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Abstract

This is a set of notes meant to accompany a series of lectures at the workshop Com-
putational Prospects of Infinity, to be held at the Institute for Mathematical Sciences
of the National University of Singapore, in June 2005. These notes are very much in
progress, and likely to be revised and substantially extended in the coming weeks. This
version was completed June 26, 2005.

1 Lecture Plan

We shall present some results on the the properties of derived models of mice, and on the
existence of mice with large derived models. The basic plan of the lectures is:

Lecture 1. Introduction. Preliminary definitions and background material. The iteration
independence of the derived model associated to a mouse. The mouse set conjecture
in derived models associated to mice.

Lecture 2. The Solovay sequence in derived models associated to mice. A method of “trans-
lating away” extenders overlapping Woodin cardinals in mice.

Lectures 3,4. Some partial results on capturing Σ2
1 truths in AD+ models by mice. (That

is, partial results on the mouse set conjecture.)

The notes below follow this general plan, although they contain much more background
and detail than the author can hope to convey in the lectures themselves. At the same
time, these notes are far from self-contained. We have gathered together a fair amount of
background material for the reader’s convenience, but in order to keep this document to a
reasonable size, we have also simply pointed to the literature at many points.
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2 Introduction

Here are some well-known Holy Grails of inner model theory:

Conjecture 2.0.1 Each of the following statements implies the existence of an ω1 + 1-
iterable mouse with a superstrong cardinal:

(1) There is a supercompact cardinal,

(2) There is a strongly compact cardinal,

(3) PFA,

(4) CH holds, and there is a homogeneous pre-saturated ideal on ω1,

(5) ADR holds, and θ is regular.

This list could be lengthened substantially. In all cases, we can prove the statement in
question implies that there is an iterable mouse with infinitely many Woodin cardinals. In
cases (2)-(5), we cannot yet produce a mouse with a Woodin limit of Woodin cardinals.
(Case (1) is special; here the best partial results are those of [7], which reach a bit past a
Woodin limit of Woodins.)

The partial results we have in cases (2)-(5) come from the core model induction method.
In this method (due to Woodin), one uses core model theory to construct new mice, while
using descriptive set theory to keep track of the degree of correctness and the complexity of
the iteration strategies of the mice one has constructed. See [2], [23], and [18] for examples
of core model inductions. We suspect that even in case (1), one will not be able to go
significantly beyond where we are now without bringing core model induction ideas.

Core model inductions reaching infinitely many Woodins, or further, rely on a key step
in which one passes from some kind of hybrid mouse to an ordinary L[ �E] mouse. The hybrid
mouse H will have a small number of Woodin cardinals, but these cardinals will be Woodin
with respect to predicates coding up a lot of information. The L[ �E] mouse M is built
by a full background extender construction inside H, and may have all sorts of Woodin
cardinals, even cardinals strong past a Woodin, and presumably even superstrong cardinals.
We sometimes call the ordinary L[ �E] mice ms-mice; they are mice in the sense of [11], except
that we allow them to be relativised by putting some arbitrary transitive set y at the bottom,
in which case we speak of an ms-mouse over y). (See e.g. [18].) The following conjecture is
the basic test problem for our ability to translate hybrid mice into ordinary ms-mice.

Conjecture 2.0.2 ((Mouse Set Conjectures (MSC))) Assume AD+, and that there is
no ω1-iteration strategy for a mouse with a superstrong cardinal; then
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(I) If x, y ∈ HC, and x ⊆ y, and x is ordinal definable from parameters in y ∪ {y}, then
there is an ω1-iterable ms-mouse M over y such that x ∈ M, and

(II) if y ∈ HC and ∃A ⊆ R(HC,∈, A) |= ϕ[y], then there is an ω1-iterable ms-mouse M
over y, and a λ such that

M |= λ is a limit of Woodin cardinals,

and
M |= ∃A ∈ Hom<λ((HC,∈, A) |= ϕ[y]).

MSC2 is equivalent to asserting that the Σ2
1 fact ∃A ⊆ R(HC,∈, A) |= ϕ[y] holds in the

derived model of M below λ. It is easy to show that MSC2 implies MSC1, and not too hard
to show that MSC1 implies MSC2. We shall therefore use MSC to stand for either MSC1 or
MSC2, in situations where we don’t need to make a distinction.

Clearly, the conclusion of MSC1 is an equivalence: if x is in an iterable mouse over y,
then x ∈ OD(y ∪ {y}). In MSC2, one seems to need to add something about the iteration
strategy for M in order to conclude that any Σ2

1 statement true in the derived model of M is
actually true. This can be done in a natural way. (It is enough that the strategy be “good”
in the sense described below.)

MSC is known for a certain initial segment of the Wadge hierarchy. Woodin has shown:

Theorem 2.1 (Woodin, late 90’s) MSC holds if the hypothesis is strengthened to AD+

plus there is no iteration strategy for an ms-mouse M such that for some λ,

M |= λ is a limit of Woodin cardinals ,

and
{κ | κ is < λ-strong in M} has order type λ.

The proof builds on Woodin’s proof of MSC under the stronger hypothesis that there
is no iteration strategy for a nontame mouse. That proof is written up in [15]. There are
many additional difficulties in dealing with ms-mice having extenders overlapping Woodin
cardinals, however.

More recently, Neeman and the author have shown

Theorem 2.2 (Neeman-Steel, 2004) MSC holds if the hypothesis is strengthened to AD+

plus there is no iteration strategy for an ms-mouse M such that for some λ,

M |= λ is a limit of Woodin cardinals,

and for some κ < λ,

M |= κ is < λ strong, and a limit of < λ-strongs.
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Although the large cardinal reached here is only slightly beyond the large cardinals
reached in 2.1, the proof has some new ideas, and seems somewhat simpler, and closer
to Woodin’s orginal argument in the tame mouse case. Theorem 2.2 is the main goal of
lectures 3 and 4.

