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Abstract. We prove that the degree structures of the d.c.e. and
the 3-c.e. Turing degrees are not elementarily equivalent, thus re-
futing a conjecture of Downey. More specifically, we show that
the following statement fails in the former but holds in the latter
structure: There are degrees f > e > d > 0 such that any degree
u ≤ f is either comparable with both e and d, or incomparable
with both.

1. The Theorems

In 1965, Putnam [Pu65] defined the n-c.e. sets as a generalization of
the c.e. (or computably enumerable) sets:

Definition 1. Given an integer n > 0, we call a set A ⊆ ω n-c.e. if
there is a computable sequence of sets {As}s∈ω such that for all x ∈ ω,

A0(x) = 0,

A(x) = limsAs(x), and

{s ∈ ω | As(x) 6= As+1(x)}.

(Note that a c.e. set is thus simply a 1-c.e. set; and a 2-c.e. set is a
d.c.e. set, i.e., a difference of two c.e. sets.)

These sets were first extensively studied (and extended to the α-c.e.
sets for computable ordinals α) by Ershov [Er68a, Er68b, Er70] and
are nowadays often said to form the Ershov hierarchy, which stratifies
the ∆0

2-sets.
The n-c.e. degrees, i.e., the Turing degrees of the n-c.e. sets, were first

investigated by Lachlan (late 1960’s, unpublished), who showed that
for any n-c.e. degree d > 0, there is a c.e. degree a with d > a > 0, and

1991 Mathematics Subject Classification. Primary: 03D28.
Key words and phrases. d.c.e. degrees, n-c.e. degrees, Downey’s conjecture.
This research was partially supported by NSF Binational Grant DMS-0075899.

The first two authors’ research was also partially supported by Russian Foundation
for Basic Research grant 05-01-00605. The third author’s research was also partially
supported by NSF grant DMS-0140120.

1



2 ARSLANOV, KALIMULLIN, AND LEMPP

by Cooper [Co71], who showed that there is a properly d.c.e. degree,
i.e., a Turing degree containing a d.c.e. set, but no c.e. set.

The d.c.e. and, more generally, the n-c.e. Turing degrees form an
intermediate degree structure between the computably enumerable and
the ∆0

2-degrees. It is interesting to compare the n-c.e. degrees with both
of them, since they share some of the properties of either structure.

By the above-mentioned result of Lachlan and the existence of a min-
imal ∆0

2-degree (Sacks [Sa61]), the n-c.e. degrees and the ∆0
2-degrees

do not form elementarily equivalent degree structures. The first ele-
mentary difference between the c.e. and the d.c.e. degrees was found
by Arslanov [Ar88] (see also Cooper, Lempp, Watson [CLW89]), who
showed that every nonzero d.c.e. degree d cups to 0′, i.e., that there
is a d.c.e. degree e < 0′ with d ∪ e = 0′, whereas Yates and Cooper
(1973, unpublished, cf. D. Miller [Mi81]) showed this to fail for the c.e.
degrees. Further elementary differences were found by Downey [Do89],
who showed that the Lachlan Nondiamond Theorem [La66] for the c.e.
degrees fails for the d.c.e. degrees; and by Cooper, Harrington, Lachlan,
Lempp, and Soare [CHLLS91], who showed that for all n > 1, the n-c.e.
degrees are not dense, in contrast to the Sacks Density Theorem [Sa64]
for the c.e. degrees.

Given that no one was able to find, or even conceive of, an elemen-
tary difference between the n-c.e. degrees for various n > 1, Downey
formulated the following

Conjecture 2 (Downey [Do89]). For any m,n > 1, the degree struc-
tures of the m-c.e. and the n-c.e. degrees are elementarily equivalent.

In this paper, we will refute this conjecture:

Theorem 3. The degree structures of the d.c.e. and the 3-c.e. de-
grees are not elementarily equivalent. (More precisely, there is an ∀∃-
sentence in the language of partial orderings only on which they differ.)

This theorem will immediately follow by Corollary 6 and Theorem 7
below. We conjecture that our proof can be extended as follows:

Conjecture 4. For any distinct m,n ≥ 1, the degree structures of the
m-c.e. and the n-c.e. degrees are not elementarily equivalent.

We are now ready to state the technical results establishing Theo-
rem 3:

Theorem 5. Let E and D be d.c.e. sets and X a c.e. set such that
X ≤T E, E 6≤T D, D 6≤T X, and both D and E are c.e. in X. Then
there exists a d.c.e. set U such that X ≤T U ≤T E and U |T D.
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This theorem will be proved in section 2. From this theorem, we
obtain

Corollary 6. There are no d.c.e. degrees f > e > d > 0 such that any
d.c.e. degree u ≤ e is comparable with d, and any d.c.e. degree u with
d ≤ u ≤ f is comparable with e.

Proof. For the sake of a contradiction, assume that such degrees f >
e > d > 0 exist. Note that by Robinson [Ro71] there is no c.e. degree
x such that d < x ≤ e or e < x ≤ f .

Let F ∈ f , E ∈ e and D ∈ d be d.c.e. sets. By Lachlan (unpub-
lished), we can choose a c.e. set X ≤T E such that D and E are c.e.
in X. Then by Theorem 5 we have D ≤T X. Since X is c.e. and
X ≤T E, the case D <T X is not possible. Thus, X ∈ d and d is a
c.e. degree.

Let Y ≤T F be a c.e. set such that E and F are c.e. in Y . Without
loss of generality we can assume thatD ≤T Y (otherwise we can replace
Y by X ⊕ Y ). Since Y is c.e. and Y ≤T F , we cannot have E ≤T Y .
Then by Theorem 5 we must have a d.c.e. set U such that Y ≤T U ≤T

F and U |T E. This contradicts our assumption since D ≤T U . �

On the other hand, we will show that Corollary 6 fails in the 3-c.e.
degrees:

Theorem 7. There are 3-c.e. degrees f > e > d > 0 such that any
3-c.e. degree u ≤ e is comparable with d, and any 3-c.e. degree u with
d ≤ u ≤ f is comparable with e. (In fact, e and d can be chosen d.c.e.
and c.e., respectively.)

This theorem will be proved in section 3. We obtain immediately

Corollary 8. There are d.c.e. degrees e > d > 0 such that any d.c.e.
degree u ≤ e is comparable with d.

Note that from the proof of Corollary 6, it follows that if the degrees
e and d are as in Corollary 8, then the degree d must be c.e. This
gives a first example of an (infinite) definable class in the d.c.e. degrees
consisting only of c.e. degrees. Note that this class cannot be equal to
the class of all c.e. degrees by the existence of non-isolating c.e. degrees
shown by Arslanov, Lempp, Shore [ALS96].

Note also that all known sentences in the language of partial ordering,
which are true in the n-c.e. degrees and false in the (n+1)-c.e. degrees
for some n ≥ 1 (including the sentence from Theorem 3 for n = 2 and
the sentence from Corollary 8 for n = 1), belong to the level ∀∃ or
higher. We conjecture that for all n ≥ 1, the ∃∀-theory of the n-c.e.
degrees is a subtheory of the ∃∀-theory of the (n+ 1)-c.e. degrees.
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The rest of this paper will be devoted to the proofs of Theorem 5
and Theorem 7.

2. The proof of Theorem 5

2.1. The requirements for Theorem 5. To prove Theorem 5 we
can suppose that E is not c.e. in D (otherwise we can consider the set
E⊕X instead of E since if E⊕X is c.e. in D then X ≤T D and hence
E ≤T D).

Let Y be the “Lachlan” set for E ⊕D, i.e., if E ⊕D = E1 ⊕D1 −
E2 ⊕ D2 for some c.e. sets E1, D1, E2, and D2, where E2 ⊆ E1 and
D2 ⊆ D1, then Y = h−1(E2⊕D2), where h is a 1-1 computable function
such that E1 ⊕D1 = rng(h). Then, obviously, Y ≤T X. Hence we can
suppose that X is a set of the form Y ⊕ Z for some c.e. set Z.

Let {E1
s}s∈ω, {E2

s}s∈ω, {D1
s}s∈ω, and {D2

s}s∈ω be computable enu-
merations of the c.e. sets E1, E2, D1 and D2, respectively, such that
E2

s ⊆ E1
s and D2

s ⊆ D1
s . Let Es = E1

s − E2
s and Ds = D1

s − D2
s . Let

{Xs}s∈ω be a computable enumeration of X.
Let f and g be partial computable functions such that f(y) =

2h−1(2y) and g(y) = 2h−1(2y + 1). (So f(ω ⊕ ∅) = E ⊕ ∅ and
g(∅ ⊕ ω) = ∅ ⊕D.)

To prove Theorem 5 it is sufficient now to construct a d.c.e. set
U ≤T E ⊕ X ≡T E meeting for all Turing functionals Γ and Λ the
following requirements:

PΓ : U = Γ(D) → E = dom(Φ(D));

NΛ : D = Λ(U ⊕X) → D = Ψ(X).

Here, the functionals Φ and Ψ will be built during the construction
below.

We first consider basic modules for P- and N -requirements in isola-
tion.

2.2. The Basic Module for the P-requirement in isolation. To
satisfy the P-requirement we proceed by an ω-sequence of cycles. For
an arbitrary cycle k ∈ ω we

(1) pick a witness uk /∈ U and wait for Γ(D;uk)[s] ↓= 0 at a stage s,
(2) then open cycle k + 1, define Φ(D; k) = 0 with ϕ(k) = γ(uk),

and
(3) wait for k to enter into E or D � γ(uk) to change. In the latter

case go to Step 1 with the same witness uk. In the former case,
(4) enumerate uk into U , stop all cycles > k, and
(5) wait for a stage s1 when Γ(D;uk)[s1] ↓= 1. After that
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(6) reopen cycles > k, and leave Φ(D; k) undefined. (Note that
Φ(D; k) must now be undefined even though D is only a d.c.e.
set since we never define such a computation unless there is a
corresponding computation Γ(D;uk) with use at most that of
Φ(D; k).)

(7) If later k leaves E then we define Φ(D; k) = 0 with ϕ(k) = 0,
and extract uk from U (for the sake of U ≤T E).

There are the following possible outcomes of this strategy.

A. There are only finitely many cycles opened. This means that
some cycle k waits at Step 1 or 5 forever. We denote this
outcome by ω.

B. For some cycle k there is an infinite loop from Step 3 to Step 1.
We denote this outcome by k for the least such k ∈ ω.

C. Otherwise. In this case we will have E = dom(Φ(D)), which is
impossible.

2.3. The Basic Module for the N -requirement in isolation.
Again we proceed by an ω-sequence of cycles. For each cycle l,

(1) wait for D � (l + 1) = Λ(U ⊕X) � (l + 1)), and
(2) define Ψ(X; l) = D(l) with ψ(l) = λ(l), and restrain U � λ(l).

Open the cycle l + 1.
(3) Wait for D � (l + 1) or X � ψ(l) to change. In the latter case

go to Step 1. In the former case we stop the cycles > l and
(4) wait for D � (l + 1) = Λ(U ⊕X) � (l + 1) again.
(5) Redefine Ψ(X)(l) = D(l), reopen the cycles > l.

There are the following possible outcomes of this strategy.

A. There are only finitely many cycles opened. This means that
some cycle l waits at Step 1 or 4 forever. We denote this out-
come by ω.

