Locally countable orderings

Liang Yu Department of mathematics National University of Singapore

2nd August 2005

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Locally countable orderings

Liang Yu Department of mathematics National University of Singapore

2nd August 2005

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

The basic Refs are Downey and Hirschfeldt's book, Lerman's book, Moschovakis' book and Sacks' book. http://www.mcs.vuw.ac.nz/~downey/

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Notations

We say $\mathbb{P} = \langle P, \leq \rangle$ is a *partial order* if \leq is a self-reflexive transitive binary relation on *P*.

Definition

A partial order $\mathbb{P} = \langle P, \leq \rangle$ is *locally countable* if for every $p \in P$, $|\{q \in P | q \leq p\}| \leq \aleph_0$.

An antichain in a partial order is a non-empty set in which any two different elements are incomparable.

(日) (日) (日) (日) (日) (日) (日)

Motivation

Counting the antichains.

Theorem (Sacks)

Every maximal chain in the Turing degrees has size \aleph_1 and is of measure 0.

Theorem (folklore)

Every maximal antichain in the Turing degrees has size 2^{\aleph_0}

Question

How big can be a size of a chain and an antichain in the Turing degrees? Is there an antichain in the Turing degrees which is not of measure 0?

Main Question

Question

For any locally countable Σ_1^1 partial order $\mathbb{P} = \langle 2^{\omega}, \leq_P \rangle$, does there exist a nonmeasurable antichain in \mathbb{P} ?

(日) (日) (日) (日) (日) (日) (日)

Higher recursion theory I

 $x \leq_h y$ if x is $\Delta_1^1(z)$ definable. $x \leq_h y$ is a Π_1^1 -relation.

Theorem (Harrison)

For any real z and countable $\Sigma_1^1(z)$ set $Z \subset 2^{\omega}$, if $x \in Z$, then $x \leq_h z$.

Corollary

If $\mathbb{P} = \langle 2^{\omega}, \leq_P \rangle$ is a Σ_1^1 locally countable partial order, then for any $x, y \in 2^{\omega}$, $x \leq_P y$ implies $x \leq_h y$.

Lemma (Sacks)

If x is not
$$\Delta_1^1$$
, then $\mu(\{y|x \leq_h y\}) = 0$.

Hence we have the following proposition.

Proposition

For any locally countable Σ_1^1 partial order $\mathbb{P} = \langle 2^{\omega}, \leq_P \rangle$, every chain in \mathbb{P} has measure 0.

・ロト・西ト・西ト・西・ うろの

Proposition

- Assume ZFC + V = L, there is a locally countable Δ¹₂ partial order ℙ = ⟨2^ω, ≤_P⟩ for which there is a chain of measure 1.
- Assume ZFC + MA_{ℵ1}, for any locally countable partial order P = (2^ω, ≤_P), every chain has measure 0.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Randomness theory I

Definition (Martin-Löf)

- (i) Given a real x, a Σ⁰_n(x) Martin-Löf test is a computable collection {V_n : n ∈ ℕ} of Σ⁰_n(x) sets such that μ(V_n) ≤ 2⁻ⁿ.
- (ii) Given a real x, a real y is said to pass the $\Sigma_n^0(x)$ Martin-Löf test if $y \notin \bigcap_{n \in \omega} V_n$.
- (iii) Given a real x, a real y is said to be *n*-x-random if it passes all $\Sigma_n^0(x)$ Martin-Löf tests.

Definition

Given a string $\sigma \in 2^{<\omega}$, a real *x* and a set $S \subseteq 2^{<\omega}$.

Definition

Given reals x, y and a number $n \ge 1$, x is n-y-generic if for every $\sum_{n=0}^{0}(y)$ set $S \subseteq 2^{<\omega}$, there is a string $\sigma \prec x$ so that either $\sigma \Vdash x \in S$ or $\sigma \Vdash x \notin S$.

Randomness theory II

Theorem (Miller and Yu)

For every $z \in 2^{\omega}$, every 1-random real Turing reducible to a 1-*z*-random real is also 1-*z*-random.

Theorem (van Lambalgen)

For any number n > 0 and real $x = x_0 \oplus x_1$ (or $x = x_1 \oplus x_0$), x is *n*-random if and only if x_0 is *n*-random and x_1 is *n*- x_0 -random.

So if $x = x_0 \oplus x_1$ is *n*-random, then $x_0 <_T x$.

Theorem (Kurtz and Kautz)

For every 2-random real x, there is a 1-generic real y so that $y <_T x$.

Proposition

If $X \subseteq 2^{\omega}$ and $\mu(X) > 0$, then there are two reals $x, y \in X$ so that $x <_T y$.

Proof.

We use Jockusch' proof. $\mu(X \cap [\sigma]) > 2^{-|\sigma|-1} .$ $Y = \{x \in [\sigma] | x = x_0 \oplus x_1 \& x_0 \in X \cap [\sigma] \}.$

So we have the following proposition.

Corollary

If X is an antichain in the Turing degrees (or h-degrees) and measurable, then $\mu(X) = 0$.