The mouse set conjectures ask us to construct ms-mice with a given derived models. This
leads naturally to the question: what can one say about the derived model of a mouse? (See
[17] for an exposition of the basic facts about the derived model construction.) This will be
the focus of lectures 1 and 2. We shall show that for certain “tractable” M, λ such that M
is a mouse and λ is a limit of Woodins in M, the derived model D(M, λ) of M at λ satisfies
MSC. We shall show that for these tractable pairs (M, λ), there is a canonical derived model
of an iterate of M whose reals are precisely the reals in V . Finally, we shall investigate the
Solovay sequence 〈θα〉 of various D(M, λ). For example, letting M �

wdn.lim
be the minimal

active mouse with a Woodin limit of Woodin cardinals, we shall show

Theorem 2.3 (Closson, Steel) Let λ be the Woodin limit of Woodins in M �

wdn.lim
; then

D(M �

wdn.lim
, λ) |= θ = θθ.

We do not know what the cofinality of θ is in the model of 2.3. Possibly θ is regular here,
in which case ADR plus “θ is regular” is much weaker than conjecture 2.0.1(5) would have
it.

3 Some background and preliminaries

3.1 Homogeneously Suslin sets

The good sets of reals, from the point of view of descriptive set theory, are the homogeneously
Suslin sets.

Definition 3.1 A homogeneity system with support Z is a function μ̄ such that for all
s, t ∈ Y <ω,

1. μt is a countably complete ultrafilter concentrating on Zdom(t), and

2. s ⊆ t ⇒ μt projects to μs.

If all μt are κ-complete, then we say μ̄ is κ-complete.

Definition 3.2 If μ̄ is a homogeneity system, then for x ∈ ω<ω,

x ∈ Sμ̄ ⇔ the tower of measures 〈μx�n | n < ω〉
is countably complete.
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Let
Homκ = {Sμ̄ | μ̄ is κ-complete },

Hom<λ =
⋂

κ<λ

Homκ,

Hom∞ =
⋂

κ∈OR

Homκ .

A set of reals is homogeneously Suslin just in case it is in Homκ, for some κ. Although not
literally stated in the paper, one of the main results of Martin [4] is that every homogeneously
Suslin set is determined. There are no interesting homogeneously Suslin sets unless there
are measurable cardinals. For the most part, we shall be working under the assumption that
there are infinitely many Woodin cardinals, in which case one has:

Theorem 3.3 Let λ be a limit of Woodin cardinals; then

(a) Hom<λ is closed under complements and real quantification ([6]),

(b) every Hom<λ set has a Hom<λ scale ([17]).

Feng, Magidor, and Woodin ([1]) introduced an important notion which turns out to be
equivalent to homogeneity in the presence of Woodin cardinals.

Definition 3.4 Let T and T ∗ be trees on ω × X and ω × Y respectively; then T and T ∗

are κ-absolute complements iff whenever G is V -generic over a poset of size ≤ κ, then
V [G] |= p[T ] = R \ p[T ∗]. We say that A ⊆ R is κ-universallly Baire (or κ-UB) iff A = p[T ]
for some tree T for which there is a κ-absolute complement.

The results of [5], [21], and [6] show that if λ is a limit of Woodin cardinals, then the
Hom<λ sets are precisely the < λ-universally Baire sets. (See [17].) The theorem and this
equivalence also hold for λ = ∞ = OR.

Stronger large cardinal hypotheses imply stronger closure properties of Hom<λ. For
example, Woodin has shown that if λ is a limit of Woodin cardinals, and there is a measurable
cardinal above λ, then for any A ∈ Hom<λ, A� ∈ Hom<λ. However, no large cardinal
hypothesis is known to imply that sets of reals definable using quantification over Hom<λ

must be Hom<λ, or even good in some weaker sense. The inner model theory for such a
large cardinal hypothesis would be significantly different from the one we have now, as we
explain in the next subsection.
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3.2 Hom∞ iteration strategies

Let M be a ms-premouse: a model of the form (Jα[ �E],∈, �E), where �E is a coherent sequence
of extenders. In the iteration game G(M, θ), I and II cooperate to build an iteration tree T
on M:

• I extends T at successor steps by applying an extender from the current model to
some, possibly earlier, model. The resulting ultrapower is the new current model.

• At limit steps II picks a cofinal branch b, and limα∈bMα becomes the current model.

II wins if, after θ moves, no illlfounded model has been produced.

Definition 3.5 A θ-iteration strategy for M is a winning strategy for II in G(M, θ). M
is θ-iterable if there is such an iteration strategy.

Notice that if M is countable, then an ω1-iteration strategy for M is essentially a set of
reals. “Good” M (the “standard” ones), have ω1-iteration strategies which are Hom∞. This
implies θ-iterability, for all θ.

For L[ �E]-models in the region where we have a theory ( can prove iterability),

x <L[�E] y ⇔ ∃M(M has a Hom∞ iteration strategy

and M |= x <L[�E] y.

So the large cardinal hypotheses true in these models are compatible with there being a
wellorder of R in L(R, Hom∞).

3.3 The derived model

Given A ∈ Homκ, as witnessed by both μ̄ and ν̄, and G V -generic for a poset of size < κ,
we have

(Sμ̄)V [G] = (Sν̄)
V [G].

So we write AV [G] for the common value of all (Sμ̄)V [G] such that A = Sμ̄.
Now let λ be a limit of Woodin cardinals, and G be V -generic for Col(ω, < λ), and set

R
∗
G =

⋃

α<λ

R ∩ V [G � α],

Hom∗
G = {A∗ | ∃α < λ(A ∈ Hom

V [G�α]
<λ )}

where A∗ =
⋃

β<λ AV [G�β]. Note that one has Hom∗
G = {p[T ] ∩ R

∗
G | ∃α < λ(V [G � α] |= T

has an < λ-absolute complement)}.
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Theorem 3.6 (Derived model theorem, Woodin 1987)

(1) L(R∗, Hom∗) |= AD+.

(2) Hom∗ = {A ⊆ R
∗ | A, R \ A have scales in L(R∗, Hom∗).

If M |= λ is a limit of Woodins, and a reasonable fragment of ZFC, then we write

D(M, λ)

for the associated derived model. This is analogous to the V P notation, since we have
not specified a generic. Since the forcing is homogeneous, the theory of D(M, λ) does not
depend on a generic. We shall speak of “realizations” of D(M, λ) if we have specified a
generic G. Note that only R

∗
G, not all of G, is needed to realize D(M, λ).

