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K-trivial =

low for ML-random

• A set A is K-trivial if each initial segment has minimal prefix
free complexity. That is, there is c ∈ N such that

∀n K(A � n) ≤ K(n) + c

(Chaitin, 1975).

• A is low for ML-random if each ML-random set is already
ML-random relative to A (Zambella, 1990).

In these lectures we will see that the two concepts are equivalent.
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More concepts

Further concepts have been introduced:

• Basis for ML-randomness (Kučera , APAL 1993)

• Low for K (Muchnik jr, in a Moscow seminar, 1999).

They will also be eliminated, by showing equivalence with
K-triviality. However, they all show different aspects of the same
notion.

• Low for K, low for random, basis for ML-randomness mean
computationally weak

• K-trivial means far from random
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Existence

In three cases, the researcher who introduced the property
(Solovay, Kučera, Muchnik) showed the existence of a
non-computable set with that property.

For low for ML-random, this was only shown later (Kučera,
Terwijn 1997).

All examples were c.e., except for Solovay’s example of a K-trivial,
which was only ∆0

2. Later it was improved to a c.e. example
(Kummer unpubl., Calude & Coles 1999).
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Part I: Close to computable
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Low for K
In general, adding an oracle A to the computational power of the
universal machine decreases K(y). A is low for K if this is not so.
In other words,

∀y K(y)
+
≤ KA(y).

Let M denote this class. It was introduced by Andrej A. Muchnik
(1999), who proved that there is a c.e. noncomputable A ∈M.

Proposition 1 If A is low for K, then A is GL1

Proof:

• If e ∈ A′
t, then K(t) ≤+ KA(t) ≤+ 2 log e.

• ∅′ can compute s = max{U(σ) : |σ| ≤ 2 log e + c. Then

e ∈ A′ ⇔ e ∈ A′
s.
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Low for ML-random

Let MLRand denote the class of Martin-Löf-random sets.

• Because an oracle A increases the power of tests,
MLRandA ⊆ MLRand.

• A is low for ML-random if MLRandA = MLRand (Zambella,
1990). Low(MLRand) denotes this class.

Theorem 2 (Kucera and Terwijn, 1997) There is a
non-computable c.e. set that is low for ML-random.
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Easy: M⊆ Low(MLRand)

Schnorr’s Theorem relativizes:

Z is Martin-Löf random relative to A iff

for some c, ∀n KA(Z � n) ≥ n− c.

Apply this:

• MLRand can be defined in terms of K, and

• MLRandA in terms of KA.

So low for K implies low for ML-random.
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Bases for ML-randomness

Kucera (APAL, 1993) studied sets A such that

A ≤T Z for some Z ∈ MLRandA.

That is, A can be computed from a set random relative to it.

We will call such a set a basis for ML-randomness. (Kučera called
them “basis for 1-RRA”.)

• Each low for ML-random set A is a basis for ML-randomness.

• For, by the Kučera-Gács Theorem there is a ML-random Z

such that A ≤T Z.

• Then Z is ML-random relative to A.
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Two theorems

I discuss two theorems:

1. There is a c.e. non-computable basis for ML (Kučera1993)

2. Each basis for ML is low for K. (HNS ta)
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Two concepts gone

We have already seen the easy inclusions

low for K ⇒ low for ML ⇒ basis for ML,

Then, by Theorem 2., all three classes are the same.
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And K-triviality?

• low for K ⇒ K-trivial is immediate

• The converse K-trivial ⇒ low for K is hard. The proof is
separate from all of the above.

• (Chaitin 1976) proved that K-trivial implies ∆0
2, by an elegant

argument involving the coding theorem.

A direct way to show, say, low for ML-random implies ∆0
2 is

much harder. This was the original open question of Kučera
-Terwijn.

12



'

&

$

%

A basis for ML

Theorem 3 (Kučera 1993) There is a c.e. non-computable A

which is a basis for ML.

This follows from the next two results. This proof is a bit different
from Kučera’s original one.

Theorem 4 (Kučera 1985) Let Z be ∆0
2 and diagonally

non-computable. Then there is a c.e. non-computable set A ≤T Z.