B. For some cycle l there is an infinite loop from Step 3 to Step 1.
We denote this outcome by l for the least such l ∈ ω.

C. Otherwise. In this case we will have D = Ψ(X), which is im-
possible.

Note that for the sake of the requirement U ≤T E we may need
to extract some uk from U , injuring some N -requirement. This can
only be because of some k leaving E and, therefore, f(k) entering
X = Y ⊕ Z. To avoid this difficulty, it is enough to define ψ(l) in
Step 2 to be greater than all f(k) for any k ∈ E such that there is a
witness uk ∈ U (of some P-strategy) such that uk < δ(l)).
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2.4. P- and N -strategies together. Now let us consider an N -
strategy below the k0-outcome of a P-strategy and the following in-
terplay of strategies:

1. At a stage s in cycle k0, we see U(uk0) = Γ(D;uk0) ↓, open a
cycle k > k0, and define uk.

2. Later, at a stage s1, we may have Γ(D; k0) ↑. In this case we
go to the N -strategy, and

3. suppose that the N -strategy restrains uk (via its cycle l, say),
4. then we see that at a stage s2, again U(uk0) = Γ(D;uk0) ↓, and
5. returning to the P-strategy, we may need to enumerate uk into
U , injuring the N -restraint.

There are two possibilities.

1) At Step 5, we return to the P-strategy with a D-use which is
different from that which we had at stage s. In this case we can
simply redefine Φ(D; k0), without enumeration of uk into U .

2) At Step 5 we return to the P-strategy with the same D-use
which we had at stage s.

By our strategy this can be only if for some t < γ(k0) we have
t /∈ D[s], t ∈ D[s1] and t /∈ D[s2].

To avoid this difficulty, it is enough to change the N -strategy so
that at stage s1 the use function ψ(l) is defined to be greater than all
g(x) for any x ∈ D � γ(k0). Then, after stage s2, we have no need to
keep the restraint imposed at stage s1 since X � ψ(l) has changed by
stage s2.

2.5. The tree of strategies. In the formal construction below we will
use the tree of strategies T = (ω+1)<ω. Let <L and < be the standard
relations on T under the ordered alphabet {0 < 1 < 2 < · · · < ω}.

We also fix some effective listing of all P- and N -requirements such
that each P-requirement has an even index in this listing and each N -
requirement has an odd index. For the tree T assign the nth require-
ment in this listing to all nodes ξ ∈ T of length n. Let T = EVN∪ODN
where EVN and ODN are the sets of nodes of T of even and odd length,
respectively.

Let Lσ = {〈τ, k〉 ∈ ODN× ω : τ̂k ≤ σ}. It is easy to see that if
τ1̂k1 <L τ2̂k2 and 〈τ2, k2〉 ∈ Lσ, then 〈τ1, k1〉 ∈ Lσ.

2.6. The construction. Stage s = 0. Let U0 = ∅ and δ0 = λ (where
λ is the empty string), set r0(τ, k) = 0 for all k and all τ ∈ ODN, and
call no k marked by any τ ∈ ODN at stage s = 0. Also, no witness
is assigned to any σ ∈ EVN. The functionals Φσ,0 and Ψτ,0 are totally
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undefined for all σ ∈ EVN and all τ ∈ ODN. (Therefore, their use
functions ϕσ,0 and ψσ,0 are equal to 0 at all arguments.)

Stage s+ 1 consists of several parts:
Part I) For all τ ∈ ODN and for all k, define r′s(τ, k) = rs(τ, k) if

Xs+1 � ψτ ′,s(k
′) = Xs � ψτ ′,s(k

′) for all 〈τ ′, k′〉 such that τ ′̂k′ ≤L τ̂k.
(Here we define σ ≤L τ iff σ = τ or σ <L τ .) Otherwise, set r′s(τ, k) =
0.

Part II) Define Us+1 = (Us−{u : u = 〈σ, k, α, t〉 & k 6∈ Es+1})
⋃
{u :

u = 〈σ, k, α, t〉 is a witness & k ∈ Es+1 & α ⊆ Ds+1 & Rs(σ) ≤ u)},
where Rs(σ) = max{ρs(σ, τ, k) : 〈τ, k〉 ∈ Lσ} and

ρs(σ, τ, k) =

{
+∞ if τ̂k ⊆ σ and r′s(τ, k) > 0

r′s(τ, k) otherwise

(Here ρs(σ, τ, k) is the restraint r′s(τ, k) imposed on the positive σ-
strategy. If r′s(τ, k) > 0 for τ̂k ⊆ σ we must set ρs(σ, τ, k) = ∞ since
if r′s(τ, k) > 0 then it is possible that r′s(τ, k

′) > 0 for many k′ > k.
This is a formalization of the fact that if r′s(τ, k) > 0 then any witness
below τ̂k cannot enter into U ; such witnesses can enter only if we
have a window r′s(τ, k) = 0; of course, such witnesses must be greater
than restraints r′s(τ, k

′), k′ < k).
Part III) In this part we define δs+1 of length s + 1 by induction:

Let δs+1 � n = σ be already defined and let n < s + 1. Consider the
following cases:

Case 1: σ ∈ EVN and σ is assigned to a requirement PΓ.
Subcase 1a: There exists a witness y = 〈σ, k, α, t〉 such that Us+1(y) 6=

Γs+1(Ds+1; y) ↓: Then define δs+1 � (n+ 1) = (δs+1 � n)̂ω.
Subcase 1b: There exist k ∈ ω and a witness y = 〈σ, k, α, t〉 such that

either Γs+1(Ds+1; y) is undefined or, for every t ≤ s such that σ ⊆ δt,
we have Ds+1 � γs+1(y) 6= Dt � γt(y): In this subcase we let k0 be least
such k and define δs+1 � (n+ 1) = (δs+1 � n)̂k0.

Subcase 1c: Otherwise: Let k0 be the least k such that there is no
witness 〈σ, k, α, t〉 with α ⊆ Ds+1, and let

α0 = Ds+1 � max{γs+1(Ds+1, 〈σ, k, α, t〉) : k < k0 & α ⊆ Ds+1}.

Assign 〈σ, k0, α0, s + 1〉 as a new witness, and set δs+1 � (n + 1) =
(δs+1 � n)̂k0. Note that since Subcase 1c is the unique place in the
construction where new witnesses are assigned and since we assume
that the use-function γt(Dt, y) is non-decreasing in t (unless an old
definition applies again since D has changed back), we have that, for
each set Z and for all k and τ , there is at most one witness of the form
〈τ, k, α, t〉 where α ⊆ Z and t ∈ ω.
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For any k < k0 such that k 6∈ Es+1 and Φσ,s(Ds+1; k) is undefined,
we define Φσ,s+1(Ds+1; k) = 0 and, for the witness 〈σ, k, α, t〉 such that
α ⊆ Ds+1, set the use ϕσ,s+1(k) = max(|α|, γs+1(〈σ, k, α, t〉)).

Case 2: σ ∈ ODN and σ is assigned to a requirement NΛ: This case
is divided into two subcases.

Subcase 2a: There exists k marked by the node σ such thatDs+1(k) 6=
Λs+1(Us+1 ⊕Xs+1; k) ↓: Then define δs+1 � (n+ 1) = (δ � n)̂ω.

Subcase 2b: Otherwise: Let k0 be the least k such that r′s+1(σ, k) = 0.
Define δs+1 � (n + 1) = (δs+1 � n)̂k0. If k0 is not yet marked then we
now declare k0 marked by the node σ.

Set rs+1(σ, k0) = 0 and ψσ,s+1(k) = 0 if either Λs+1(Us+1 ⊕Xs+1; k0)
is undefined or if Λs+1(Us+1 ⊕Xs+1; k0) ↓6= Ds+1(k0). Otherwise, set
rs+1(σ, k0) = 1 + λs+1(k0) and Ψσ,s+1(Xs; k0) = Ds+1(k0) with use

ψσ,s+1(k0) = 1 + max({λs+1(k0)} ∪
{f(k) : (∃u < λs+1(k0))[u = 〈τ, k, α, t〉 & u ∈ Us+1)]} ∪
{g(p) : (∃u < λs+1(k0))[u = 〈τ, k, α, t〉 is a witness &

u 6∈ Us+1 & (∃k′ < k)[τ̂k′ ⊆ σ] & p ∈ Ds+1 & α(p) ↓= 0]} ∪
{ψs,τ (k) : τ̂k <L σ̂k0}).

Part IV) Define rs+1(σ, k) = r′s(σ, k) if σ ∈ ODN and σ̂k 6⊆ δs+1.
Also for all σ and k such that σ ∈ ODN and σ̂k 6⊆ δs+1, we define
ψσ,s+1(k) = ψσ,s(k) if rs+1(σ, k) > 0, and ψσ,s+1(k) = 0 if rs+1(σ, k) = 0.

Part V) Initialize all σ ∈ EVN such that δs+1 <L σ. The initializa-
tion of σ at stage s + 1 means that all current witnesses of σ cease to
be witnesses.

End of the construction.

2.7. The verification. Let F (σ, n, α, s, t) be the predicate

(∀v ≥ t)[〈σ, n, α, s〉 < Rv(σ)].

Lemma 9. There is an X-c.e. predicate F̃ (σ, n, α, s, t) such that for all
σ, n, α, s, and t,

(1) F̃ (σ, n, α, s, t) implies F (σ, n, α, s, t), and

(2) F (σ, n, α, s, t) implies F̃ (σ, n, α, s, t) if δv 6<L σ for all v ≥ t.

Proof. Let δv 6<L σ for all v ≥ t. To prove the lemma, it is sufficient
to prove that if F (σ, n, α, s, t) then there is a stage v0 ≥ t such that

1) 〈σ, n, α, s〉 < Rv(σ) for all v with t ≤ v < v0, and
2) 〈σ, n, α, s〉 < ρv0(σ, τ0, k0) for some 〈τ0, k0〉 ∈ Lσ such that Xv0 �

ψτ,t(k) = X � ψτ,t(k) for every 〈τ, k〉 such that τ̂k ≤L τ0̂k0,
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since the converse obviously holds for arbitrary σ, n, α, s, and t. (Recall
that we defined σ ≤L τ iff σ = τ or σ <L τ .)

Suppose that δv 6<L σ for all v ≥ t and F (σ, n, α, s, t). Since δv 6<L σ
for all v ≥ t we have r′v(τ, k) ≥ r′v+1(τ, k) for all v ≥ t and all 〈τ, k〉 ∈ Lσ

such that τ̂k 6⊆ σ (since the construction can set a new restraint
r′v(τ, k) only if τ̂k ⊆ δv and since τ̂k <L σ).

First we consider the case when there is 〈τ0, k0〉 ∈ Lσ such that
τ0̂k0 6⊆ σ and r′v(τ0, k0) > 〈σ, n, α, s〉 for all v ≥ t. By the definition
of r′s from the construction, we have Xt � ψτ,t(k) = X � ψτ,t(k) for all
〈τ, k〉 such that τ̂k ≤L τ0̂k0 so that we have claims 1) and 2) for
v0 = t.

Thus we can assume that there is a stage v1 ≥ t such that r′v(τ0, k0) ≤
〈σ, n, α, s〉 for all v ≥ v1 and all 〈τ0, k0〉 ∈ Lσ with τ0̂k0 6⊆ σ.