Remark 3.7 This is the “old” derived model; the model is always of the form L(Γ, R),
where Γ is the class of its Suslin-co-Suslin sets. Not all models of AD+ have this form.
Woodin has shown that the Suslin-co-Suslin sets of any AD+ model can be realized as the
Suslin-co-Suslin sets of a derived model, however, and given a variant construction which
hits all models of AD+ in full.

If M = Mω, the minimal mouse with ω Woodins, then letting λ be their sup, D(M, λ) =
L(R∗). On the other hand, for stronger M, D(M, λ) may be larger.

Definition 3.8 (AD+.) For A ⊆ R, θ(A) is the least ordinal α such that there is no surjec-
tion of R onto α which is ordinal definable from A and a real. We set

θ0 = θ(∅),
θα+1 = θ(A), for any (all) A of Wadge rank θα,

θλ =
⋃

α<λ

θα.

θα+1 is defined iff θα < Θ. Note θ(A) < Θ iff there is some B ⊆ R such that B /∈
OD(R ∪ {A}). In this case, θ(A) is the least Wadge rank of such a B.

Theorem 3.9 (Woodin, mid 80’s) Assume AD+, and suppose A and R \A admit scales;
then

(a) All Σ2
1(A) sets of reals admit scales, and

(b) All Π2
1(A) sets admit scales iff θ(A) < Θ.
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Theorem 3.10 (Martin, Woodin, mid 80’s) Assume AD+; then the following are equiv-
alent:

(1) ADR,

(2) Every set of reals admits a scale,

(3) Θ = θλ, for some limit λ.

Sadly, the proofs of these theorems have never fully appeared. There is a good deal on
consequences of AD+ in [21]. There is most of a proof that Scale(Σ2

1) holds in derived models
in [17], section 7.

Theorem 3.11 (Woodin, 1988, 2000) Suppose λ is a limit of Woodins, and L(R∗, Hom∗)
is a derived model at λ; then

(a) ∃κ < λ(κ is < λ-strong ⇒ L(R∗, Hom∗) |= θ0 < Θ.

(b) λ is a limit of κ which are < λ-strong ⇒ L(R∗, Hom∗) |= Θ = θα, for some limit α.

(c) λ is an inaccessible limit of κ which are < λ-strong ⇒ L(R∗, Hom∗) |= Θ = θα, where
cof(α) ≥ ω1.

(d) ∃κ < λ(κ is λ-supercompact ) ⇒ L(R∗, Hom∗) |= ADR + Θ is regular.

Remarks.

(i) Parts (a)-(c) are proved in [17]. Part (d) has not been written up.

(ii) The hypotheses of (a)-(c) follow from λ being a Woodin limit of Woodin cardinals.

(iii) The hypothesis of (b), that there is a λ which is a limit of Woodins and of < λ-strongs,
is called the ADR hypothesis. Woodin has shown the ADR hypothesis is equiconsistent
with ADR. One direction is (b) above.

(iv) There is a big jump going from (c) to (d). How strong is ADR + Θ regular ?

(v) There are other ways of calibrating the strength of determinacy models. One can look
at the complexity of the games of length ω1 which are determined in the model. One
can look at the complexity of the mice which have iteration strategies in the model.
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3.4 Iterations to make R
V = R

∗

Let M be countable and (ω1+1)-iterable, with λ a limit of Woodin cardinals of M. Working
in V Col(ω,R), we can form an R-genericity iteration (of M, below λ), that is, a sequence

I = 〈Tn | n < ω〉

such that the Tn are iteration trees whose composition

T = ⊕nTn

is a normal, nondropping iteration tree on M, with

MI
∞ = limnMI

n,

the direct limit along the main branch of T (where MI
n is the base model of Tn, and the last

model of Tn−1 if n > 0), being such that R
V is the reals of a symmetric collapse over MI

∞
below λI

∞, the image of λ. We write

Hom∗
I =

⋃
{p[T ] ∩ R

V | ∃x ∈ R
V (MI

∞ |= T is < λ absolutely complemented)},

and
D(MI

∞, λI
∞) = L(RV , Hom∗

I)

for the derived model of MI
∞ at λI

∞ whose set of reals is R
∗ = R

V .

4 Iteration independence for derived models of mice

In this section we consider derived models of ms-mice.
An R-genericity iteration I of a countable M cannot belong to V , unless λ happens to

be measurable in M. Nevertheless, in many interesting cases, the derived model D(M I
∞) is

in V .
We need a minor technical strengthening of iterability in order to state this result pre-

cisely. Let us call an ω1 + 1iteration strategy Σ for M good iff whenever T is a countable
normal iteration tree played by Σ with last model P , and β < lh(T ), then the phalanx
obtained from Φ(T � (β + 1)) obtained by replacing its last model MT

β with P is such that
Ψ is ω1 + 1-iterable. All our iterability proofs give good strategies, but we don not see how
to show that any ω1 + 1, or even (ω, ω1 + 1), iteration strategy is good in the abstract.

Proposition 4.0.1 Let M be ω-sound and project to ω, and let Σ be a good ω1 +1 iteration
strategy for M. Let I be an R-genericity iteration of M below λ such that I is played
according to Σ; then every set in Hom∗

I is projective in Σ � HC. In particular, Hom∗
I ⊆ V .
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Proof. Let A ∈ Hom∗
I , as witnessed by T ∈ MI

∞[x], where x ∈ R
V . Let S ∈ MI

∞[x]
absolutely complement T for forcings of size < λI

∞. Let I = 〈Tn | n < ω〉, and let n < ω be
large enough that, letting

N = last model of Tn ,

and
π:N → MI

∞

be the canonical embedding, we have that for κ = crit(π),

x ∈ N [g],

where g ∈ V is N -generic over Col(ω, η), for some η < κ. Note that we can lift π to an
embedding of N [g] into MI

∞[g], which we also call π. We assume that n has been chosen
large enough that the g-terms for T and S have pre-images in N , and let then

π((T̄ , S̄)) = (T, S).

