Derived models associated to mice

J.R. Steel

June 10, 2005

Abstract.

Core model inductions reaching infinitely many Woodins, or further, rely on a key step in which one passes from some kind of *hybrid mouse* to an ordinary $L[\vec{E}]$ mouse. The following conjecture is the basic test problem for our ability to translate hybrid mice into ordinary mice.

Conjecture 0.0.1 ((Mouse Set Conjectures (MSC))) Assume AD^+ , and that there is no ω_1 -iteration strategy for a mouse with a superstrong cardinal; then

- (I) If x, y are countable transitive sets, $x \subseteq y$, and x is ordinal definable from parameters in $y \cup \{y\}$, then there is an ω_1 -iterable -mouse \mathcal{M} over y such that $x \in \mathcal{M}$, and
- (II) if y is countable, transitive, and $\exists A \subseteq \mathbb{R}(HC, \in, A) \models \varphi[y]$, then there is an ω_1 -iterable mouse \mathcal{M} over y, and a λ such that

 $\mathcal{M} \models \lambda$ is a limit of Woodin cardinals,

and

$$\mathcal{M} \models \exists A \in \operatorname{Hom}_{<\lambda}((HC, \in, A) \models \varphi[y]).$$

In lectures 3 and 4, we shall prove a partial result in this direction:

Theorem 0.1 (Neeman, Steel) MSC holds if the hypothesis is strengthened to AD^+ plus there is no iteration strategy for an mouse \mathcal{M} such that for some λ ,

 $\mathcal{M} \models \lambda$ is a limit of Woodin cardinals,

and for some $\kappa < \lambda$,

$$\mathcal{M} \models \kappa \text{ is } < \lambda \text{ strong, and a limit of } < \lambda \text{-strongs.}$$

The proof leans heavily on work of Woodin.

The mouse set conjectures ask us to construct mice with given derived models. This leads naturally to the question: what can one say about the derived model of a mouse? This will be the focus of lectures 1 and 2. We shall show that for certain "tractable" \mathcal{M}, λ such that \mathcal{M} is a mouse and λ is a limit of Woodins in \mathcal{M} , the derived model $\mathcal{D}(\mathcal{M}, \lambda)$ of \mathcal{M} at λ satisfies MSC. We shall show that for these tractable pairs (\mathcal{M}, λ) , there is a canonical derived model of an iterate of \mathcal{M} whose reals are precisely the reals in V. Finally, we shall investigate the Solovay sequence $\langle \theta_{\alpha} \rangle$ of various $\mathcal{D}(\mathcal{M}, \lambda)$. For example, letting $M^{\sharp}_{wdn.lim}$ be the minimal active mouse with a Woodin limit of Woodin cardinals, we shall show

Theorem 0.2 (Closson, Steel) Let λ be the Woodin limit of Woodins in $M_{wdn.lim}^{\sharp}$; then

$$\mathcal{D}(M^{\sharp}_{wdn.lim},\lambda) \models \theta = \theta_{\theta}.$$