Note also that if there are a stage w ≥ v1 and 〈τ0, k0〉 ∈ Lσ such that
τ0̂k0 ⊆ σ and r′v(τ0, k0) > 0 for all v ≥ w, then we have claims 1) and
2) for v0 = w.

Finally, it remains to show that it is not possible that for every
w ≥ v1 and every 〈τ0, k0〉 with τ0̂k0 ⊆ σ, there is a stage v ≥ w such
that r′v(τ0, k0) = 0.

Indeed, in that case, there would be some 〈τ0, k0〉 such that τ0̂k0 ⊆ σ
and τ0̂k0 ⊆ δv for infinitely many stages v. Otherwise, if for any such
〈τ0, k0〉 there are only finitely many stages v such that τ0̂k0 ⊆ δv then
there is a stage v′ ≥ v1 such that r′v(τ0, k0) = 0 for any v ≥ v′ so that
〈σ, n, α, s〉 ≤ Rv(σ) which contradicts with F (σ, n, α, s, t).

Choose the ⊆-greatest node τ0 such that τ0̂k0 ⊆ σ for some k0 ∈ ω
and τ0̂k0 ⊆ δv for infinitely many stages v.

By the choice of 〈τ0, k0〉, for each 〈τ1, k1〉 such that τ0̂k0 ⊂ τ1̂k1 ⊆
σ, we have τ1̂k1 ⊆ δv for finitely many v. Therefore, there is a stage
v2 ≥ v1 such that r′v(τ1, k1) = 0 for all v ≥ v2 and all 〈τ1, k1〉 with
τ0̂k0 ⊂ τ1̂k1 ⊆ σ.

Let v3 ≥ v2 be any stage such that τ0̂k0 ⊆ δv3+1. By Subcase
2b of the construction, we have r′v3

(τ1, k1) = 0 for each 〈τ1, k1〉 with
τ1̂k1 ⊆ τ0̂k0. Thus, by the choice of the stages v1 and v2, we have
Rv3(σ) ≤ 〈σ, n, α, s〉. This contradicts F (σ, n, α, s, t).

Note that by the part II of the construction, if F (σ, n, α, s, t) holds
then Ut(〈σ, n, α, s〉) ≥ Uv(〈σ, n, α, s〉) for all v ≥ t, i.e., the number
〈σ, n, α, s〉 cannot enter U after stage t.

Lemma 10. U ≤T E ⊕X ≡T E.

Proof. Let u = 〈σ, k, α, s0〉. By construction, if at stage s0, u is
not declared a witness then u 6∈ U . Suppose that u is chosen as a
witness at stage s0 (and so we have α ⊆ Ds0). Obviously, if k 6∈ E
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then u 6∈ U . Suppose that k ∈ E and let s1 ≥ s0 be the least stage
such that k ∈ Es1 . Then we check whether α was initialized at a stage
s with s0 < s < s1. If so, then u /∈ U (since u ceases to be a witness
at stage s). To compute U(u) in the case when α is not initialized at
a stage s with s0 < s < s1, we wait for a stage s ≥ s1 such that one of
the following clauses holds:

1) u ∈ Us,
2) δs <L σ,

3) F̃ (σ, k, α, s0, s),
4) (∃p)[α(p) ↓= 1 & p 6∈ Ds], or
5) (∃p)[α(p) ↓= 0 & p ∈ Ds & g(p) 6∈ X].

If such stage s exists then we have u ∈ U iff u ∈ Us. Indeed, if clause 3)
holds then by Lemma 9 (1) we have F (σ, k, α, s0, s), so U(u) = Us(u).
If one of the clauses 4) or 5) holds then α will not be compatible with
Dv for all v ≥ s so that by Part II of the construction, u cannot enter
U at any stage > s, i.e., U(u) = Us(u).

It remains to argue that there is such stage s. Indeed, if u /∈ U
and δs 6<L σ for all s ≥ s1 then by Part II of the construction, this is
possible only because at every stage s ≥ s1, either α is not compatible
with Ds, or u < Rs(σ). If α 6⊆ D then at some stage s ≥ s1, either
clause 4) or clause 5) must hold. If α ⊆ D then from some stage s ≥ s1,
we always will have u < Rs(σ), i.e., F (σ, k, α, s0, s). Thus, by Lemma 9

(2), we have F̃ (σ, k, α, s0, s), i.e., clause 3).

Lemma 11. δ = lim infs δs exists.

Proof. Suppose that lim infs δs � n = σ exists but lim infs δs � (n+1)
does not exist.

We will consider two possibilities.
Case 1: σ ∈ EVN and σ is assigned to a requirement PΓ. Note that

lim infsRs(σ) < +∞. Let s0 be the least stage such that δs 6<L σ for
all s ≥ s0.

We prove by induction that, for all k, there exists a permanent wit-
ness 〈σ, k, α, t〉 such that α ⊆ D. Suppose that for any k < k0, this is
true. To prove this for k0, we first note that by construction, for any k
there can be at most one such witness 〈σ, k, α, t〉. Let us denote it by
uk (if it exists).

It is easy to see that (∀k < k0)[Γ(D;uk) ↓= U(uk)]. Indeed, other-
wise either lim infs δs � (n + 1) = σ̂ω, or lim infs δs � (n + 1) = σ̂k
for some k < k0.

By the construction, we choose, at some stage s, a permanent witness
〈σ, k0, α, s〉 with α = D � max{γe(D, uk) : k < k0}.
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As Γ(D;uk) ↓= U(uk) = 0 for all k /∈ E, we have E ⊆ dom(Φσ(D)).
Suppose now that k ∈ E and Φσ(D; k) is defined. So there exists a
witness 〈σ, k, α, t〉 with α ⊆ D such that Γe(D; 〈σ, k, α, t〉) ↓= 0. But
this means that either 〈σ, k, α, t〉 < lim infsRs(σ) or 〈σ, k, α, t〉 was
initialized so that the witness 〈σ, k, α, t〉 was assigned before stage s0.
Therefore, E =∗ dom(Φσ(D)), which is impossible.

Case 2: σ ∈ ODN and σ is assigned to a requirement NΛ. Fix a
stage s0 such that δs 6<L σ and Us(u) = Us0(u) for all s ≥ s0 and all
u ∈ S where

S = {〈τ, k, α, t〉 : τ ∈ EVN &

〈τ, k, α, t〉 is a witness at stage t & [τ̂k ≤ σ]}.

Note that the set S is finite. Indeed, it is clear that the set of all
witnesses 〈τ, k, α, t〉 with τ̂k <L σ is finite. Furthermore, the set
of all witnesses 〈τ, k′, α, t〉 with τ̂k′ ⊆ σ is also finite, otherwise, by
Subcase 1c) of the construction, Γ(D; k) is undefined for some k < k′

where Γ is such that τ is assigned to PΛ, and this is not possible since
lim infs δs � n = σ.

To obtain a contradiction, we will show that D(k) = Ψσ(X; k) for
all numbers k which are not marked by the node σ at stage s0.

Indeed, for all k, Ψσ(X; k) is defined (otherwise lim infs δs � (n +
1) exists). Therefore, for any k, the construction, at some stage sk,
imposes a restraint rsk

(σ, k) such that rsk
(σ, k) = rs(σ, k) = r′s(σ, k) >

0 for all s ≥ sk and which supports the equationD(k) = Λ(U ⊕X; k) =
Ψσ(X; k).

Suppose that k is not marked by node σ at stage s0. Then the
restraint U � rsk

(σ, k) cannot be injured by witnesses from S. Also it
cannot be injured by witnesses entering U via nodes τ > σ. Therefore,
only the following possibilities to injure the restraint remain:

1) u leaves U � rsk
(σ, k) at a stage s′ > sk, or

2) u enters into U � rsk
(σ, k) at a stage s′ > sk and τ̂k′ ⊆ σ and

u = 〈τ, k′′, α, t〉 for some k′ < k′′ and α ⊆ Ds′ .
From 1) and the definition of Ψσ at stage sk, it easily follows that

Xs′ � ψσ,s′(k) 6= Xsk
� ψσ,sk

(k), which is impossible.
It follows from 2) that t ≤ sk and α ⊆ Dt. Therefore, there exists a

witness u′ = 〈τ, k′, α′, t′〉 with α′ ⊆ α, t′ ≤ t, and Ut(u
′) = Γ(D;α, u′) ↓.

But then α 6⊆ Dsk
.

Now it follows from the definition of Ψσ(X; k) at stage sk that Xs′ �
ψσ,s′(k) 6= Xsk

� ψσ,sk
(k), which is impossible. Therefore, D =∗ Ψσ(X).

Lemma 12. For all Turing functionals Λ, D 6= Λ(U ⊕X).
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Proof. Suppose that D = Λ(U ⊕X). Let σ ⊆ δ be assigned to the
requirement NΛ. If σ̂ω ⊆ δ then, obviously, D 6= Λ(U). Therefore,
σ̂k0 ⊆ δ for some k0. Let s0 be a stage such that for all s ≥ s0 the
following conditions holds:

(1) rs0(τ, k) = rs(τ, k) = r′s(τ, k) > 0 for all 〈τ, k〉 such that τ̂k <L

σ̂k0,
(2) Ds0(k0) = Ds(k0) = Λe,s0(Us0 ⊕Xs0 ; k0),
(3) Us0 � λs0(k0) = Us � λs0(k0), and
(4) X � a = Xs0 � a,

where

a = 1 + max({λs0(k0)} ∪
{f(k) : (∃u < λs0(k0))[u = 〈τ, k, α, t〉 is a witness at stage t & u ∈ Us0 ]}
∪{g(p) : (∃u < λs0(k0))[u = 〈τ, k, α, t〉 is a witness at stage t & u 6∈ Us0

& (∃k′ > k)[τ̂k′ ⊆ σ] & α(p) ↓= 0 & p ∈ Ds0 ]} ∪
{ψτ,s0(k) : τ̂k <L σ̂k0}).

Now let s1 = µs ≥ s0(σ̂k0 ⊆ δs1). By the construction, at stage s1,
we set the restraint rs1(σ, k0) = rs(σ, k0) = r′s(σ, k0) > 0 for all s ≥ s1.
This contradicts σ̂k0 ⊆ δ.

Lemma 13. For all Turing functionals Γ, U 6= Γ(D).

Proof. Let σ ⊆ δ be assigned to the requirement PΓ. Suppose that
U = Γ(D). It follows that we cannot have σ̂ω ⊆ δ. Therefore,
σ̂k0 ⊆ δ for some k0. This means that Γ(D;u) is undefined for some
permanent witness u = 〈σ, k0, α, t〉, a contradiction.

3. The proof of Theorem 7

3.1. The requirements for Theorem 7. We will construct a 3-c.e.
set F , a d.c.e. set E, and a c.e. set D such that the Turing degrees
f = deg(F ⊕ E ⊕ D), e = deg(E ⊕ D), and d = deg(D) satisfy
Theorem 7. We need to meet, for all Turing functionals Φ, Ψ, Π, Σ,
and Ω, the following requirements:

RΦ,U : U = Φ(F ⊕ E ⊕D) →
∃Γ (U = Γ(E ⊕D)) or ∃∆ (E = ∆(U ⊕D)),

SΨ,V : V = Ψ(E ⊕D) → ∃Θ (V = Θ(D)) or ∃Λ (D = Λ(V )),
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PF
Π : F 6= Π(E ⊕D),

PE
Σ : E 6= Σ(D),

PD
Ω : D 6= Ω.