Working now in V , we can define A as follows: for y ∈ R,

y ∈ A ⇔ ∃U ∈ HC((⊕k≤nTk) ⊕ U is a normal iteration tree

on M played by Σ, andy ∈ p[iU(T̄ )].

On the right hand side of this equivalence, “iU” stands for the lift of the canonical embedding
of U , so that iU :N [g] → P [g], where P is the last model of U .

The ⇒ direction of the equivalence follows by taking U = ⊕n<k≤mTk, for m sufficiently
large. For the other direction, suppose U is as on the right hand side, and toward contra-
diction, that y �∈ A. We can then find an iteration tree W on N such that ⊕k≤nTk ⊕W is a
normal tree by Σ with y ∈ p[iW(S̄)], where iW is the lift of the canonical embedding of W.
( Take W = ⊕n<k≤mTk, for m sufficiently large.) Let P and Q be the last models of U and
W respectively, and let Ψ and Γ be the phalanxes obtained from Φ((⊕k≤nTk) by replacing
its last model N with P and Q, respectively. Since Σ is good, Ψ and Γ are ω1 + 1 iterable,
so we can coiterate them.

Standard arguments using the fact that M is ω-sound and projects to ω show that the
last model on the two sides in the comparison of Ψ and Γ is the same, call it R, and is above
P and Q respectively, and the branches P-to-R and Q-to-R do not drop. Thus we have

N iU−→ P j−→ R

and

N iW−→ Q k−→ R,
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where j and k are given by the comparison of Ψ and Γ. Let

σ:M → N

be given by ⊕k≤nTk, and let ν be the sup of the generators of extenders in this tree used on
M-to-N . Every element of N is definable from points in ran(σ) and ordinals < ν. On the
other hand, j ◦ iU and k ◦ iW are the identity on ν, and agree on ran(σ). Thus

j ◦ iU = k ◦ iW.

But then y ∈ p[iU(T̄ ], so y ∈ p[j(iU (T̄ ))], so y ∈ p[k(iW(T̄ ))]. On the other hand, y ∈ p[iW(S̄],
so y ∈ p[k(iW(S̄))]. Thus k(iW(T̄ )) and k(iW(S̄)) do not have disjoint projections, although
it is satisfied by R[g] that their projections are disjoint. This contradicts the wellfoundedness
of R[g]. �

Remark 4.1 (i) Under sufficiently strong hypotheses, one can expect that the iteration
strategy Σ of 4.0.1 will be Hom∞, in which case we get that Hom∗

I is a Wadge initial
segment of Hom∞.

(ii) It is easy to see that the strategy Σ is not itself in Hom∗
I , as otherwise M would

be ordinal definable over D(MI
∞, λI

∞), hence in MI
∞, hence in M. Given that Σ is

Hom∞, we conjecture that if M is a sharp mouse (see 4.3 below), then Σ is in any
scaled pointclass closed under ∃R and ¬ which properly includes Hom∗

I . This amounts
to asserting that any new Suslin sets beyond Hom∗

I bring with them new Σ2
1 facts, and

that a local MSC holds just beyond Hom∗
I . One needs to assume that M is a sharp

mouse here; see ?? below.

(iii) Let T be a non-dropping iteration tree on M played by Σ, with last model N , and
let η < δ) be N -cardinals, with ν(Eα)T < η for all α, so that N is η-sound. We
write Σ|(T , [η, δ]) for the restriction of Σ to iteration trees on N|δ which use only
extenders with critical point > η, and do not drop anywhere. (Such trees are normal
continuations of T .) We call Σ|(T , [η, δ]) a window-based fragment of Σ. We call the
window [η, δ] short if there are no Woodin cardinals of N strictly between η and δ, and
in this case call Σ|(T , [η, δ]) a small fragment of Σ. The proof of 4.0.1 then shows that
every set in Hom∗

I is projective in some small fragment of Σ. In some cases, we can
show that all the small fragments of Σ are in Hom∗

I , so that they are Wadge cofinal,
and use this to compute the cofinality of θ in D(M, λ). See 8.3.

(iv) In general, the initial segment based fragments of Σ, i.e., the fragments based on win-
dows of the form (empty tree,[0, δ]), are not all in D(MI

∞, λI
∞). For if they were, they

would be Wadge cofinal in Hom∗
I , which would imply that the Wadge ordinal of Hom∗

I

has V -cofinality ω. In fact, the V -cofinality of this ordinal is often uncountable, as for
example in the case of 3.11(c).
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Given that for any R-genericity iteration I , Hom∗
I is in V , it is natural to conjecture that in

fact Hom∗
I is independent of I . We do not see how to prove that in full generality, but we

can get reasonably close.
There is a natural partial order for producing R-genericity iterations of M.

Definition 4.2 Let M be a countable mouse, and M |= λ is a limit of Woodin cardinals.
Let Σ be an ω1 + 1 iteration strategy for M. We let I(M, λ, Σ) be the set of all finite
sequences

p = 〈T0, ..., Tn〉
such that

(a) T0 is an iteration tree on M, and for 0 < k ≤ n, Tk is an iteration tree on the last
model of Tk−1, and Tn has a last model, and

(b) the composition ⊕k≤nTk is a normal tree on M played according to Σ, with empty
drop-set, and

(c) letting i:M → N be the canonical embedding of M into the last model of Tn, and δ
the sup of the lengths of the extenders used in ⊕k≤nTk, we have δ < i(λ).

We regard I as a partial order, under reverse inclusion.

Clause (c) of 4.2 guarantees that every p ∈ I has a proper extension in I. It is not hard
to see that if G is V -generic over I(M, λ, Σ), then I =

⋃
G is an R-genericity iteration of

M. We call such an I an I(M, λ, Σ)-generic ( R-genericity) iteration. We are interested in
the case M is ω-sound and projects to ω, so that Σ is determined by M, and we can write
I(M, λ) for I(M, λ, Σ).

If p = 〈T0, ..., Tn〉 ∈ I(M, λ, Σ), then we shall write Ti(p) = Ti, M0(p) = M and
Mi+1(p) = the last model of Ti, Mp = Mn+1(p), ipk,l for the canonical embedding of Mk(p)
into Ml(p), λp for ip0,n+1(λ), and δp for the sup of the lengths of the extenders used in the
Tk, for k ≤ n.

