with 1-randoms ?

A big problem connected with coding into

chaos.
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Theorem (Nies)

K-trivial sets form a Σ0
3 ideal in the ∆0

2

T-degrees, generated by its r.e. members.

(Like any such Σ0
3 ideal)

K ⊆ [0,b] for some r.e. low2 b.

Remark (The role of PA again)

There is a PA set A s.t.

• A′′ ≡T ∅′′

• A is above all sets in K

• there is a low2 r.e. set below A which is

also above all K.
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A stronger version of the preceding question

(of Nies and Stephan):

Is there a low 1-random set above a given

K-trivial set ?

Another question:

Is there a low (low PA) A above all sets in K ?

Probably difficult.
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Easy fact

For every nonrecursive Z there is a PA set A

s.t. Z ⊕ A ≡T A′ (and A ≤T Z ⊕ ∅′.)

Proof: 1) it follows from Posner-Robinson and

relativized LBT, (but we wish to have more)

2) a direct construction.

Take a flexible column in a Π0
1 class

B ⊆ DNR2, code A bit by bit into it and

∅′ ⊕ A will find a finite piece σ of A which

- either is a bound for a Σ0
1 witness

- or σ ∗ 0 and σ ∗ 1 can be used for

(Π0
1) forcing of a Π0

1 event.

Decoding: first difference from A.
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Key: A cannot be an isolated path through a

recursive tree.

Crucial: Since DNR2 is a ’universal’ Π0
1 class,

Π0
1 restriction over B is still a Π0

1 subclass of

DNR2.
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Theorem If Z is not ∆0
n (n ≥ 1) then there

is a PA set A s.t. Z ⊕ A ≡T A(n),

where A ≤T Z ⊕ ∅(n).

Remark

Slaman and Shore proved such a result

(without PA) and used that (for n = 2) for

defining the jump. They used Kumabe-Slaman

forcing.

Proof: 1) It follows from Slaman-Shore result

and relativized LBT.

But a direct construction which would be

adaptable for other ”fat” Π0
1 classes is

desirable.

2) Working conjecture: such a construction is

possible.

30



PA versus 1-Rand:

Case n = 2 (the double jump)

1) Fact (for the first jump):

A not ∆0
2 implies that there is

a 1-random set B s.t. A⊕B ≡T B′

where B ≤T A⊕ ∅′

2) working conjecture:

A not ∆0
2 implies that there is

a 1-random B s.t. A⊕B ≡T B′′

where B ≤T A⊕ ∅′′

(Here we would need an adaptable

construction for fat Π0
1 classes).

31



Class : ∆0
2 and n = 1 (the first jump)

case: K-trivials.

(Nies) some K-trivials A cannot be joined

above ∅′ by any incomplete 1-random set,

i.e. A⊕B 6≥T ∅′ for all 1-random B 6≥T ∅′

and thus, A⊕B 6≥T B′ for all 1-random B

Theorem (Nies) If Y is 1-random and ∆0
2

then there is a (necessarily) K-trivial A s.t.

A⊕ Z ≥T Y implies Z ≥T Y

for all 1-random Z.

Question: All K-trivials ?
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case: not K-trivials (still ∆0
2)

Then for such A

A⊕B ≡T A′ for some 1-random B.

Question: Can for any such A for some

1-random B hold

A⊕B ≡T B′ ? (and B <T ∅′ ?)
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Definition A degree a is cuppable

(resp. **-cuppable) if for every b, a > b > 0

there is a degree c (resp. a **-degree c) with

c < a s.t. b ∪ c = a.

By the same argument (as for the first jump)

we can get.

Theorem Every a ≥ 0′ is PA-cuppable,

moreover, for any nonzero c below a there is a

PA degree b s.t. c ∪ b = b′ = a

But (due to very slim Π0
1 classes, see pages 7,8)

Fact No PA a 6≥ 0′ is PA-cuppable.

Question Which incomplete PA degrees are

(at least) cuppable?

(Posner: Every sufficiently high degree is

cuppable).
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Theorem (K)

Any degree a >> 0 has the cupping property,

i.e. can be (nontrivially) joined to any greater

degree (even by a degree >> 0).
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Fact

For any ∆0
2 1-random Z, Z = Z0 ⊕ Z1, there

is always a K-trivial B below both Z0, Z1.

Question

If B is K-trivial, is it always possible

to (recursively) split above B

any ∆0
2 1-random Z s.t. B ≤T Z ?
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1-randoms arise by a special diagonalization of

(some) Σ0
1 objects (similarly for n > 1).

Proposition

For every n-random set A there is a n-DNR

function f s.t. f ≤T A (or ≡T ).

Hint. use a binary representation of ϕx(x) or

ϕ∅
(n)

x (x) for an approximation in measure.

Remark

Similarly with n-FPF functions instead of

n-DNR, where n-FPF functions are defined as

follows:

n = 0 Wf(x) 6= Wx

n = 1 Wf(x) 6=∗ Wx

n ≥ 2 W
(n−2)
f(x) 6=T W

(n−2)
x .
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Definition

A Scott set is a nonempty set F ⊆ 2ω s.t.

whenever T ⊆ 2<ω is an infinite tree recursive

in a finite join of elements of F , then

[T ] ∩ F 6= ∅.

Remark

Sets representable in a complete extension of

PA form a Scott set (Scott).

Question (H. Friedman)

Given a Scott set F and nonrecursive set

X ∈ F , is there Y ∈ F s.t. X and Y are

T -incomparable ?
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Theorem (Slaman, K, based on others)

The positive answer.

It is based on the following.

Proposition

For any b 6= 0 there is an infinite b-recursive

tree T ⊆ 2<ω s.t. every infinite path through

T has degree incomparable with b.

Idea - two cases (given X ∈ b):

i) X is not a basis for 1-Rand : use sets

1-random in X to avoid both lower and upper

cone of X

ii) X is a basis for 1-Rand: by deep results of

Nies, Hirschfeldt and others such X is ∆0
2 and

low for K. Slaman produced the desired tree

for this case (finite injury for avoiding an upper

cone and making all paths not low for K).
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THANK YOU!
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