Apply this to a low ML-random set (say), and use that

Lemma 5 (Hirschfeldt.N.Stephan ta) If Z <T ∅′ is
ML-random and A ≤T Z is c.e., then Z is already ML-random
relative to A.
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A special case of

Kučera’s 1985 Theorem

Theorem Let Z be ∆0
2 and ML-random. Then there is a simple set

A ≤T Z.

This can be proved without using the Recursion Theorem. Kučera
had first thought of this special case. Then he generalized it to
d.n.c. Z, where the Recursion Theorem is needed.

Recall that a Solovay test G is given by an effective enumeration of
strings σ0, σ1, . . ., such that∑

i 2−|σi| < ∞.

If Z is ML-random, then for almost all i, σi 6� Z.
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We want to meet the requirement

Se : |We| = ∞⇒ A ∩We 6= ∅.

Construction. At stage s, if Se is not satisfied yet, see if there is
an x, 2e ≤ x < s, such that

x ∈ We,s −We,s−1 & ∀tx<t<sZt � e = Zs � e.

If so, put x into A. Put the string σ = Zs � e into G. Declare Se

satisfied.

• Clearly A is (promptly) simple.

• For almost all σ ∈ G, σ 6� Z. In that case, after stage s, Z � e

has to take a value not seen before. Since e < x, this shows
A ≤T Z.

The enumeration into A is heavily restrained. If Z � e changes
another time at stage s, then no x < s can be enumerated after s

for the sake of Se. Z can do that as late and as often as it wants.
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Base for ML ⇒ low for K

(...the hungry sets theorem.)

Theorem 6 (Hirschfeldt, Nies, Stephan, 2004) If A is a basis
for ML-randomness, then A is low for K.

There, we actually only proved the conclusion that A is K-trivial,
but it’s the same proof.
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The KC-Theorem

We use this tool:

• A c.e. set W ⊆ N× 2<ω is a Kraft-Chaitin set (KC set) if the
weight ∑

{2−r : 〈r, y〉 ∈ W} ≤ 1.

• From a Kraft-Chaitin set L, one can effectively obtain a prefix
free machine M such that

∀r, y[〈r, y〉 ∈ L ⇔ ∃w (|w| = r & M(w) = y)].

We enumerate polite requests 〈r, y〉 (“please describe y with length
r”). If their total weight is at most 1, then for each request (also
called axiom), there actually is an M description of length r.
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Proving the hungry

sets theorem

(...and why it is called that way.)

Theorem. If A is a basis for ML-randomness then A is low for K.

Given a Turing functional Φ, we define a ML test (V X
d )d∈N+

relative to oracle X (later, we use this test for X = A).

Suppose A = ΦZ . Goal: If Z 6∈ V A
d then A is low for K, with

constant d +O(1).
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To realise this goal, we also build a uniformly c.e. sequence
(Ld)d∈N+ of KC sets. For each computation

Uη(σ) = y where η � A,

that is, when y has a description σ with oracle A, we want to
ensure there is a description without an oracle that is only a
constant longer. Thus we want to put an axiom

〈|σ|+ d + 1, y〉

into Ld. The problem is that we don’t know A, so we don’t know
which η’s to take. This may blow up Ld. To avoid this, the
description Uη(σ) = y first has to prove itself worthy.
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We build an auxiliary ML-test (Vd) relative to A. If Z 6∈ Vd then
Ld works. To do so we effectively enumerate open sets Cη

d,σ and let

V A
d =

⋃
η≺A Cη

d,σ.

While µ(Cη
d,σ) < 2−|σ|−d, Cη

d,σ is hungry. We feed it with fresh
oracle strings α, where η ≺ Φα.

All the open sets [Cη
d,σ]� are disjoint. When µ(Cη

d,σ) reaches
2−|σ|−d−1, we put the required axiom 〈|σ|+ d + 1, y〉 into Ld. This
will happen in the relevant case η � A.

Fome Zero Lemma. Suppose Z 6∈ Vd. Then for each description
Uη(σ) = y, where η ≺ A, µ(Cη

d,σ) = 2−|σ|−d. (It is hungry no more
at the end of time.)