We shall show that for certain natural (M, λ), any two I(M, λ)-generic iterations give
rise to the same derived model. The M we have in mind here are mice like M �

ω (the sharp
of the minimal model with ω Woodins), M �

adr
( the sharp of the minimal model of the

ADR hypothesis), and M �

wdn.lim
(the sharp of the minimal model with a Woodin limit of

Woodins). The main feature of these mice which lets our argument go through is that they
reconstruct themselves below the relevant λ. There are some other conditions we seem to
need as well. We are by no means sure that the definitions we are about to give abstract the
most general hypotheses on M and λ yielding derived-model invariance.

Definition 4.3 We call a premouse M a sharp mouse iff
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(a) M is active, and for some α < crit(ḞM), ĖM
η = ∅ for all η ≥ α,

(b) there is a sentence ϕ such that for κ = crit(ḞM), M|κ |= ϕ, but whenever μ =
crit(ĖM

η ) for some η, then M|μ �|= ϕ, and

(c) M is ω1 + 1-iterable.

If α is as in part (a), then (a) says that M is essentially the sharp of M|α. Part (b) is
a ϕ-minimality condition, and it implies that M projects to ω. If M is also ω-sound, the
iteration strategy asserted to exist in (c) is unique.

The reduct of a sharp mouse M is M||o(M), that is, M with its last extender removed.

Definition 4.4 Let M be an ω-sound sharp mouse, and λ a limit cardinal in M. We say
that M reconstructs itself below λ iff whenever N is a countable, non-dropping iterate of
M by its unique ω1 + 1 iteration strategy, with λ∗ the image of λ, and κ < λ∗, and P is the
extender model to which the maximal plus-1 certified ms-array over κ of N converges ( see
[13]), then there is a sharp mouse Q whose reduct is P, and a Σ1-elementary π:M → Q
such that π(λ) = λ∗.

The maximal plus-1 certified ms-array of N is the output of a Kc-construction which
uses certain reasonably strong extenders from the N -sequence as background extenders; see
[13].

Definition 4.5 A tractable pair is a pair 〈M, λ〉 such that

(a) M is an ω-sound sharp mouse,

(b) M |= “λ is a limit of Woodin cardinals, and cof(λ) is not measurable”, and

(c) M reconstructs itself below λ.

Some (probable) examples of tractable pairs are

(1) M �
ω, with λ the sup of its Woodin cardinals,

(2) M �

adr
, with λ the sup of its Woodin cardinals, or with λ the sup of the first ω Woodin

cardinals of M �

adr
,

(3) M �

dc
, the sharp of the minimal model with a cardinal μ which is a limit of Woodins,

and such that the set of κ < μ which are < μ-strong has order type μ, with λ = μ, or
with λ the sup of the first ω Woodins,
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(4) M �

in.lim
, the sharp of the minimal model with a cardinal which is inaccessible, and a

limit of Woodins, and a limit of < λ-strong cardinals, with λ the sup of all its Woodins,
or with λ the sup of its first ω Woodins,

(5) M �

wdn.lim
, with λ the Woodin limit, or with λ the sup of the first ω Woodins.

The author believes that tractability can be verified in each case using [13]. In some
cases, though, he has not gone through anything like a thorough proof. M �

adr
is the least

mouse with a derived model satisfying ADR, and M �

dc
is the least mouse with a derived

model satisfying ADR plus DC (or equivalently, θ = θω1. The derived model of M �

wdn.lim
at

its top Woodin satisfies ADR plus “θ = θθ”. ( Again, these claims need checking.)

Theorem 4.6 Let 〈M, λ〉 be a tractable pair, and let I and J be I(M, λ)- generic iterations;
then D(MI

∞, λI
∞) = D(MJ

∞, λJ
∞).

Proof. Fix M and λ, and let Σ be the unique ω1 + 1 iteration strategy for M. Let I =
I(M, λ).

Given A ⊂ R, let us say (p, g) captures A iff (p ∈ I, and g is Mp-generic over Col(ω, δp),
and there are trees S, T ∈ Mp[g] such that

Mp[g] |= S, T are < λp-absolute complements,

and
A =

⋃
{p[iU(S)] | p�〈U〉 ∈ I}.

Here iU is the embedding along the main branch of U . By the proof of 4.0.1, it is enough to
prove

Lemma 4.7 Suppose (p, g) captures A; then there are densely many r ∈ I such that for
some h, (r, h) captures A.

Proof. Let (p, g) capture A, and let q ∈ I. We seek an r ≤ q and h such that (r, h) captures
A. The idea is just to reconstruct inside Mq, above δq, a model R into which M embeds.
We can then iterate Mq above δq so that we get an r ≤ q, with Mp embedding into the
image S of R under this iteration. Our universally Baire representation of A over Mp then
lifts to S, and then to the background universe Mr for S, as desired.

In order to lift the universally Baire representations, we must work with their associated
extender normal forms. Recall that an extender normal form is a map

E = (s �→ Es), for s ∈ ω<ω,
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where each Es is an alternating chain with 2·dom(s) many models, and Es extends Et whenever
s extends t. For x ∈ ωω, we write Ee

x and Eo
x for the direct limits along the even and odd

branches of the infinite alternating chain associateed to x. If E is an extender normal form
which uses only extenders with critical point > κ, and whenever G is V -generic for a poset
of size < κ,

V [G] |= ∀x( exactly one of Ee
x and Eo

x is wellfounded,

then we call E a κ-ENF. We say that E represents C iff C ⊆ R, and for all x ∈ R,

x ∈ C ⇔ Ee
x is wellfounded .

It is worth noting the following absoluteness property of such representations: if S, T are
κ-absolute complements, and E is a κ-ENF which represents p[S] in V , then whenever G
is V -generic for a poset of size ≤ κ, we have that E represents p[S] in V [G]. (This uses
the uniqueness of wellfounded branches in V [G] which we have built into our definition of
κ-ENF.)