Higher randomness theory

Definition

Given a real *z* and a number $n \ge 1$,

- A real $x \in 2^{\omega}$ is $\Pi_n^1(z)$ -random if $x \notin A$ for each $\Pi_n^1(z)$ set A for which $\mu(A) = 0$.
- 2 A real *x* ∈ 2^ω is Σ¹_n(*z*)-random if *x* ∉ *A* for each Σ¹_n(*z*) set *A* for which $\mu(A) = 0$.
- 3 A real $x \in 2^{\omega}$ is $\Delta_n^1(z)$ -random if $x \notin A$ for each $\Delta_n^1(z)$ set A for which $\mu(A) = 0$.

Calculating the complexity I

Proposition (Sacks)

The predicate, $\mu(A) > r$, is Π_1^1 , where A ranges over Π_1^1 sets and r ranges over rationals.

A set *C* is $d - \Sigma_1^1$ if it is a difference of two Σ_1^1 sets.

Corollary

The predicate, $\mu(A \cap B) > r$, is Δ_2^1 , where A ranges over Π_1^1 sets, B ranges over Σ_1^1 and r ranges over rationals. In other words, the predicate, $\mu(C) > r$, is Δ_2^1 , where C ranges over $d - \Sigma_1^1$ sets, r ranges over rationals.

Calculating the complexity II

Given two predicates P(z, i), Q(z, i) for which $\forall z \forall i \neg (P(z, i) \& Q(z, i))$ and a real x (or a string $\sigma \in 2^{<\omega}$), we use $\Sigma(P, Q, z, i) \leftrightarrow x(i)$ (or $\Sigma(P, Q, z, i) \leftrightarrow \sigma(i)$) to denote:

$$(x(i) = 0 \rightarrow P(z,i)) \& (x(i) = 1 \rightarrow Q(z,i)))$$

(or

$$(\sigma(i) = \mathbf{0} \rightarrow P(z, i)) \& (\sigma(i) = \mathbf{1} \rightarrow Q(z, i))).$$

Note $\{z | \Sigma(P, Q, z, i) \leftrightarrow \sigma(i)\}$ is uniformly $d - \Sigma_1^1$ when σ ranges over $2^{<\omega}$ and *i* ranges over ω if both *P* and *Q* are $d - \Sigma_1^1$.

(日) (日) (日) (日) (日) (日) (日)

Attacking the question I

Lemma

For any reals $x \leq_h z$, there is a Π_1^1 predicate P(z, i) and $d - \Sigma_1^1$ -predicate Q(z, i) so that $\Sigma(P, Q, z, i) \leftrightarrow x(i)$ and $\forall z \forall i \neg (P(z, i) \& Q(z, i))$.

Proof.

Since $x \leq_h z$, there are two Π_1^1 predicates R(z, i), S(z, i) so that x(i) = 0 iff R(z, i) iff $\neg S(z, i)$. Define P = R and $Q = S \land \neg R$.

Attacking the question II

Lemma

If $x \in 2^{\omega}$ is Δ_2^1 -random, then for any Π_1^1 predicate P(z, i) and $d - \Sigma_1^1$ predicate Q(z, i) which satisfies $\forall z \forall i \neg (P(z, i) \& Q(z, i))$, there is a constant *c* so that

 $\forall n(\mu(\{z \in 2^{\omega} | \forall i \leq n(\Sigma(P, Q, z, i) \leftrightarrow x(i))\}) \leq 2^{-n+c}).$

Proof.

Define a Δ_2^1 -sequnece $\mathcal{V}_{\sigma} = \{ z \in 2^{\omega} \mid \forall i \leq |\sigma| (\Sigma(P, Q, z, i) \leftrightarrow \sigma(i)) \}.$ $F_i = \{ \sigma \in 2^{<\omega} \mid \mu(\mathcal{V}_{\sigma}) > 2^{-|\sigma|+i} \}$

D is a maximal prefix-free subset of F_i .

continued.

Then

$$egin{aligned} &\mu(\{z\in 2^{\omega}\mid \exists \sigma\in Dorall i\leq n(\Sigma(P,Q,z,i)\leftrightarrow\sigma(i))\})\ &=\sum_{\sigma\in D}\mu(\mathcal{V}_{\sigma})>\sum_{\sigma\in D}2^{-|\sigma|+i}\ &=2^{i}\sum_{\sigma\in D}2^{-|\sigma|}=2^{i}\mu([D]). \end{aligned}$$

So $\mu([D]) < 2^{-i}$.

Attacking the question III

Lemma

For any real *z* and Δ_2^1 -random real *x*, if *x* is not 1-*z*-random and $y \ge_h x$, then *y* is not $\Delta_2^1(z)$ -random.

Proof.