We account the weight of those axioms against the measure of the
sets Cη

d,σ. So Ld is a KC set. QED
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Discussion
Given a Turing functional Φ. For each A, let

SA = {Z : A = ΦZ}.

Also let SA,n = [{σ : A � n = Φσ}]� (an open set u.c.e. in A ).

• Sacks: If A is non-computable, then µSA = 0.

So (SA,n)n∈N+ is a weak ML-test relative to A.

• Miller, Yu: If A is ML-random, then there is c such that

∀n µSA,n ≤ 2−n+c.

• Hungry sets: Based on Φ, one can build a relative ML-test (Vd)
such that A not low for K ⇒ SA ⊆

⋂
d V A

d . Then, since there
is a universal ML test, the whole class {Z : A ≤T Z} is ML-null
relative to A. (The converse holds as well: if A is low for K

then Ω ≥T A is ML-random in A, so the class is not.)
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Martingales

Next we study lowness for randomness notions implied by ML.

A martingale is a function M : {0, 1}∗ 7→ R+
0 such that

M(x0) + M(x1) = 2M(x)

M succeeds on Z if

lim supn M(Z � n) = ∞.
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CRand and KLRand

• Z is computably random (CRand) if no computable martingale
M succeeds on Z. That is, M(Z � n) is bounded.

• While a martingale always bets on the next position, a
non-monotonic betting strategy can choose some position that
has not been visited yet.

• Z is Kolmogorov-Loveland random (KLRand) if no
non-monotonic betting strategy succeeds on Z.

MLRand ⊆ KLRand ⊂ CRand.

It is a major open problem if the first inclusion is proper, too.
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Lowness notions

The following is a further improvement of the original result (Nies
2002) that Low(MLRand) implies low for K.

Theorem 7 If MLRand ⊆ CRandA then A is low for K.

(The converse implication holds trivially.)

24



'

&

$

%

A lemma

Let R be any r.e. open set such that µR < 1 and Non-MLRand ⊆ R

We will define a martingale functional L. If MLRand ⊆ CRandA

then Success(LA) ⊆ Non-MLRand, and we may apply the following
lemma to N = LA.

Lemma 8 Let N be any martingale such that
Success(N) ⊆ Non-MLRand. Then there are v ∈ 2<ω and m ∈ N
such that v 6∈ R, and if N(x) is large then x � v is not a random
string, namely

∀x � v[N(x) ≥ 2m ⇒ x ∈ R]. (1)
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Proving the Theorem

Theorem. If MLRand ⊆ CRandA then A is low for K.

Let us assume we know the witnesses of the lemma v,m. Thus

∀x � v[LA(x) ≥ 2m ⇒ x ∈ R].

As before, if Uη(σ) = y where η � A, we want a corresponding set
Cη

σ such that µCη
σ ≥ 2−|σ|−c , c some constant (no parameter d

occurs here).

Feed the set Cη
σ as follows:

• at stage s pick a clopen set D, µD = ε of long strings x � v,
D ∩Rs = ∅. Define Lη(x) ≥ 2m for each x ∈ D.

• If really η ≺ A, then D has to go into R. Once this happens
repeat with a new set of measure ε, as long as Cη

σ is hungry.
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Low(KLRand)

If A is low for KLRand, then

MLRand ⊆KLRand= KLRandA ⊆CRandA.

Corollary 9 Each low for KLRand set is low for K.

Of course, it is open if the two classes are the same.
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Low(CRand)= computable

Earlier result:

Theorem 10 [with B. Bedregal, Porto Alegre] Each Low(CRand)
set is hyper-immune free.

But also, by Theorem 7 each Low(CRand) set is K-trivial, hence
∆0

2. Since the only hyper-immune free ∆0
2 are the computable sets,

we have

Theorem 11 If A is Low(CRand) then A is computable.

This answers Question 4.8 in Ambos-Spies/Kucera (1999) in the
negative. Conjectured this way by Downey.
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Low(SchnorrRand)

Being computably traceable is a strengthening of A being
hyper-immune free: the value f(x) of each f ≤T A is in a small
effectively given set Dg(x). Here g is a computable function
depending on f , and |Dg(x)| ≤ h(x) for a fixed bound h.

Theorem 12 (Terwijn and Zambella 2000) A is low for
Schnorr tests ⇔ A is computably traceable.