We say that E is an N -based κ-ENF in N [g] iff N is a premouse, and g is N -generic
over some poset of size < κ in N , and N [g] |= E is a κ-ENF, and E uses only extenders
from the sequence of N and its images whose sup-of-generators is a cardinal in the model in
which they appear. The following carries over a basic fact about ENF’s to this fine-structural
setting.

Sublemma 4.7.1 [[17],[6]] Let N be a premouse, and N |= ZFC+ “ λ is a limit of cardinals
which are Woodin via extenders on my sequence”. Let g be N -generic over some poset of
size < λ; then working inside N [g], the following are equivalent, for any set C of reals:

(a) C is < λ-universally Baire,

(b) for any κ < λ there is an N -based κ-ENF E which represents C.

We continue with the proof of 4.7. By the sublemma, Mp[g] satisfies the statement
that there is a sequence 〈E(κ) | κ < λp〉 such that for each κ, E(κ) is an Mp-based κ-ENF
representing p[S]. Fix such an 〈E(κ) | κ < λp〉. Using a g-name for this sequence, we can fix
a sequence 〈Xκ | κ < λp〉 ∈ Mp such that for all κ < λp,

(a) Mp |= |Xκ| ≤ δp, and

(b) for all s ∈ ω<ω, Es(κ) ∈ Xκ.

Now let Nq be the version of M reconstructed inside Mq, with all critical points above
δq. Thus we have a Σ1 elementary

π:M → Nq ⊆ Mq
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such that π(λp) = λq . Using the fact that λ does not have measurable cofinality, and a
simple comparison argument, one can show

ran(π) is cofinal in λq.

This was the reason for our restriction on the cofinality of λ. We leave the details to the
reader.

We can use π to lift the iteration from M to Mp to an iteration tree on Nq, and thence
via the background-extender iterability proof to an iteration tree on Mq which is above δq.
This gives us a condition t ≤ q in I, and a Σ1 elementary

σ:Mp → Nt ⊆ Mt,

where Nt is a sharp mouse whose reduct is the limit model of a plus-1 certified ms-array in
the sense of Mt.

Let h0 be Mt-generic over Col(ω, σ(δp)). Letting

Y = σ(〈Xκ | κ < λp〉),

we have that Yμ is countable in Mt[h0] for all μ < λt, and Yσ(μ) covers σ“Xμ, for all μ < λp.
Fix a sequence 〈fμ | μ < λt〉 n Mt[h0] such that fμ maps ω onto Yμ, for all μ. Finally, fix a
real z such that for all μ < λp, the map

s �→ f−1
σ(μ)(σ(Es(μ)),

which is essentially a real, is recursive in z.
Now let δ be a Woodin cardinal of Mt[h0] such that sup(σ(δp), δt) < δ < λt. We do

a genericity iteration of Mt[h0] via an Mt-based tree which is above sup(σ(δp), δt), and
below δ, and obtain thereby a condition r ≤ t in I, and a generic h on Col(ω, δr), so that
h0, z ∈ Mr[h]. Let

τ :Mt → Mr

be the natural map, and let
ψ = τ ◦ σ:Mp → Nr,

where Nr = τ (Nt).

Claim. (r, h) captures A.

Proof. Recall that there is a ν < λr such that in Mr[h0], any ν-homogeneous set of reals is
< λr-universally Baire. Fix such a ν = ν0. Now pick μ < λp such that

(a) ν0 < ψ(μ),
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(b) γ0 < μ, where γ0 is the least Woodin cardinal γ of Mp such that δr < ψ(γ), and

(c) there is a Woodin cardinal κ0 of Mr such that ψ(γ0) < κ0 < ψ(μ).

Since λr is a limit of Woodin cardinals in Mr, and ran(ψ) is cofinal in λr, we can easily find
such a μ, γ0, and κ0.

Let
Es = Es(μ),

and
Fs = ψ(Es),

and
F∗

s = alternating chain on Mr[h] induced by Fs,

for all s ∈ ω<ω. Here we mean that F∗
s arises from Fs as in the iterability proof, using the

background extenders provided by the Kc-construction in Mr whose output is Nr.
We need the following small extension of the theorem 3.3 of [13] on UBH in extender

models. We omit the proof.

Lemma 4.8 Let P |= ZFC be fully iterable mouse, and let G be generic over P for a poset
of size < κ in P; then there are no T , b, c ∈ P [G] such that

P [G] |= T is a P-based plus-2 iteration tree on P [G] of limit length,

with all critical points of extenders in T above κ, and DT = ∅, and

P [G] |= b and c are distinct, cofinal, wellfounded branches of T .

It follows immediately from lemma 4.8 that Mr[h] |= F is a ψ(μ)-ENF. We therefore
have trees U, W ∈ Mr[h] such that

Mr[h] |= U, W are < λr-absolute complements,

and
Mr[h] |= p[U ] = {x | (F∗)e

x is wellfounded}.
We claim that U, W witness that (r, h) captures A. For that, fix x ∈ R. It is enough to show
that if x ∈ A, then there is a condition u ≤ r such that x ∈ p[ir,u(U)], and if x �∈ A, then
there is a condition u ≤ r such that x ∈ p[ir,u(W )]. So assume x ∈ A; the proof when x �∈ A
is completely parallel.

Let a ≤ p come from iterating Mp above δp, and below γ0, so as to make x generic over
Ma[g] for the image of the extender algebra at γ0. We have then that x ∈ p[ip,a(S)], and
thus working in Ma[g][x], we can conclude that ip,a(E)o

x is illfounded. Let b ≤ r come from
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lifting the genericity iteration from Mp to Nr using ψ, then further lifting it to Mr using
the iterability proof for background-certified models. It is important here to note that the
iteration strategy Σ on normal extensions of Tp is unique, so that it agrees with the strategy
of lifting to Mr as above, and using Σ to pick branches of the evolving tree on Mr. This
shows that the lifting process succeeds, and does give us a condition in b ∈ I.

Let φ:Ma → Nb be the natural lifting map, where Nb = ir,b(Nr). We have from the
commutativity of the copy maps that

φ ◦ ip,a = ir,b ◦ ψ,

and from this we get that
φ(ip,a(E)) = ir,b(F).