Here, the functionals Γ, ∆, Θ, and Λ will be built by us, i.e., by
strategies on our tree of strategies as explained below.

3.2. The intuition for the strategies for Theorem 7.

3.2.1. Strategies for R and S in isolation. In the absence of other
strategies, an R-strategy will simply build its functional Γ as it sees
Φ(F ⊕E⊕D) compute U ; it will ensure that Γ(E⊕D) correctly com-
putes U by changing E ⊕D whenever U changes (after an F -change).
We proceed similarly for an S-strategy in isolation.

3.2.2. Strategies for P in isolation. In the absence of other strategies, a
P-strategy is simply a Friedberg-Muchnik strategy: E.g., a PF -strategy
picks a witness x targeted for F , waits for a computation Π(E⊕D;x) =
0, and then enumerates x into F and protects the computation Π(E ⊕
D;x) = 0 from now on by restraining E.

3.2.3. PF -strategies below an R-strategy. There is an obvious conflict
between the above-described R- and PF -strategies: The former strat-
egy may need to change E⊕D each time F changes (since the F -change
allows a U -change) whereas the latter strategy is trying to change F
while restraining E ⊕ D. In the fashion of an infinite-injury priority
argument, the solution is to cancel Γ whenever some PF -strategy has
enumerated another witness x into F and found that it resulted in a
change of U via some number ux entering U , say. The R-strategy will
then start building its Turing functional ∆ and generate an infinite
“stream” of numbers yx such that strategies below the ∆-outcome of
the R-strategy will be restricted to enumerating numbers from that
stream into E. For numbers in the stream, we then have that yx ∈ E
iff x /∈ F iff ux /∈ U , where the latter equivalence can be ensured by
restraining F on all other numbers ≤ ϕ(ux).

More precisely, a PF -strategy (below the Γ-outcome of an R-strat-
egy) proceeds as follows:

(1) Pick a witness x targeted for F .
(2) Wait for a computation Π(E ⊕D;x) = 0 at a stage sx, say.
(3) Enumerate x into F and protect the computation Π(E⊕D;x) =

0 by restraining E ⊕D.
Now the R-strategy takes over and proceeds as follows:
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(4) Wait for Φ(F ⊕E⊕D;u) to be defined again for all u for which
Γ(E ⊕D;u) is currently defined (at a stage s′x, say).

(5) If Φ(F ⊕ E ⊕ D;u) = Γ(E ⊕ D;u) for all these u, then the
PF -strategy’s diagonalization succeeded in a finitary way, and
the PF -strategy stops.

(6) Otherwise, cancel Γ and let ux be the least u with Φ(F ⊕ E ⊕
D;u) 6= Γ(E ⊕ D;u) ↓. Set ∆(U ⊕ D; yx) = E(yx) with use
δ(yx) = ux for some number yx bigger than any number men-
tioned so far. For all y < yx for which ∆(D⊕U ; y) is currently
undefined, define ∆(D ⊕ U ; y) = E(y) with use 0 (since E(y)
will not change any more for those y). Create a triple 〈x, ux, yx〉.

(7) Allow the strategies below the ∆-outcome to be eligible to act
once and go back to Step 1.

Note that the R-strategy has three possible outcomes:

finite: There are only finitely many expansionary stages: Then
Φ(F ⊕ E ⊕D) 6= U .

Γ: There are infinitely many expansionary stages, but Γ is can-
celed only finitely often by a P-strategy below the Γ-outcome of
the R-strategy, and so all these PF -strategies eventually wait
at Step 2 forever or stop at Step 5: Then Γ(E⊕D) can compute
U correctly, and all PF -requirements can be satisfied.

∆: There are infinitely many expansionary stages, and Γ is can-
celed infinitely often: Then ∆(U ⊕D) is defined infinitely often
and, by the way the uses are chosen, is a total function. Every
time the parameter s′x is set, the set E � (yx+1) can change only
at a number of the form yx from now on. For such numbers, we
will ensure for all future expansionary stages s:

x ∈ Fs =⇒ Φ(F ⊕ E ⊕D;ux)[s] = Φ(F ⊕ E ⊕D;ux)[s
′
x]

=⇒ ∆(U ⊕D; yx)[s] = Es(yx); and

x /∈ Fs =⇒ Φ(F ⊕ E ⊕D;ux)[s] = Φ(F ⊕ E ⊕D;ux)[sx]

=⇒ ∆(U ⊕D; yx)[s] = Es(yx).

Thus ∆(U ⊕D) correctly computes E.

A PF -strategy below the ∆-outcome can act as if in isolation since it
does not have to worry about Γ-correction injuring its E⊕D-restraint.

3.2.4. PE-strategies below an R-strategy. A PE-strategy below the Γ-
outcome of an R-strategy can act as if in isolation since it does not
have to worry about Γ-correction injuring its D-restraint.

A PE-strategy below the ∆-outcome of an R-strategy has to use
witnesses of the form yx from triples supplied by the R-strategy. When
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the PE-strategy is ready to enumerate yx (since Σ(D; yx) = 0), it will
simultaneously extract x from F to ensure ∆-correction as explained
in section 3.2.3, namely, we can reset ∆(U ⊕ D; yx) = 1 with use
δ(yx) = ux.

3.2.5. PD-strategies below an R-strategy. There is no conflict between
these strategies.

3.2.6. P-strategies below an S-strategy. This situation is exactly like
the situation for PF - and PE-strategies below an R-strategy, with E,
D, V , and Ψ in place of F , E, U , and Φ, respectively. (And there is
never a conflict between PF -strategies and an S-strategy.)

We now analyze some typical conflicts between P-strategies below
more than one R- or S-strategy.

3.2.7. PE-strategies below an S-strategy below the ∆-outcome of an R-
strategy. A PE-strategy below the Θ-outcome of such an S-strategy
has to deal with two problems simultaneously when enumerating a
number y into E: It has to ensure that ∆(U ⊕ D) can compute this,
and that any V -change allowed by this E-change can be computed
by Θ(D) in spite of the D-restraint imposed by the PE-strategy. We
combine the ideas from sections 3.2.3 and 3.2.4 to let this R-strategy
act as follows:

(1) Pick a witness y = yx targeted for E associated with a triple
〈x, ux, yx〉 supplied by a PF -strategy below the Γ-outcome of
the R-strategy.

(2) Wait for a computation Σ(D; y) = 0 at a stage sy, say.
(3) Enumerate y into E, extract x from F , and protect the compu-

tation Σ(D; y) = 0 by restraining D.
Now the S-strategy takes over and proceeds as follows:

(4) Wait for Ψ(E ⊕ D; v) to be defined again for all v for which
Θ(D; v) is currently defined (at a stage s′y, say).

(5) If Ψ(E⊕D; v) = Θ(D; v) for all these v, then the PE-strategy’s
diagonalization succeeded in a finitary way, and we stop.

(6) Otherwise, cancel Θ and let vy be the least v with Ψ(E⊕D; v) 6=
Θ(D; v). Set Λ(V ; zy) = D(zy) with use λ(zy) = vy for some
number zy bigger than any number mentioned so far. For
all z < zy for which Λ(V ; z) is currently undefined, define
Λ(V ; z) = D(z) with use 0 (since D(z) will not change any
more for those z). Create a quintuple 〈x, ux, yx, vy, zy〉.

(7) Allow the strategies below the Λ-outcome of the S-strategy to
be eligible to act once and go back to Step 1.

Note that the S-strategy has three possible outcomes:
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finite: There are only finitely many expansionary stages: Then
Ψ(E ⊕D) 6= V .

Θ: There are infinitely many expansionary stages, but Θ is can-
celed only finitely often by a PE-strategy below the Θ-outcome
of the S-strategy, and so all these PE-strategies eventually wait
at Step 2 forever or stop at Step 5: Then Θ(D) can compute V
correctly, and all PE-requirements can be satisfied.

Λ: There are infinitely many expansionary stages, and Θ is can-
celed infinitely often: Then Λ(V ) is defined infinitely often and,
by the way the uses are chosen, is a total function. Every time
the parameter s′y is set, the set D � (zy + 1) can change only at
a number of the form zy from now on. For such numbers, we
will ensure for all future expansionary stages s:

y ∈ Es =⇒ Ψ(E ⊕D; vy)[s] = Ψ(E ⊕D; vy)[s
′
y]

=⇒ Λ(V ; zy)[s] = Ds(zy); and

y /∈ Es =⇒ Ψ(E ⊕D; vy)[s] = Ψ(E ⊕D; vy)[sy]

=⇒ Λ(V ; zy)[s] = Ds(zy).

Thus Λ(V ) correctly computes D.

A PE-strategy below the Λ-outcome can act as if being only below an
R-strategy since it does not have to worry about Θ-correction injuring
its D-restraint.

3.2.8. PD-strategies below an S-strategy below the ∆-outcome of an R-
strategy. A PD-strategy below the Θ-outcome of such an S-strategy
can act as if in isolation since it does not impose any restraint.

A PD-strategy below the Λ-outcome of an S-strategy has to use
witnesses of the form zy from quintuples supplied by the S-strategy.
When the PD-strategy is ready to enumerate zy (since Ω(zy) = 0), it
will simultaneously extract y from E and re-enumerate x into F to
ensure Λ- and ∆-correction as explained in sections 3.2.4 and 3.2.6.

3.2.9. PE-strategies below an S-strategy below the ∆-outcomes of an
R1- and an R0-strategy. A PE-strategy below the Θ-outcome of such
an S-strategy has to deal with three problems simultaneously when
enumerating a number y into E: It has to ensure that the Ri-strategy’s
∆i(Ui ⊕ D) can compute this (for i = 0, 1), and that any V -change
allowed by this E-change can be computed by Θ(D) in spite of the
D-restraint imposed by the PE-strategy. The extra difficulty in this
situation arises from the need not to let the two R-strategies’ num-
bers x0 and x1 (supplied by PF

0 -strategies below the Γ-outcome of the
R0-strategy, and PF

1 -strategies below the Γ-outcome of theR1-strategy,
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respectively, working as described in section 3.2.3) interfere with each
other and destroy the F -uses controlling Ui at ui = uxi

(for i = 0, 1).
We overcome this problem by picking the witnesses in reverse order
and then enumerating them into F in the other order so that the uses
for u1 = ux1 are not affected by x0:

(1) Wait for a PF
1 -strategy below the Γ-outcome of the R1-strategy

to have picked a witness x1 targeted for E for which there is
now a computation Π1(E ⊕D;x1) = 0 at a stage sx1 , say. Do
not let this PF

1 -strategy enumerate x1 into F yet.
(2) Wait for a PF

0 -strategy below the Γ-outcome of the R0-strategy
to have picked a witness x0 targeted for E which is greater than
all numbers mentioned by stage sx1 and for which there is now
a computation Π0(E ⊕D;x0) = 0 at a stage sx0 , say.

(3) Let this PF
0 -strategy enumerate x0 into F and check whether

there is some least number u0 = ux0 with Γ0(E ⊕ D;u0) 6=
Φ0(F ⊕ E ⊕ D;u0). If not, then cancel x0 and return to the
beginning of Step 2.