Theorem 13 (Kjos-Hanssen, Nies, Stephan) Each
computably random set is Schnorr random relative to A ⇔
A is computably traceable.

One ingredient is the result with Bedregal, which works already if
each computably random set is Schnorr random relative to A.
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Part II: Far from random
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Definition of K-trivial

• For a string y, up to constants, K(|y|) ≤ K(y), since we can
compute |y| from y (here we write numbers in binary).

• A set A is K-trivial if, for some b ∈ N

∀n K(A � n) ≤ K(n) + b,

namely, the K complexity of all initial segments is minimal.

This is opposite to ML-randomness:

• Z is ML-random if all complexities K(Z � n) are near the
upper bound n + K(n), while

• Z is K-trivial if they have the minimal possible value K(n) (all
within constants).
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Why prefix free complexity?

If one defined K-triviality using the usual Kolmogorov complexity
C instead of K, then one obtained only the computable sets
(Chaitin, 1975).

(Chaitin, 1976) still managed to prove that the K-trivial sets are
∆0

2.

Solovay (1975) was the first to construct a non-computable
K-trivial A , which was ∆0

2 as expected but not c.e.
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Constructions

[Downey, Hirschfeldt, Nies, Stephan 2001] gave a short “definition”
of a simple K-trivial set, which had been anticipated by various
researchers (Kummer, Zambella). We use the “cost function”

c(x, s) =
∑

x<y≤s 2−Ks(y) .

This determines a non-computable set A:

As = As−1 ∪ {x : ∃e

We,s ∩As−1 = ∅ we haven’t met e-th simplicity requirement

x ∈ We,s we can meet it, via x

x ≥ 2e make A co-infinite

c(x, s) ≤ 2−(e+2)} ensure A is K-trivial.
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This needs IΣ1

Though the construction is very simple, induction over Σ1 formulas
is needed to verify it, because of work of Chong, Slaman, ... :

• There is a saturated M |= I∆1 (even M |= BΣ1) with a Σ1

cofinal f whose domain is the standard part

• In such an M, each regular c.e. set A is computable. Here A is
regular if for each n ∈M, A � n is a string of M (i.e., encoded
by an element of M)

• Each K-trivial set A ⊆M is regular, since A � n has a prefix
free description in M, for each n.

34



'

&

$

%

Necessity of the cost

function method, c.e. case

• Suppose the c.e. set A is K-trivial via a constant b.

• For each s, one can effectively determine an f(s) > s such that
∀n < s K(A � n) ≤ K(n) + b [f(s)]

• Let s(0) = 0 and s(i + 1) = f(s(i)).

Proposition 14 Let A be c.e. and K-trivial via b. Then∑
{c(x, s(i)) : x < s(i) is minimal s.t. As(i)(x) 6= As(i+1)(x)} ≤ 2b.
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Bounding the cost

• Let xi < s(i) be minimal such that As(i)(x) 6= As(i+1)(x).

• For each y, xi < y ≤ s(i), by definition there is at stage s(i + 1)
a prefix free description of A � y of length ≤ Ks(i+1)(y) + b. Let
Di be the open set generated by such descriptions.

• Since A is c.e., the strings A � y described at different stages
s(i + 1) are distinct, so that Di ∩Dj = ∅ for i 6= j. Hence∑

i µDi ≤ 1.

Since∑
xi<y≤s(i) 2−Ks(i)(y) ≤

∑
xi<y≤s(i) 2−Ks(i+1)(y) ≤ 2bµDi,

this shows
∑

i c(xi, s(i)) ≤ 2b, as required.

36



'

&

$

%

A question
We have by now seen two ways to obtain a non-computable c.e. K

trivial set A. Both are injury free.

(i) Take an incomplete ML-random Z, and build A ≤T Z using
Kučera’s methods. Then A is low for K, and hence K-trivial

(ii) The cost function construction, which is necessary by the
above.

Can each K-trivial set be obtained via (i)? That is

Question 15 If A is K-trivial, is there an incomplete ML-random
Z above A ?