Define a $d - \Sigma_1^1$ -sequence

$$\mathcal{F}_{\sigma} = \{ z \in 2^{<\omega} | \forall i \leq |\sigma| (\Sigma(\mathcal{P}, \mathcal{Q}, z, i) \leftrightarrow \sigma(i)) \}.$$

Define a Δ_2^1 -sequence $\{G_\sigma\}$: $G_\sigma = F_\sigma$ if $\mu(F_\sigma) \le 2^{-|\sigma|+c}$ and $G_\sigma = \emptyset$ otherwise. A computable collection of $\Sigma_1^0(z)$ sets $\{V_i\}_{i\in\omega}$ so that $\mu(V_i) \le 2^{-i}$ and $x \in \bigcap_{i\in\omega} V_i$. Fix a c.e. collections of *z*-c.e. prefix free sets $\{\hat{V}_i\}_{i\in\omega}$ so that $[\hat{V}_i] = V_i$ for each *i*.

continued.

Define a $\Delta_2^1(z)$ -sequence H_i so that $H_i = \bigcup_{\sigma \in \hat{V}_{i+c}} G_{\sigma}$. Then

$$\mu(H_i) \leq \sum_{\sigma \in \hat{V}_{i+c}} \mu(G_{\sigma})$$

$$\leq \sum_{\sigma \in \hat{V}_{i+c}} 2^{-|\sigma|+c} = 2^c \cdot \sum_{\sigma \in \hat{V}_{i+c}} 2^{-|\sigma|} = 2^c \cdot \mu(V_{i+c}) \leq 2^{-i}.$$

Since $\{H_i\}_{i\in\omega}$ is a $\Delta_2^1(z)$ sequence of $d - \Sigma_1^1$ sets, $H = \bigcap_{i\in\omega} H_i$ is a $\Delta_2^1(z)$ set and $\mu(H) = 0$. But for each *i*, there is a $\sigma \in \hat{V}_i$ for which $\sigma \prec x$ and so $F_{\sigma} \subseteq H_i$. Hence $y \in F_{\sigma} \subseteq H_i$ for each *i*. Thus $y \in H$. So *y* is not $\Delta_2^1(z)$ -random.

Given a set $X \subseteq 2^{\omega}$, define $\mathcal{U}_h(X) = \{y | \exists x \in X (x \leq_h y)\}$.

Lemma

Suppose $X \subset 2^{\omega}$ which only contains Δ_2^1 -random reals, if $\mu(X) = 0$, then $\mu(\mathcal{U}_h(X)) = 0$.

Proof.

Define $\mathcal{R} = \{x | x \text{ is } \Delta_2^1 \text{-random.}\}$. Take a maximal set $X \subset \mathcal{R}$ so that $\forall x \in X \forall y \in X (x \neq y \implies \forall z (z \leq_h x \& z \leq_h y \implies z \text{ is not } \Delta_2^1 \text{-random})$.

(日) (日) (日) (日) (日) (日) (日)

Lemma

There exists a nonmeasurable antichain in the h-degrees.

Solving the question

Theorem

For any locally countable Σ_1^1 partial order $\mathbb{P} = \langle 2^{\omega}, \leq_P \rangle$, there exists a nonmeasurable antichain in \mathbb{P} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Beyond recursion theory

Proposition

Assume ZFC + V = L, there is a locally countable Δ_2^1 partial order on 2^{ω} in which every antichain has size 1.

Theorem

Assume $ZFC + MA_{\aleph_1}$. If a partial order $\mathbb{P} = \langle 2^{\omega}, \leq \rangle$ is locally countable, then there exists a nonmeasurable antichain in \mathbb{P} .

(日) (日) (日) (日) (日) (日) (日)

Applications to some specific orders

Corollary

There exists a nonmeasurable antichain in the Turing degrees.

Corollary

There exists a nonmeasurable antichain in the K-degrees.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Possible generalizations I

Given a set $X \subseteq 2^{\omega}$, define $\mathcal{U}(X) = \{y | \exists x \in X(x \leq_T y)\}$.

Proposition

There exists an antichain X for which $\mu(X) = 0$ and $\mathcal{U}(X)$ is not of measure 0.

Can $\mathcal{U}(X)$ be measurable? or non-measurable?.

Question (Jockusch)

Does there exist an antichain X in the Turing degrees for which $\mu(X) = 0$ and $\mu(\mathcal{U}(X)) = 1$?

Proposition

For any antichain X in the Turing degrees, if $\mu(\mathcal{U}(X)) > 0$, then $\mu(X) = 0$.

Possible generalizations II

We say that a set $X \subset 2^{\omega}$ is a *quasi-antichain* in the Turing degrees if it satisfies the following properties:

It is not hard to see that there is a nonmeasurable quasi-antichain in the Turing degrees.

Question (Jockusch)

Is every maximal quasi-antichain in the Turing degrees nonmeasurable?

Possible generalizations III

We say that a partial order $\mathbb{P} = \langle 2^{\omega}, \leq_P \rangle$ is *locally null* if for every $x, \mu(\{y | y \leq_P x\}) = 0$. We have the following proposition.

Proposition

For any measurable locally null partial order $\mathbb{P} = \langle 2^{\omega}, \leq_{P} \rangle$, every chain in \mathbb{P} has measure 0.

Corollary

Every chain in any Π_1^1 locally countable partial order is of measure 0.

Question

Is it true that for any locally countable Π_1^1 partial order $\mathbb{P} = \langle 2^{\omega}, \leq_P \rangle$, there exists a nonmeasurable antichain in \mathbb{P} ?

Thanks