(4) Otherwise, let the above PF
1 -strategy enumerate x1 into F . Now

check whether this results in U0 changing at the above num-
ber u0 again. If so, then we force a permanent diagonalization
for R0 as follows: Extract x1 from F to force a third U0-change
at u0. When (and if) this occurs, then extract x0 from F to
force an (impossible) fourth U0-change at u0. Once we have this
permanent diagonalization, we stop.

(5) Otherwise, check whether there is some least number u1 = ux1

with Γ1(E⊕D;u1) 6= Φ1(F ⊕E⊕D;u1). If not, then cancel x1

and return to the beginning of Step 1.
(6) Otherwise, pick a single witness y = yx0 = yx1 targeted for E

bigger than any number mentioned so far, associate y with the
triples 〈x0, u0, y〉 and 〈x1, u1, y〉, and define ∆i(Ui ⊕ D; y) = 0
with use δi(y) = ui (for i = 0, 1).

(7) Wait for a computation Σ(D; y) = 0 at a stage sy, say.
(8) Enumerate y into E, extract x0 and x1 from F , and protect the

computation Σ(D; y) = 0 by restraining D.
(9) Wait for Ψ(E ⊕ D; v) to be defined again for all v for which

Θ(D; v) is currently defined (at a stage s′y, say).

(10) If Ψ(E⊕D; v) = Θ(D; v) for all these v, then the PE-strategy’s
diagonalization succeeded in a finitary way, and we stop.

(11) Otherwise, cancel Θ and let vy be least such that Ψ(E⊕D; vy) 6=
Θ(D; vy). Set Λ(V ; zy) = D(zy) with use λ(zy) = vy for some
number zy bigger than any number mentioned so far. For
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all z < zy for which Λ(V ; z) is currently undefined, define
Λ(V ; z) = D(z) with use 0 (since D(z) will not change any
more for those z). Create a tuple 〈x0, u0, x1, u1, y, vy, zy〉.

(12) Allow the strategies below the Λ-outcome of the S-strategy to
be eligible to act once and go back to Step 1.

3.2.10. PD-strategies below an S-strategy below the ∆-outcomes of an
R0- and an R1-strategy. A PD-strategy below the Λ-outcome of an
S-strategy has to use witnesses of the form zy from tuples supplied by
the S-strategy. When the PD-strategy is ready to enumerate zy (since
Ω(zy) = 0), it will simultaneously extract y from E and re-enumerate x0

and x1 into F to ensure Λ- as well as ∆0- and ∆1-correction as explained
in sections 3.2.4 and 3.2.6 .

3.2.11. PD-strategies below the Λ-outcomes of an S1- and an S0-strategy
below the ∆-outcome of an R-strategy. A PD-strategy below the Λ-
outcome of such an S-strategy has to deal with two kinds of problems
simultaneously when enumerating a number z into D: It has to ensure
that the Sj-strategy’s Λj(Vj) can compute this (for j = 0, 1), and that
the extraction of yj from E due to Λj-correction is accompanied by
the re-enumeration of xj into F to allow ∆j(Uj) to compute this E-
change. The extra difficulty in this situation arises from the need not to
let the two S-strategies’ numbers y0 and y1 (supplied by a PE

0 -strategy
below the Θ-outcome of the S0-strategy, and a PE

1 -strategy below the
Θ-outcome of the S1-strategy, respectively, working as described in sec-
tion 3.2.6) as well as the R-strategy’s two numbers x0 and x1 (supplied
by a PF

0 -strategy and a PF
1 -strategy below the Γ-outcome of the R-

strategy, respectively, working as described in section 3.2.4) interfere
with each other and destroy the E-uses controlling Vj at vj = vyj

(for
j = 0, 1) or the F -uses controlling U at uj = uxj

(for j = 0, 1). We
overcome this problem by picking the witnesses in reverse order and
then enumerating them into F and E in the other order so that the
uses for u1 = ux1 are not affected by x0, the uses for u0 = ux0 are not
affected by y1, and the uses for v1 = vy1 are not affected by y0:

(1) Wait for a PF
1 -strategy below the Γ-outcome of the R-strategy

to have picked a witness x1 targeted for F for which there is a
computation Π1(E ⊕D;x1) = 0 at a stage sx1 , say.

(2) Let this PF
1 -strategy enumerate x1 into F and check whether

there is some least number u1 = ux1 with Γ(E⊕D;u1) 6= Φ(F⊕
E⊕D;u1) (at a stage s′x1

, say). If not, then cancel x1 and return
to the beginning of Step 1. Otherwise, reserve this x1 and let
it only be associated with a triple from Step 5.
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(3) Wait for a PF
0 -strategy below the Γ-outcome of the R-strategy

to have picked a witness x0 targeted for F which is greater
than all numbers mentioned by stage s′x1

and for which there is
a computation Π0(E ⊕D;x0) = 0 at a stage sx0 , say.

(4) Let this PF
0 -strategy enumerate x0 into F and check whether

there is some least number u0 = ux0 with Γ(E⊕D;u0) 6= Φ(F⊕
E⊕D;u0) (at a stage s′x0

, say). If not, then cancel x0 and return
to the beginning of Step 3. Otherwise, reserve this x0 and let
it only be associated with a triple from Step 6.

(5) Wait for a PE
1 -strategy below the Θ-outcome of the S1-strategy

to have picked a witness y1 = yx1 targeted for E and associated
with the triple 〈x1, u1, y1〉 which is greater than all numbers
mentioned by stage s′x0

and for which there is now a computa-
tion Σ1(D; y1) = 0 at a stage sy1 , say. Define ∆(U ⊕D; y1) = 0
with use δ(y1) = u1. Do not let the PE

1 -strategy enumerate y1

into E yet.
(6) Now wait for a PE

0 -strategy below the Θ-outcome of the S0-
strategy to have picked a witness y0 = yx0 targeted for E and
associated with the triple 〈x0, u0, y0〉 which is greater than all
numbers mentioned by stage sy1 and for which there is now a
computation Σ0(D; y0) = 0 at a stage sy0 , say. Define ∆(U ⊕
D; y0) = E(y0) with use δ(y0) = u0.

(7) Now let the PE
0 -strategy enumerate y0 into E and extract x0

from F .
(8) Check whether there is some least v0 = vy0 with Θ0(D; v0) 6=

Ψ0(E⊕D; v0) (at a stage s′y0
, say). (Note that the enumeration

of x0 into F does not allow V1 to change at v1 since the oracle
of Ψ1 includes only E and D, and not F .) If not, then cancel x0,
y1, and y0, and return to Step 3.

(9) Otherwise, let the PE
1 -strategy enumerate y1 into E and ex-

tract x1 from F .
(10) Now first check whether this results in V0 changing at the above

number v0 again. If so, then we force a permanent diagonaliza-
tion for S0 as follows: Extract y1 from E and re-enumerate x1

into F to force a third V0-change at v0. When (and if) this
occurs, then extract y0 from E and re-enumerate x0 into F to
force an (impossible) fourth V0-change at v0. Once we have this
permanent diagonalization, we stop.

(11) Otherwise, check whether there is some least v1 = vy1 with
Θ1(D; v1) 6= Ψ1(E ⊕ D; v1) (at a stage s′y1

, say). If not, then
cancel x1, x0, y1, and y0, and return to Step 1.
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(12) Otherwise, set Λj(Vj; z
∗) = 0 with use λj(z

∗) = vj (for j = 0, 1)
for some number z∗ greater than all numbers mentioned by
stage s′y1

. For all z < z∗ and j = 0, 1 for which Λj(Vj; z) is
currently undefined, define Λj(Vj; z) = D(z) with use 0 (since
D(z) will not change any more for those z). Create a tuple

〈x0, u0, x1, u1, y0, v0, y1, v1, z
∗〉.

(13) Wait for a computation Ω(z∗) = 0.
(14) Enumerate z∗ intoD, extract y0 and y1 from E, re-enumerate x0

and x1 into F , and stop.

3.2.12. PD-strategies below two S- and four R-strategies. In our next
intuitive example, we will combine the techniques from sections 3.2.9
and 3.2.11 and consider a PD-strategy below the Λ-outcome of an S1-
strategy which is located below, in increasing order of priority, the
∆-outcomes of an R3- and an R2-strategy, the Λ-outcome of an S0-
strategy, and the ∆-outcomes of an R1- and an R0-strategy.

A PD-strategy below the Λ-outcome of such an S-strategy again has
to deal with two kinds of problems simultaneously when enumerating
a number z into D: It has to ensure that the Sj-strategy’s Λj(Vj) can
compute this (for j = 0, 1), and that the extraction of yj from E due to
Λj-correction is accompanied by re-enumeration into F to allow ∆i(Ui)
to compute this E-change. The extra difficulty in this situation arises
from the need not to let the two S-strategies’ numbers y0 and y1 (sup-
plied by PE

0 -strategies below the Θ-outcome of the S0-strategy, and PE
1 -

strategies below the Θ-outcome of the S1-strategy, respectively, work-
ing as described in section 3.2.6) as well as the Ri-strategy’s numbers
(supplied by a PF -strategy below the Γ-outcome of the Ri-strategy, for
i = 0, 1, 2, 3, working as described in section 3.2.6) interfere with each
other and destroy the E-uses controlling Vj at vj = vyj

(for j = 0, 1) or
the F -uses controlling Ui (for i = 0, 1, 2, 3). We overcome this problem
by picking the witnesses in reverse order and then enumerating them
into F and E in the other order; we also pick two numbers each tar-
geted for F to generate two numbers each in Ui (for i = 0, 1) for y0

and y1, respectively:

(1) For i = 3, 2, 1, 0 (in decreasing order):
(a) Wait for a PF

i -strategy below the Γ-outcome of the Ri-
strategy to have picked a witness xi targeted for F which is
greater than all numbers mentioned by stage sxi+1

(if i < 3)
and for which there is a computation Πi(E ⊕D;xi) = 0 at
a stage sxi

, say. Do not let this PF
i -strategy enumerate xi

into F yet.



ON DOWNEY’S CONJECTURE 21

(2) For i = 0, 1, 2, 3 (in increasing order):
(a) Let this PF

i -strategy enumerate xi into F .
(b) For k = 0, . . . , i−1 (in increasing order), check whether the

enumeration of xi into F has allowed another Uk-change
at the number uk found before. If so, then we force a
permanent diagonalization for Rk as follows: Extract xi

from F to force a third Uk-change at uk. When (and if)
this occurs, then extract xl for all l ∈ (i, k] from F to force
an (impossible) fourth Uk-change at uk. Once we have this
permanent diagonalization, we stop.

(c) Otherwise check whether there is some least ui = uxi
with

Γi(E ⊕D;ui) 6= Φi(F ⊕E ⊕D;ui) (at a stage s′xi
, say). If

not, then cancel xk (for k ≤ i) and return to the beginning
of Step 1 with this i.

(d) Otherwise, reserve this xi and let it only be associated with
a tuple from Step 5.

(3) For l = 1, 0 (in decreasing order):
(a) Wait for a P ′F

l -strategy below the Γ-outcome of the Rl-
strategy to have picked a witness x′l targeted for F which
is greater than all numbers mentioned by stage s′x0

(if l = 1)
or stage sx′

1
(if = 0) and for which there is a computation

Π′
l(E ⊕ D;x′l) = 0 at a stage sx′

l
, say. Do not let this

P ′F
l -strategy enumerate x′l into F yet.