Later we will see that each K trivial set is below a c.e. K-trivial set.
So we don’t have to require that the given K-trivial set A is c.e.
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wtt-incompleteness

Showing the downward closure of K under ≤wtt is an easy exercise.
Since the wtt-complete set Ω is not K–trivial, no K–trivial set A

satisfies ∅′ ≤wtt A. To introduce some new techniques, I give a
direct proof of this. Suppose ∅′ ≤wtt A for K-trivial A.

• We build an r.e. set B, and by the Recursion Theorem we can
assume we are given a total wtt-reduction Γ such that B = ΓA,
whose use is bounded by a computable function g.

• We build a KC-set L. Thus we enumerate polite requests 〈r, n〉
and have to ensure

∑
r 2−r is at most 1. By the recursion

theorem, we may assume the coding constant d for L is given in
advance. Then, putting 〈r, n〉 into L causes K(n) ≤ r + d and
hence K(A � n) ≤ r + b + d, where b is the triviality constant.
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• Let

k = 2b+d+1

• Let n = g(k) (the use bound). We wait till ΓA(k) converges,
and put the single request 〈r, n〉 into L, where r = 1. Our total
investment is 1/2.

• Each time the opponent has a U -description of A � n of length
≤ r + b + d, we force A � n to change, by putting into B the
largest number ≤ k which is not yet in B.

• If we reach k + 1 such changes, then his total investment is

(k + 1)2−(1+b+d) > 1,

contradiction.
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Turing-incompleteness

• Consider the more general result that K-trivial sets are
T-incomplete (Downey, Hirschfeldt, N, Stephan, 2003), mostly
H... There is no recursive bound on the use of ΓA(k).

• The problem now is that the opponent might, before giving a
description of As � n, move this use beyond n, thereby
depriving us of the possibility to cause further changes of A � n.

• The solution is to carry out many attempts in parallel, based
on computations ΓA(m) for different m.

• Each time the use of such a computation changes, the attempt
is cancelled. What we placed in L for this attempt now
becomes garbage. We have to ensure that the weight of the
garbage does not build up too much, otherwise L is not KC.
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More details: j-sets

The following is a way to keep track of the number of times the
opponent had to give new descriptions of strings As � n. We only
consider stages where A looks K-trivial with constant b.

• At stage t, a finite set E is a j-set if for each n ∈ E first we put
a request 〈rn, n〉 into L, and then j times at stages s < t the
opponent had to give new descriptions of As � n of length
rn + b + d.

• A c.e. set with an enumeration E =
⋃

Et is a j-set if Et is a
j-set at each stage t.

• Recall that the weight wt(E) is
∑
{2−rn : n ∈ E}
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The weight of a k-set

• If the c.e. set E is a k-set, k = 2b+d+1 as defined above, then

wt(E) ≤ 1/2,

because k times the opponent has to match our description of
n, which has length rn, by a description of a string As � n that
is at most b + d longer.
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Procedures

Assume A is K-trivial and Turing complete. As in the wtt-case, we
attempt to build a k-set Fk of weight > 1/2 and reach a
contradiction.

The procedure Pj (2 ≤ j ≤ k) enumerates a j-set Fj . The
construction begins calling Pk, which calls Pk−1 many times, and
so on down to P2, which enumerates L (and F2).

Each procedure Pj has rational parameters q, β ∈ [0, 1].

• The goal q is the weight it wants Fj to reach

• The garbage quota β is how much it garbage it can produce.

When the procedure reaches its goal it returns.
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Decanter model
We visualize this construction by a machine similar to Lerman’s
pinball machine. However, since we enumerate rational quantities
instead of single objects, we replace the balls there by amounts of a
precious liquid, namely 1983 Brunello wine.

Our machine consists of decanters Fk, Fk−1, . . . , F0. At any stage
Fj is a j set. Fj−1 can be emptied into Fj .

The procedure Pj(q, β) wants to add weight q to Fj . It fills Fj−1

up to q and then returns, by emptying it into Fj . The emptying is
done by enumerating B and hence adding one more A-change.