Here we understand the identity just displayed by letting the embeddings act on E “point-
wise”, for φ is not actually defined on Ma[g]. (This was the reason we moved to extender
normal forms in the first place.) We have then that

(ir,b(F∗))o
x is illfounded.

Finally, let u ≤ b come from a genericity iteration of Mb[h] above δb and below ir,b(κ0)
which makes x generic over Mu[h] for the extender algebra at ir,u(κ0). Clearly, we still have

(ir,u(F∗))0
x is illfounded.

But note that x is generic over Mu[h] for a poset of size < ir,u(ψ(μ)), and that the universally
Baire representation ir,u(U) is satisfied to be equivalent to ir,u(F) in Mu[h], and that this
equivalence is absolute for forcing of size < ir,u(ψ(μ)) over Mu[h]. It follows that x ∈
p[ir,u(U)], as desired.

This completes the proof of the claim, and hence the proof of lemma 4.7, and hence the
proof of theorem 4.6. �

5 Mouse operators

The sharp mice we introduced earlier all relativise: e.g., we can form M �

adr
(y) for any

transitive set y. Similarly, the λ’s which were part of our tractable pairs relativise. Here is
an abstraction of some properties of the resulting operators.

Definition 5.1 A -mouse operator is a function M = y �→ M(y) defined on all y ∈ HC,
and such that there is a sentence ϕ in the language of relativised premice such that for all y

(a) M(y) |= ϕ,
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(b) for all ξ < o(M(y)), M(y)|ξ �|= ϕ, and

(c) M(y) is y-sound and ω1 + 1-iterable.

Definition 5.2 A sharp-mouse operator is a function M = y �→ M(y) defined on all
y ∈ HC, and such that there is a sentence ϕ in the language of relativised premice such that
for all y

(a) M(y) is active, and for some α < crit(ḞM(y)), Ė
M(y)
η = ∅ for all η ≥ α,

(b) for κ = crit(ḞM(y)), M(y)|κ |= ϕ, but whenever μ = crit(Ė
M(y)
η ) for some η, then

M(y)|μ �|= ϕ, and

(c) M(y) is y-sound and ω1 + 1-iterable.

Definition 5.3 Let M be an sharp mouse operator, and λ = (y �→ λ(y)) be such that for
all y ∈ HC, λ(y) is a limit cardinal in M(y). We say that M reconstructs itself below λ
iff whenever y ∈ HC and N (y) is a countable, non-dropping iterate of M(y) by its unique
ω1 + 1 iteration strategy, with λ∗ the image of λ(y), and κ < λ∗, and z is N (y)-generic over
a poset of size < κ in N (y) and P(z) is the extender model to which the maximal plus-1
certified ms-array over κ of N (y)[z] converges ( see [13]), then there is a sharp mouse Q(z)
whose reduct is P(z), and a Σ1-elementary π:M(z) → Q(z) such that π(λ(z)) ≤ λ∗.

Definition 5.4 A tractable operator is a pair (M, λ) such that

(a) M is a sharp-mouse operator,

(b) λ = (y �→ λ(y)) is such that λ(y) is definable from y over M(y), uniformly in y,

(c) for all y, M(y) |= “λ(y) is a limit of Woodin cardinals, and cof(λ(y)) is not measur-
able”,

(d) M reconstructs itself below λ.

With these definitions, we can extend 4.6 to:

Theorem 5.5 Let 〈M, λ〉 be a tractable operator, let x, y ∈ HC, and let I and J be
I(M(x), λ(x)) and I(M(y), λ(y)) generic iterations; then D(M(x)I

∞, λI
∞) = D(M(y)J

∞, λJ
∞).

Later we shall need a further strengthening of 4.6, in which the relativised mice are hybrid
mice of the form MΣ(y), where Σ is an appropriate set of reals in the derived model of M(y).
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6 The mouse set conjecture in D(M, λ)

If M is a mouse, then M itself “captures” all reals which are OD in its derived model. So
the following result is not surprising:

Theorem 6.1 Let (M, λ) be a tractable operator, and suppose D is a realization of D(M(z), λ),
and x, y ∈ HCD, with x ⊆ y. Then the following are equivalent:

(a) D |= x ∈ OD(y ∪ {y}),

(b) x ∈ M(y),

(c) D |= x is in an ω1-iterable mouse over y.

Proof. (a) ⇒ (b): We easily get that D∗ |= x ∈ OD(y ∪ {y}), where D∗ = D(M(z)I
∞) for an

I(M(z), λ(z))-generic I . But then D∗ = D(M(y)J
∞) for an I(M(y), λ(y))-generic J . Since

the forcing is homogeneous, x ∈ M(y)J
∞. Therefore x ∈ M(y).

(b) ⇒ (c) (Sketch): It is enough to show that if P is a proper initial segment of M(y),
and P projects to y, then P has an ω1-iteration strategy in D(M(y), λ). (One can then
pass to D = D(M(z), λ(z)) by 5.5.) For that, we show that the unique strategy Σ for P
has a μ-UB code in M(y), for any μ < λ(y). Fix μ < λ(y). Because M(y) reconstructs
itself below λ(y), the full background extender construction 〈Ck(Nη)〉 of M(y), done with all
critical points > μ (and using μ-closed extenders from the sequence of M(y) as backgrounds),
reaches P = Ck(Nη). Let M(y)|ξ |= P = Ck(Nη) ∧ ZFC−. By the results of section 12 of
[8], Σ is induced by lifting trees on P to trees on M(y), then following the unique strategy
for M(y). The lifting process is uniformly definable over M(y)[g], for any size < μ generic
g over M(y), and this definition has the generic absoluteness required to obtain a μ-UB
code. The key to the generic absoluteness is the fact that UBH holds in ms-mice, or more
precisely, the sharper version of this fact stated as Theorem 3.4 in [13]. The iteration trees
on P being lifted have size less than the closure of the background extenders, so by UBH
they are continuously illfounded off the branches they choose, which guarantees both the
existence-in-M(y)[g] and the absolute definabilty of the branches chosen by Σ.