(4) For l = 0, 1 (in increasing order):
(a) Let this P ′F

l -strategy enumerate x′l into F .
(b) If l = 1 then check whether the enumeration of x′1 into F

has allowed another U0-change at the number u′0 found
before. If so, then we force a permanent diagonalization
for R0 as follows: Extract x′1 from F to force a third U0-
change at u′0. When (and if) this occurs, then extract x′0
from F to force an (impossible) fourth U0-change at u′0.
Once we have this permanent diagonalization, we stop.

(c) Otherwise check whether there is some least u′l = u′x′
l
with

Γl(E ⊕D;u′l) 6= Φl(F ⊕E ⊕D;u′l) (at a stage s′x′
l
, say). If

not, then cancel x′m (form ≤ l) and return to the beginning
of Step 3 with this l.

(d) Otherwise, reserve this x′l and let it only be associated with
a tuple from Step 6.

(5) Wait for a PE
1 -strategy below the Θ-outcome of the S1-strategy

to have picked a witness y1 targeted for E and associated with
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the tuple

〈x0, u0, x1, u1, x2, u2, x3, u3, y1〉
which is greater than all numbers mentioned by stage s′x′

0
and for

which there is now a computation Σ1(D; y1) = 0 at a stage sy1 ,
say. For all i ≤ 3, define ∆i(Ui⊕D; y1) = 0 with use δi(y1) = ui.
Do not let the PE

1 -strategy enumerate y1 into E yet.
(6) Now wait for a PE

0 -strategy below the Θ-outcome of the S0-
strategy to have picked a witness y0 targeted for E and associ-
ated with the triple

〈x′0, u′0, x′1, u′1, y0〉
which is greater than all numbers mentioned by stage sy1 and for
which there is now a computation Σ0(D; y0) = 0 at a stage sy0 ,
say. For all l ≤ 1, define ∆l(Ul⊕D; y0) = 0) with use δl(y0) = u′l.

(7) Now let the PE
0 -strategy enumerate y0 into E and extract x′0

and x′1 from F .
(8) Check whether there is some least v0 = vy0 with Θ0(D; v0) 6=

Ψ0(E⊕D; v0) (at a stage s′y0
, say). (Note that the enumeration

of x′0 and x′1 into F does not allow V1 to change at v1 since the
oracle of Ψ1 includes only E and D, and not F .) If not, then
cancel x′1, x

′
0, y1, and y0, and return to Step 3.

(9) Otherwise, let the PE
1 -strategy enumerate y1 into E and ex-

tract xi (for all i ≤ 3) from F .
(10) Now check first whether this results in V0 changing at the above

number v0 again. If so, then we force a permanent diagonaliza-
tion for S0 as follows: Extract y1 from E and re-enumerate xi

(for all i ≤ 3) into F to force a third V0-change at v0. When
(and if) this occurs, then extract y0 from E and re-enumerate x′0
and x′1 into F to force an (impossible) fourth V0-change at v0.
Once we have this permanent diagonalization, we stop.

(11) Otherwise, check whether there is some least v1 = vy1 with
Θ1(D; v1) 6= Ψ1(E ⊕ D; v1) (at a stage s′y1

, say). If not, then
cancel all xi, x

′
k, and yl, and return to Step 1.

(12) Otherwise, set Λl(Vl; z
∗) = 0 with use λl(z

∗) = vl (for l = 0, 1)
for some number z∗ greater than all numbers mentioned by
stage s′y1

. Create a tuple

〈x0, u0, x1, u1, x2, u2, x3, u3, x
′
0, u

′
0, x

′
1, u

′
1, y0, v0, y1, v1, z

∗〉.
(13) Wait for a computation Ω(z∗) = 0.
(14) Enumerate z∗ into D, extract y0 and y1 from E, re-enumerate xi

and x′l into F (for all i ≤ 3 and l ≤ 1), and stop.
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3.2.13. PF -strategy between a PE- and an R-strategy. We next need to
analyze the interaction between anR-strategy and a PF -strategy below
its ∆-outcome in the case that some PE-strategy below the ∆-outcome
but of lower priority than the PF -strategy has already enumerated a
number. The problem is that in that case, the late enumeration of
a witness x, say, by the PF -strategy may destroy the setup for the
definition of ∆(U ⊕ D; y) for the PE-strategy’s witness y (where y
was picked after x, and so x may be less than the number uy in the
triple 〈xy, uy, y〉 used by the PE-strategy) so that we lose control over
the computation ∆(U ⊕ D; y). However, in this case, we can easily
diagonalize for R.

More specifically, the PF -strategy proceeds as follows:

(1) Pick a witness x.
(2) Wait for a computation Π(E ⊕D;x) = 0.
(3) Enumerate x into F at a stage s′x, say.

Now the R-strategy takes over and proceeds as follows:
(4) Wait for Φ(F ⊕ E ⊕ D;u) to be defined again for all u ≤ any

number mentioned by stage s′x.
(5) Check if ∆(U ⊕ D; y) ↓6= E(y) for some y. If not, then the

PF -strategy’s diagonalization succeeded in a finitary way, and
the PF -strategy stops.

(6) Otherwise, let i = ∆(U ⊕D; y) for the least such y. Then there
is are earlier stages s0 < s1, say, at which we set ∆(U⊕D; y) = i
and ∆(U ⊕D; y) = 1− i, respectively. So at stage s1, we must
have changed E(y) from value i to value 1− i, and, in order to
correct ∆(U⊕D; y), for some numbers xy and uy, we must have
changed F (xy) to force U(uy) to change for at least the second
time, while, since now again ∆(U ⊕ D; y) = i, U(uy) has now
changed for at least the third time. We now force a permanent
diagonalization for R by extracting x from F and stop.

A PF -strategy below the ∆-outcome of an R-strategy is thus still
finitary in any case, but it has the potential to force a finite outcome
for the R-strategy.

3.2.14. PE-strategy between a PD- and an S-strategy. An analogous
situation arises in the interaction between an S-strategy and a PE-
strategy below its Θ-outcome in the case that some PD-strategy below
the Θ-outcome but of lower priority than the PE-strategy has already
enumerated a number.

We are now ready to describe the construction formally.
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3.3. The tree of strategies for Theorem 7. We fix an arbitrary
computable priority ordering of all R-, S-, and P-requirements of order
type ω. Let

O = {Λ <O Θ <O ∆ <O Γ <O fin}
be the set of outcomes of our strategies, with the priority ordering <O

as stated.
For the tree of strategies T ⊆ O<ω to be defined, assign the nth

requirement from our above listing of all requirements to all nodes
ξ ∈ T of length n.

The tree of strategies is now defined by recursion as follows: Given
a node (or “strategy”) ξ already on T , we let the set of immediate
successors of ξ be

{ξ̂〈∆〉, ξ̂〈Γ〉, ξ̂〈fin〉}, if ξ is an R-strategy;

{ξ̂〈Λ〉, ξ̂〈Θ〉, ξ̂〈fin〉}, if ξ is an S-strategy;

{ξ̂〈fin〉}, if ξ is a P-strategy.

We now fix some notation for our tree: Given any strategy η ∈ T ,
we let

X(η) = {ξ | ξ is an R-strategy and ξ̂〈∆〉 ⊆ η}, and

Y (η) = {ξ | ξ is an S-strategy and ξ̂〈Θ〉 ⊆ η}
be the sets of R- and S-strategies with ∆- and Θ-outcome above η,
respectively. (These will be the strategies to which η may have to
make x-requests or y-requests, respectively, as described in the next
section.)

3.4. The full strategies for Theorem 7. In this section, we describe
in full detail the action of the individual strategies, while in the next
section, we will give the full construction in terms of the description of
the strategies.

3.4.1. The general R-strategy. An RΦ,U -strategy ξ ∈ T acts as follows
at substage t of stage s at which it is eligible to act:

(1) Check whether the length of agreement `(Φ(F ⊕E⊕D), U) be-
tween Φ(F ⊕E⊕D) and U now exceeds any number mentioned
by the end of the previous ξ-expansionary stage, which we will
call s′. (Here, 0 is always a ξ-expansionary stage.) If not, then
end the substage and let ξ̂〈fin〉 be eligible to act next.

(2) Otherwise, call s a ξ-expansionary stage and check whether
there is some number y such that ∆(U ⊕D; y) ↓6= E(y). If so,
then let y be least such and fix i = ∆(U⊕D; y). There must be
stages s0 < s1 < s such that at stage s0, we set ∆(U⊕D; y) = i,
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and at stage s1, we set ∆(U ⊕D; y) = 1− i, but now (U ⊕D) �
(δs0(y) + 1) = (U ⊕D)s0 � (δs0(y) + 1). Also, at or just before
stage s1, E(y) must have been changed from value i to value
1−i by a PE- or S-strategy ζ ⊇ ξ̂〈∆〉 (otherwise, ξ would have
been initialized since stage s0, or ∆(U ⊕D; y) would not have
been redefined at stage s1), and this E(y)-change must have
been accompanied by an F -change at some number xy, which
forced a U -change at some number uy (this being at least the
second U(uy)-change). Now, since stage s1, there must have
been a third U(uy)-change (with a corresponding Φ(F ⊕ E ⊕
D;uy)-change). This Φ(F ⊕ E ⊕ D;uy)-change must be due
to the action of some strategy ζ ′ ⊇ ξ̂〈∆〉 of higher priority
than ζ. We will prove in Lemma 15 that ζ ′ must be a PF -
strategy which enumerates a number x, say, into F . We now
permanently diagonalize for ξ by extracting x from F and end
the stage. (Unless ξ is initialized later, this will be the last
ξ-expansionary stage.)

(3) Otherwise, check whether ξ has previously, at a stage s′′, say,
fulfilled an x-request of some PE- or S-strategy η (where ξ ∈
X(η)) with a pair 〈x, u〉 such that
(a) η has not been initialized since stage s′′;

(b) η had also made an x-request to some R-strategy ξ̂ ∈ X(η)

with ξ̂ ⊃ ξ;
(c) U(u) has changed since the last ξ-expansionary stage s′;

and either
(d) ξ̂ enumerated a number x̂ into F at stage s′; or
(e) ξ started diagonalization via the pair 〈x, u〉 at stage s′ (as

defined below), and ξ̂ enumerated a number x̂ into F at
the last ξ-expansionary stage before stage s′.

If Case 3d holds, then
• extract x̂ from F ;
• if η is a PE-strategy then cancel η’s x-requests to all ξ̂ ∈
X(η);

• if η is an S-strategy then
– let ζ be the PD-strategy such that η ∈ Y (ζ) and ζ

made the y-request to η, causing η making the x-
request to ξ;

– cancel ζ’s y-requests to all η̂ ∈ Y (ζ); and

– for all η̂ ∈ Y (ζ), cancel η̂’s x-requests to all ξ̂ ∈ X(η̂);
• initialize all strategies ≥ ξ̂〈fin〉; and
• end the stage.
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(In this case, we say ξ has started diagonalization via the pair
〈x, u〉.)
If Case 3e holds, then
• extract x̃ from F for all R-strategies ξ̃ ∈ X(η) with ξ ⊆
ξ̃ ⊂ ξ̂ (where x̃ is the number last enumerated by ξ̃ into F );

• initialize all strategies ≥ ξ̂〈fin〉; and
• end the stage.