The emptying device is a hook (the γA(m)-marker), which besides
being used on purpose may go off finitely often by itself (premature
A-change). When Fj−1 is emptied into Fj then Fj−2, . . . , F0 are
spilled on the floor.
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Though the recursion starts by calling Pk with goal 1, wine is first
poured into the highest decanter F0, and thereby into the left
domain of L. We want to ensure that at least half the wine we put
into F0 reaches Fk. Recall that the parameter β is the amount of
garbage Pj(q, β) allows. If v is the number of times an emptying
device has gone off by itself, then Pj lets Pj−1 fill Fj−1 in portions
of 2−vβ. Then when Fj−1 is emptied into Fj , at most 2−vβ can be
lost because of being in higher decanters Fj−2, . . . , F0.

This uses a key idea: when we have to cancel a run Pj(q, β)
because of a premature A-change, what becomes garbage is not
Fj−1, but rather what the sub-procedures called by this run were
working on. The set Fj−1 already is a j − 1-set, so all we need is
another A-change, which is provided here by the cancellation itself
as opposed to being caused actively once the run reaches its goal.
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Who enumerates L?

The bottom procedure P2(q, β), which is where the recursion
reaches ground. It puts axioms 〈rn, n〉 into L and the top decanter
F0, where 2−rn = 2−vβ. Once it sees the corresponding A � n

description, it empties F0 into F1. However, if the hook γA(m)
belonging to P2 moves before that, then F0 is spilled on the floor,
while F1 is emptied into F2.

So much for the discussion of Turing incompleteness.

46



'

&

$

%

Each K-trivial set is low

Recall that JA(e) is the jump.

• A procedure Pj(q, β) is started when JA(e) newly converges.
The goal q is α2−e, where α is the garbage quota of the
procedure of type Pj+1 that called it (assuming j < k).

• For different e they run in parallel. So we now have a tree of
decanters. (This could be avoided by letting a new convergence
JA(e′) (e′ < e) cancel a run for JA(e).)

• We cannot change A actively any more (and we are happy if it
doesn’t). However, this creates a new type of garbage, where
Pj(q, β) reaches its goal, but no A change happens after that
would allow to empty Fj−1 into Fj . The total is ≤

∑
e 2−eα,

which is ok.
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The man with the

golden run
• The initial procedure Pk never returns, since it has goal 1,

while a k-set has weight at most 1/2.

• So there must be a golden run of a procedure Pj+1(q, α) : it
doesn’t reach its goal, but all the subprocedures it calls either
reach their goals or are cancelled by premature A change.

• The golden run shows that A is low: When the run of the
subprocedure Pj based on a computation JA(e) returns, then
we guess that JA(e) converges. If A changes then Pj+1 receives
the fixed quantity 2−eα. In this case we change the guess back
to “divergent”. This can only happen so many times (where

so= 2eq/α), else Pj+1 reaches its goal.
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Comments

• This actually shows that A is super-low: the number of mind
changes in the approximation of A′ is computably bounded.

• The lowness index is not obtained uniformly: we needed to
know which run is golden. This non-uniformity is necessary
(DHNS, 2003).
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The full result

The final result is

K-trivial = low for K.

This was obtained joint with Hirschfeldt, via a modification of my
result that the K-trivial sets are closed downward under ≤T . It
implies lowness, as

• we have seen an easy proof that each low for K set is GL1, and

• each K-trivial set is ∆0
2.
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Proving the full result

• A procedure Pj(q, β) is started when UA(σ) = y newly
converges. The goal q is α2−|σ|.

• It is necessary to call in parallel procedures based on different
inputs σ. So we necessarily have a tree of decanters.

• At the golden run Pj+1, we can show that A is low for K, by
emulating the cost function construction of a low for K set.
When Pj(q, β) associated with UA(σ) = y returns, we have the
right to put a request 〈|σ|+ c, y〉 into a set W (c is some
constant). An A change has a cost, since we put a request for a
wrong computation. The fact that Pj+1 does not reach its goal
implies that the cost is bounded. Hence W is KC.
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Further applications

The golden run method shows:

• The cost function construction is necessary even for K-trivial
∆0

2 sets A

• This is used to show that there is a c.e. K-trivial set Turing
above A

• For each K-trivial set A, the relativized Chaitin probability ΩA

is left-c.e. (a real r is left-c.e. if {q ∈ Q : q < r} is c.e.)