(Unless ξ is initialized later, this will be the last ξ-expansionary
stage.)

(4) Otherwise, check whether there is some (highest-priority) PE-
or S-strategy η such that
(a) ξ ∈ X(η);

(b) all of η’s x-requests to strategies ξ̂ ∈ X(η) with ξ ⊂ ξ̂ ⊂ η
have been started (as defined below);

(c) if η is an S-strategy and so some PD-strategy ζ ⊇ η̂〈Λ〉
has made a y-request to η, then for all S-strategies η̂ ∈
Y (ζ) with η̂ ⊃ η, all of η̂’s x-requests have already been
fulfilled (as defined below); and either

(d) η has made an x-request to ξ, and that request has not yet
been started by ξ (as defined below); or

(e) η has made an x-request to ξ, and that request has been
started by ξ but not yet fulfilled by ξ (as defined below).

(5) If there is no such η satisfying Case 4e, then check whether
there is some u such that Φ(F ⊕ E ⊕D;u) ↓6= U(u).
(a) If there is no such u, then

• define Γ(E⊕D;u′) = U(u′) for all u′ ≤ `(Φ(F ⊕E⊕
D), U) for which Γ(E⊕D;u′) is currently undefined,
with old use γ(u′) (if defined previously), or new use
γ(u′) bigger than any number mentioned before (oth-
erwise);

• end the substage; and
• let ξ̂〈Γ〉 be eligible to act next.

If later during this stage, some PF -strategy ζ ⊇ ξ̂〈Γ〉
wants to enumerate a number x into F but is delayed,
then we say that ξ has started η’s x-request (where η is as
above satisfying Case 4d).

(b) Otherwise, i.e., if there is such u, then
• cancel Γ;
• define ∆(U ⊕ D; y) = E(y) for all y ≤ s for which

∆(U⊕D; y) is currently undefined, with old use δ(y)
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(if defined previously), or new use δ(y) bigger than
any number mentioned before (otherwise);

• end the substage; and
• let ξ̂〈∆〉 be eligible to act next.

(6) If there is such η satisfying Case 4e, and if ξ has not enumerated
a number x into F at the previous ξ-expansionary stage s′, then
there is a PF -strategy ζ ⊇ ξ̂〈Γ〉 which found a computation
Π(E⊕D;x) = 0 at the last substage of stage s′ (but was delayed
in the enumeration of x into F ). Now ξ
• enumerates this x into F ;
• initializes all strategies ≥ ξ̂〈Γ〉; and
• ends the stage.

(7) Otherwise, ξ has enumerated a number x into F at the last sub-
stage of the previous ξ-expansionary stage s′. Check whether
there is some u such that Φ(F ⊕ E ⊕D;u) ↓6= U(u).
(a) If there is no such u, then ξ’s attempt at fulfilling η’s x-

request has failed. So
• let η again make x-requests (which have not been

started) to all R-strategies ξ̂ ∈ X(η) with ξ̂ ⊆ ξ;
• initialize all strategies ≥ ξ̂〈Γ〉; and
• end the stage.

(b) If there is a (least) such u, then we say that ξ has fulfilled
η’s x-request with the pair 〈x, u〉. Now ξ continues as in
Step 5b.

3.4.2. The general S-strategy. An SΨ,V -strategy ξ ∈ T acts as follows
at substage t of stage s at which it is eligible to act:

(1) Check whether the length of agreement `(Ψ(E⊕D), V ) between
Ψ(E ⊕ D) and V now exceeds any number mentioned by the
end of the previous ξ-expansionary stage, which we will call s′.
(Here, 0 is always a ξ-expansionary stage.) If not, then end the
substage and let ξ̂〈fin〉 be eligible to act next.

(2) Otherwise, call s a ξ-expansionary stage and check whether
there is some number z such that Λ(V ; z) ↓6= D(z). If so, then
let z be least such. Since D is c.e., there must be stages s0 <
s1 < s such that at stage s0, we set Λ(V ; z) = 0, and at stage s1,
we set Λ(V ; z) = 1, but now V � (λs0(z)+1) = Vs0 � (λs0(z)+1).
Also, at or just before stage s1, z must have been enumerated
into D by a PD-strategy ζ ⊇ ξ̂〈Λ〉 (otherwise, ξ would have
been initialized since stage s0, or Λ(V ; z) would not have been
redefined at stage s1), and this D(z)-change must have been
accompanied by an E-change at some number yz, which forced
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a V -change at some number vz (this being at least the second
V (vz)-change). Now, since stage s1, there must have been a
third V (vz)-change (with a corresponding Ψ(E⊕D; vz)-change).
This Ψ(E ⊕ D; vz)-change must be due to the action of some
strategy ζ ′ ⊇ ξ̂〈Λ〉 of higher priority than ζ. We will prove in
Lemma 16 that ζ ′ must be a PE-strategy which enumerates a
number y, say, into E. We now permanently diagonalize for ξ by
extracting y from E and re-enumerating into F all x which were
extracted when y was enumerated into E, and end the stage.
(Unless ξ is initialized later, this will be the last ξ-expansionary
stage.)

(3) Otherwise, check whether ξ has previously, at a stage s′′, say,
fulfilled a y-request of some PD-strategy η (such that ξ ∈ Y (η))
with a pair 〈y, v〉 such that
(a) η has not been initialized since stage s′′;

(b) η had also made a y-request to some S-strategy ξ̂ ∈ Y (η)

with ξ̂ ⊃ ξ;
(c) V (v) has changed since the previous ξ-expansionary stage

s′; and either
(d) ξ̂ enumerated a number ŷ into E at stage s′; or
(e) ξ started diagonalization via the pair 〈y, v〉 at stage s′ (as

defined below, and so ξ̂ enumerated a number ŷ into E at
the last ξ-expansionary stage before stage s′).

If Case 3d holds, then
• extract ŷ from E;
• re-enumerate into F all x̂ which were extracted from F at

the time ŷ was enumerated into E;
• cancel η’s y-requests to all ξ̂ ∈ Y (η);

• for all ξ̂ ∈ Y (η), cancel ξ̂’s x-requests to all ζ ∈ X(ξ̂);
• initialize all strategies ≥ ξ̂〈fin〉; and
• end the stage.

(In this case, we say ξ has started diagonalization via the pair
〈y, v〉.)
If Case 3e holds, then
• extract from E all numbers ỹ for all S-strategies ξ̃ ∈ Y (η)

with ξ ⊆ ξ̃ ⊂ ξ̂ (where ỹ is the number last enumerated

into E by ξ̃);
• re-enumerate into F all numbers x̃ which were extracted

from F when any of these ỹ was enumerated into E;
• initialize all strategies ≥ ξ̂〈fin〉; and
• end the stage.
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(Unless ξ is initialized later, this will be the last ξ-expansionary
stage.)

(4) Otherwise, check whether there is some (highest-priority) PD-
strategy η ⊇ ξ̂〈∆〉 such that
(a) ξ ∈ Y (η);

(b) η’s y-requests to all strategies ξ̂ ∈ Y (η) with ξ ⊂ ξ̂ have
been started (as defined below);

(c) all x-requests of all S-strategies ξ̂ ∈ Y (η) have been ful-
filled; and either

(d) η has made a y-request to ξ, and that request has not yet
been started by ξ (as defined below); or

(e) η has made a y-request to ξ, and that request has been
started by ξ but not yet fulfilled by ξ (as defined below).

(5) If there is no such η satisfying Case 4e, then check whether
there is some v such that Ψ(E ⊕D; v) ↓6= V (v).
(a) If there is no such v, then

• define Θ(D; v′) = V (v′) for all v′ ≤ `(Ψ(E ⊕D), V )
for which Θ(D; v′) is currently undefined, with old
use ϑ(v′) (if defined previously), or new use ϑ(v′) big-
ger than any number mentioned before (otherwise);

• end the substage; and
• let ξ̂〈Θ〉 be eligible to act next.

If later during this stage, some PE-strategy ζ ⊇ ξ̂〈Θ〉
wants to enumerate a number y into E but is delayed,
then we say that ξ has started η’s y-request (where η is as
above satisfying Case 4d).

(b) Otherwise, i.e., if there is such v, then
• cancel Θ;
• define Λ(V ; z) = D(z) for all z ≤ s for which Λ(V ; z)

is currently undefined, with old use ϑ(z) (if defined
previously), or new use ϑ(z) bigger than any number
mentioned before (otherwise);

• end the substage; and
• let ξ̂〈Λ〉 be eligible to act next.

(6) If there is such η satisfying Case 4e, and ξ has not enumerated
a number y into E at the previous ξ-expansionary stage s′, then
there is a PE-strategy ζ ⊇ ξ̂〈Θ〉 which found a computation
Σ(D; y) = 0 at the last substage of stage s′ (but was delayed in
the enumeration of y into E). Now ξ
• enumerates this y into E;
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• extracts from F all x such that some R-strategy ζ ⊂ ξ has
fulfilled ξ’s x-request via a pair 〈x, u〉;

• initializes all strategies ≥ ξ̂〈Θ〉; and
• ends the stage.

(7) Otherwise, ξ has enumerated a number y into E at the last sub-
stage of the previous ξ-expansionary stage s′. Check whether
there is some v such that Ψ(E ⊕D; v) ↓6= V (v).
(a) If there is no such v, then ξ’s attempt at fulfilling η’s y-

request has failed. So
• let η again make y-requests (which have not been

started) to all S-strategies ξ̂ ∈ Y (η);

• let each ξ̂ ∈ Y (η) with ξ̂ ⊆ ξ again make x-requests
(which have not been started) to all R-strategies ζ ∈
X(ξ̂);

• initialize all strategies ≥ ξ̂〈Θ〉; and
• end the stage.

(b) If there is a (least) such v, then we say that ξ has fulfilled
η’s y-request with the pair 〈y, v〉. Now ξ continues as in
Case 5b.

3.4.3. The general PF -strategy. A PF
Π -strategy ξ ∈ T acts as follows

at substage t of stage s at which it is eligible to act:

(1) If this is the first stage at which ξ is eligible to act since ξ
was last initialized (and so ξ does not have a witness), then ξ
chooses a witness x bigger than any number mentioned before
and ends the stage.

(2) Otherwise, let x be ξ’s current witness. Next check whether
there is a computation Π(E ⊕D;x) ↓= 0. If not, then end the
substage and let ξ̂〈fin〉 be eligible to act next.

(3) Otherwise, check whether ξ has already enumerated x into F .
If so, then end the substage and let ξ̂〈fin〉 be eligible to act
next.

(4) Otherwise, check whether there is an x-request from a strategy η
to an R-strategy ζ ∈ X(η) with ζ̂〈Γ〉 ⊆ ξ. If not, then
• enumerate x into F ;
• initialize all strategies > ξ; and
• end the stage.

(5) Otherwise, fix the highest-priority (i.e., shortest) such ζ and the
corresponding η. We say ξ is delayed in the enumeration of x,
and we end the stage. (At the next ζ-expansionary stage, ζ will
then enumerate x into F unless it has been initialized before
then.)
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3.4.4. The general PE-strategy. A PE
Σ -strategy ξ ∈ T acts as follows

at substage t of stage s at which it is eligible to act:

(1) If this is the first stage at which ξ is eligible to act since ξ was
last initialized, then check whether X(ξ) 6= ∅. If so, then make
x-requests to all ζ ∈ X(ξ) and end the stage.