(The converse also holds here, in case A is ∆0
2: if ΩA is left-c.e.

then it is Turing complete, so A is a basis for ML-randomness,
hence K-trivial.)
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Summary of properties of K
The K-trivial sets form an ideal K in the ∆0

2 Turing degrees. It can
be characterized in many ways, and has the following nice
properties.

• K is the downward closure of its r.e. members

• K is Σ0
3

• K, like any Σ0
3 ideal, is contained in [, b]

for some c.e. low2 b

• each A ∈ K is super-low.

Also, X ≡T Y implies KX = KY .

Question 16 Is K definable in the ∆0
2, or the c.e. degrees? Does it

have an exact pair in the c.e. degrees?
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Part III: Recent

developments
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Effective descriptive set

theory

Π1
1 sets of numbers are a high-level analog of c.e. sets, where the

steps of an effective enumeration are recursive ordinals. Hjorth and
Nies (2005) have studied the analogs of K and of ML-randomness
based on Π1

1-sets.

• The KC-theorem and Schnorr’s Theorem still hold, but the
proofs takes considerable extra effort because of limit stages

• There is a Π1
1 set of numbers which is K-trivial (in this new

sense) and not hyperarithmetic.
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The classes are different now

Theorem 17 If A is low for Π1
1-ML-random, then A is

hyperarithmetic.

First we show that ωA
1 = ωCK

1 . This is used to prove that A is in
fact K-trivial at some η < ωCK

1 , namely

∀n Kη(A � n) ≤ Kη(n) + b.

Then A is hyperarithmetic, by the same argument Chaitin used in
the c.e. case to show that K-trivial sets are ∆0

2:

The collection of Z which are K-trivial at η form a
hyperarithmetical tree of width O(2b).
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Subclasses of K
Next we look at subclasses of the (c.e.) K-trivial sets which may be
proper. We have already seen one: the c.e. sets A such that there
an incomplete ML-random Z above A.

Here is a further one. This recent development was initiated by
Kučera(2004).
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ML-cuppability

A ∆0
2 set A is ML-cuppable if

A⊕ Z ≡T ∅′ for some ML-random Z <T ∅′.

Many sets are ML-cuppable: If A is not K-trivial, then

• A 6≤T ΩA by the hungry sets theorem, and

• A′ ≡T ΩA ⊕A ≥T ∅′.

If A is also low, then Z = ΩA <T ∅′, so A is ML-cuppable. This
shows for instance that each c.e. non-K-trivial set B is
ML-cuppable, since one can split it into low c.e. sets, B = A0 ∪A1,
and one of them is also not K-trivial.
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Existence

Theorem 18 [N, 2005] There is a promptly simple set which is
not ML-cuppable.

The proof combines cost functions with the priority method. See
my web page.

Question 19 Can a K-trivial set be ML-cuppable?

The cost functions I used in the proof of the existence theorem are
much more restricted then the one used to characterize the
K-trivial sets. This gives some positive evidence.

The same applies to the Kučera construction of a simple A below a
∆0

2 ML-random Z � e. Recall here that, if Z � e changes another
time at s, then [0, s) becomes taboo for Se.
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Is there a characterization of

K-trivial independent of

randomness and K?

Figueira, N, Stephan have tried the following strengthening of
super-lowness:

For each order function h, A′ has an approximation that changes at
most h(x) times at x.

They build a c.e. noncomputable such set, via a construction that
resembles the cost function construction. No relationship to
K-trivial is known.
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When ∅′ looks trivial to you

B is near complete if ∅′ is K-trivial relative to A.

I observed in the 2003 lowness properties paper that
Jockusch-Shore inversion applied to the operator given by the cost
function construction yields such a set.

• Binns, Kjos-Hanssen, Lerman and Solomon:

If A is a ∆0
2 uniformly a.e. dominating set, then ML-random in

A implies ML-random in ∅′. Hence A is near complete.

• Cholak, Greenberg, Miller: There is a c.e. incomplete uniformly
a.e. dominating set.
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Open questions

The final version of the Miller-Nies open questions paper is
available on my web page. Thanks to all for the comments.

It contains lots of questions (including the ones from this talk),
with definitions, motivation and background info.

Some have been solved already.

Good luck.
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