(2) Otherwise, check whether ξ has a witness y. If not, then ξ
chooses a witness y bigger than any number mentioned before
and ends the stage.

(3) Otherwise, let y be ξ’s current witness. Next check whether
there is a computation Σ(D; y) ↓= 0. If not, then end the
substage and let ξ̂〈fin〉 be eligible to act next.

(4) Otherwise, check whether ξ has already enumerated y into E.
If so, then end the substage and let ξ̂〈fin〉 be eligible to act
next.

(5) Otherwise, check whether there is a y-request from a strategy η
to an S-strategy ζ ∈ Y (η) with ζ̂〈Θ〉 ⊆ ξ. If not, then
• enumerate y into E;
• extract x from F for all η ∈ X(ξ) such that η fulfilled ξ’s
x-request via a pair 〈x, u〉;

• initialize all strategies > ξ; and
• end the stage.

(6) Otherwise, fix the highest-priority (i.e., shortest) such ζ and the
corresponding η. We say ξ is delayed in the enumeration of y,
and we end the stage. (At the next ζ-expansionary stage, ζ will
then enumerate y into E unless it has been initialized before
then.)

3.4.5. The general PD-strategy. A PD
Ω -strategy ξ ∈ T acts as follows

at substage t of stage s at which it is eligible to act:

(1) If this is the first stage at which ξ is eligible to act since ξ was
last initialized then check whether Y (ξ) 6= ∅. If so, then
• make y-requests to all η ∈ Y (ξ);
• have all η ∈ Y (ξ) make x-requests to all ζ ∈ X(η); and
• end the stage.

(2) Otherwise, check whether ξ has a witness z. If not, then ξ
chooses a witness z bigger than any number mentioned before
and ends the stage.

(3) Otherwise, let z be ξ’s current witness. Next check whether
there is a computation Ω(z) ↓= 0. If not, then end the substage
and let ξ̂〈fin〉 be eligible to act next.
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(4) Otherwise, check whether ξ has already enumerated z into D.
If so, then end the substage and let ξ̂〈fin〉 be eligible to act
next.

(5) Otherwise,
• enumerate z into D;
• extract y from E for all η ∈ Y (ξ) such that η fulfilled ξ’s
y-request via a pair 〈y, v〉;

• re-enumerate x into F for all ζ ∈ X(η) such that η ∈ Y (ξ),
and ζ fulfilled η’s x-request via a pair 〈x, u〉; and

• ends the stage.

This concludes the description of the individual strategies.

3.5. The construction for Theorem 7. Before describing the full
construction, we need to define some more terms.

A strategy ξ ∈ T is initialized by

• making all its witnesses and restraints undefined;
• making ξ’s functionals totally undefined (if ξ is an R- or S-

strategy); and
• canceling all x- and y-requests made by or made to ξ.

The construction now proceeds in stages s. At stage 0, we initialize
all strategies ξ ∈ T .

Each stage s > 0 consists of substages t. At a substage t, a strategy
ξ ∈ T of length t will be eligible to act. (Thus the unique strategy
〈〉 ∈ T of length 0 will always be eligible to act at substage 0.) Each
strategy, when eligible to act, will act depending on the requirement
assigned to it and as specified in section 3.4 and then either end the
stage (if the strategy requires this or if s = t), or else determine the
strategy to be eligible to act at substage t + 1. At the end of stage s,
we initialize all strategies >L fs where fs is the strategy eligible to act
at the last substage of stage s.

3.6. The verification for Theorem 7. Our first lemma checks some
routine facts, the proofs of which we leave to the reader.

Lemma 14. (1) The true path of the construction exists, i.e., there
exists an infinite path f through T such that each strategy ξ ⊂ f
is eligible to act infinitely often but each strategy ξ <L f is eli-
gible to act only finitely often.

(2) Each strategy ξ ∈ T is initialized only finitely often.
(3) F , E, and D are a 3-c.e. set, a d.c.e. set, and a c.e. set, re-

spectively. �

Lemma 15. Each R-requirement is satisfied.
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Proof. If the hypothesis U = Φ(F ⊕E ⊕D) of an RΦ,U -strategy ξ ⊂ f
holds, then, since ξ is eligible to act infinitely often by Lemma 14,
there are infinitely many ξ-expansionary stages. We now distinguish
two cases:

Case 1: ξ cancels its functional Γ only finitely often: Then Step 5a of
the R-strategy will apply infinitely often, and by the way Γ is defined
and the uses are chosen, Γ(E ⊕ D) will be a total function. Finally,
after the last time Step 5b applies, there cannot be any argument at
which Γ(E ⊕D) and U disagree since this would cause a disagreement
between Φ(F ⊕ E ⊕D) and U .

Case 2: ξ cancels its functional Γ infinitely often: Then Step 5b of
the R-strategy will apply infinitely often, and by the way ∆ is defined
and the uses are chosen, ∆(U ⊕D) will be a total function. We need
to verify that ∆(U ⊕D) computes the set E correctly.

For the sake of a contradiction, let s be the first stage at which ξ
defines a ∆-computation ∆(U ⊕ D; y) ↓6= E(y) (with true oracle, for
some least y). Then at stage s, every strategy >L ξ̂〈∆〉 is initialized
and thus cannot cause or allow ∆(U⊕D; y) or Φ(F⊕E⊕D) � (δ(y)+1)
to change. Similarly, no strategy <L ξ will be eligible to act after
stage s. Finally, if a strategy ζ ⊂ ξ allows ∆(U ⊕ D; y) or Φ(F ⊕
E ⊕ D) � (δ(y) + 1) to change, then, since ξ is not initialized after
stage s, ζ must be an R- or S-strategy, and ζ̂〈∆〉 ⊆ ξ or ζ̂〈Λ〉 ⊆ ξ,
respectively, and the change must be due to a request by a P-strategy
η ⊇ ξ̂〈∆〉. Thus, in any case, any change allowing ∆(U ⊕ D; y) or
Φ(F ⊕ E ⊕ D) � (δ(y) + 1) to change must be due to a request by a
P-strategy η ⊇ ξ̂〈∆〉, which we now fix. Also fix the P-strategy η′

such that a request by η′ caused E(y) to change first. By initialization,
we must have η ≤ η′. If η = η′ then as explained in section 3.2, this
conflict cannot arise by the mechanism of requests; so assume that
η < η′.

Now, if η is a PD-strategy, then η’s action will permanently changeD
and destroy the computation ∆(U ⊕D; y). If η is a PE-strategy, then
η will have made an x-request to ξ before η′ did, and so the U -change
initiated by η will destroy the computation ∆(U⊕D; y). Finally, if η is
a PF -strategy then the mechanism of Step 2 will force a diagonalization
for ξ. �

Lemma 16. Each S-requirement is satisfied.

Proof. This proof is very similar to that of Lemma 15, the main differ-
ence being that Ψ has only oracle E ⊕D.
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If the hypothesis V = Ψ(E ⊕ D) of an SΨ,V -strategy ξ ⊂ f holds,
then, since ξ is eligible to act infinitely often by Lemma 14, there are
infinitely many ξ-expansionary stages. We now distinguish two cases:

Case 1: ξ cancels its functional Θ only finitely often: Then Step 5a
of the S-strategy will apply infinitely often, and by the way Θ is defined
and the uses are chosen, Θ(D) will be a total function. Finally, after
the last time Step 5b applies, there cannot be any argument at which
Θ(D) and V disagree since this would cause a disagreement between
Ψ(E ⊕D) and V .

Case 2: ξ cancels its functional Θ infinitely often: Then Step 5b of
the S-strategy will apply infinitely often, and by the way Λ is defined
and the uses are chosen, Λ(V ) will be a total function. We need to
verify that Λ(V ) computes the set D correctly.

For the sake of a contradiction, let s be the first stage at which ξ
defines a Λ-computation Λ(V ; z) ↓6= D(z) (with true oracle, for some
least z). Then at stage s, every strategy >L ξ̂〈Λ〉 is initialized and
thus cannot cause or allow Λ(V ; z) or Ψ(E⊕D) � (λ(z)+1) to change.
Similarly, no strategy <L ξ will be eligible to act after stage s. Finally,
if a strategy ζ ⊂ ξ allows Λ(V ; z) or Ψ(E ⊕D) � (λ(z) + 1) to change,
then, since ξ is not initialized after stage s, ζ must be an R- or S-
strategy, and ζ̂〈∆〉 ⊆ ξ or ζ̂〈Λ〉 ⊆ ξ, respectively, and the change
must be due to a request by a P-strategy η ⊇ ξ̂〈Λ〉. Thus, in any
case, any change allowing Λ(V ; z) or Ψ(E ⊕D) � (λ(z) + 1) to change
must be due to a request by a P-strategy η ⊇ ξ̂〈Λ〉, which we now
fix. Also fix the P-strategy η′ such that a request by η′ caused D(z) to
change first. By initialization, we must have η ≤ η′. If η = η′ then as
explained in section 3.2, this conflict cannot arise by the mechanism of
requests; so assume that η < η′.

Now, if η is a PD-strategy, then η will have made a y-request to ξ
before η′ did, and so the V -change initiated by η will destroy the com-
putation Λ(V ; z). If η is a PE-strategy, then the mechanism of Step 2
will force a diagonalization for ξ. Finally, if η is a PF -strategy then η
cannot affect Λ(V ; z) or Ψ(E ⊕D) � (λ(z) + 1). �

Lemma 17. Each PF -requirement is satisfied.

Proof. Fix a PF
Π -strategy ξ ⊂ f . By the construction, ξ must eventually

have a fixed witness x, say, targeted for F such that there are no x-
requests to an R-strategy η with η̂〈Γ〉 ⊆ ξ delaying the enumeration
of x. Then ξ succeeds in meeting its requirement in the usual Friedberg-
Muchnik fashion. �

Lemma 18. Each PE-requirement is satisfied.
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Proof. Fix a PE
Σ -strategy ξ ⊂ f . By the construction, ξ must eventu-

ally have a fixed witness y, say, targeted for E such that there are no
y-requests to an S-strategy η with η̂〈Θ〉 ⊆ ξ delaying the enumera-
tion of y. Furthermore, for each R-strategy η with η̂〈∆〉 ⊆ ξ, since
η̂〈∆〉 ⊆ ξ ⊂ f , ξ’s x-request must eventually be satisfied (namely,
by the next stage at which ξ is eligible to act after ξ has picked its
witness y). Now ξ succeeds in meeting its requirement in the usual
Friedberg-Muchnik fashion. �

Lemma 19. Each PD-requirement is satisfied.

Proof. Fix a PD
Ω -strategy ξ ⊂ f . By the construction, ξ must eventu-

ally have a fixed witness z, say, targeted for D. Furthermore, for each
S-strategy η with η̂〈Λ〉 ⊆ ξ, since η̂〈Λ〉 ⊆ ξ ⊂ f , ξ’s y-request must
eventually be satisfied (namely, by the next stage at which ξ is eligible
to act after ξ has picked its witness x). Now ξ succeeds in meeting its
requirement in the usual Friedberg-Muchnik fashion. �
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