[Here is a bit more detail. Let ϕ be the formula which defines Σ over < μ-generic
extensions of M(y)|ξ via this lifting process. It is enough to show that club many hulls of
M(y)|ξ are generically correct. So let πN → M(y) be elementary, where N is transitive,
with π � (P ∪ {P}) = identity. Let g be < π−1(μ)-generic over N . Let T be an iteration
tree satisfying ϕ over N [g]. We need to see T is by Σ. Since Σ is the unique strategy for
P , it suffices to see that the phalanx Φ(T ) is iterable. Let U be the lift of T to N , as in
[8]. It suffices to see Φ(U) is iterable. But Φ(U) is continuously illfounded off the branches
it chooses, and therefore must be according to any iteration strategy for N .]

(c) ⇒ (b): This is one of the elementary corollaries of the comparison lemma. (Note
ω1-iterability implies (ω1 + 1)-iterability, granted AD.) �
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The independence of the derived model D(MI
∞) for arbitrary R-genericity iterations (as

opposed to I-generic ones) is perhaps not so important. However, 6.1 does give us something
there.

Corollary 6.2 Let (M, λ) be a tractable operator, and let D0 and D1 be derived models
associated to R-genericity iterations of M(x) and M(y). Then (Σ2

1)
D0 = (Σ2

1)
D1. Thus if

D0 |= θ = θ0, then D0 = D1.

The proof is an easy consequence of the fact that, assuming AD+, x ∈ OD(y) is a Σ2
1-

complete relation on reals. (Note also D0 ≡ D1 by 4.6, and since we are talking about “old”
derived models, if θ0 = θ in such a model, then it is of the form L(R ∪ {U}), for U and Σ2

1-
complete set.)

We also get a sort of converse to 3.11(a), in the case the ground model is a mouse.

Corollary 6.3 Let (M, λ) be a tractable operator, and suppose that for some x, M(x) |=
λ(x) is a limit of cutpoints. Then for all x, M(x) |= λ(x) is a limit of cutpoints, moreover
and derived model D(M(x), λ(x)) satisfies θ0 = θ.

Proof. Let D be a realization of D(M(x), λ(x)), ans suppose toward contradiction that
D |= θ0 < θ. AD+ and θ0 < θ together imply that the relation on reals z �∈ OD(y) can be
uniformized by a Suslin-co-Suslin function. Let f(y) = z be such a function in the sense of D.
Because the cutpoints of M(x) are cofinal below λ(x), we can find such a cutpoint η and a
g which is M(x)-generic for Col(ω, η) such that f = p[T ], for some tree T in M(x)[g]. Let y
be a real in M(x)[g] which codes 〈M(x)|η, g〉 is some simple way, and let z = f(y). Because
T ∈ M(x)[g], we get z ∈ M(x)[g]. But η is a cutpoint, so M[x][g] can be re-arranged as
a mouse over y. It is not hard to see that this mouse must be �M(y), so z ∈ M(y), so
z ∈ OD(y) in D, a contradiction. �

7 The Solovay sequence in D(M, λ)

We are not sure how to properly state or prove the results of this section in the case
of arbitrary tractable operators. We can handle the specific operators introduced above:
M �

adr
, M �

dc
, M �

in.lim
, M �

wdn.lim
, with λ the sup of the Woodin cardinals of the mouse in

each case. We can handle other tractable operators like these, but have not abstracted a
good definition. So for now, let us call those 4 operators paradigmatic. Woodin’s 3.11 implies
that for our paradigmatic (M, λ), the derived model D(M, λ) satisfies ADR, or equivalently,
θ = θξ for some limit ordinal ξ. In fact, one can give a somewhat simpler proof of 3.11 in
this case, one which gives more information as to what sets of reals sit at the θα’s in the
Wadge hierarchy of the derived model. To begin with
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Theorem 7.1 Let (M, λ) be paradigmatic, and let I be I(M(x), λ(x))-generic, and D =
D(MI

∞, λI
∞). Then the function

z �→ M(z), for z ∈ R

is in D, and has Wadge rank θ0 in D.

Proof. We may as well take x = ∅. Let us write M = M(∅), λ = λ(∅). Let κ be the least
< λ-strong cardinal, and δ the least Woodin cardinal > κ, in M. By 4.6, we may assume
that the first normal tree in I is a genericity iteration below δ, with all critical points above
κ, giving rise to

i0,1: M
I
0 → M I

1 ,

in such a way that
M = M I

0 ∈ M I
1 [g],

with g being Col(ω, i0,1(δ))-generic over M I
1 . We can also assume that crit(i1,∞) > i0,1(δ).

Claim 1. The function z �→ M(z), for z ∈ HCV , is in the symmetric model M I
∞(RV ).

Proof.
Note that we can extend i1,∞ to act on M1[g]. Fix z ∈ HCV ; we show informally how to

compute M(z) inside M∞(RV ). First, let α < λ∞ be an inaccessible cardinal of M∞ large
enough that z is generic over M∞[g]|α, and i0,1(δ) < α. Let E be an extender on the M∞
sequence such that κ = crit(E) and α ≤ lh(E). In M∞[g] we have M as a set, and hence
we can form Ult(M, E) as a set. Since M|κ+M = M∞|κ+M∞ , we have that

Ult(M, E)|iME (κ) = Ult(M∞, E)|iM∞
E (κ),

and thus
Ult(M, E)|α = M∞|α

by coherence. Thus z is generic over Ult(M, E) for a partial order of size < iE(λ). Since the
(M, λ) operator is tractable, we can now use the modified background-extender construction
of [13] to re-build M(z) from Ult(M, E)[z]. Once again, the key is that we get M(z) as a
set in M∞[g][z]. �

Claim 2. The function F = z �→ M(z), for z ∈ R
V , is in D(M∞, λ∞); in fact, it has a

universally Baire code in M∞[g].

Proof. Working in M∞[g], where we have M, let α be any inaccessible cardinal as in claim
1. Let E be an extender on the M∞-sequence such that κ = crit(E) and α < lh(E). Let ϕ
be the formula defining F on size < α generic extensions of M∞[g] from M and E which is
implicit in the proof of claim 1.
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Let ξ be sufficiently large. Since any tractable operator condenses to itself, we get that
in M∞[g], there are club many countable X ≺ M∞|ξ such that if N is the transitive collapse
of X, and H is N -generic for a poset of size < the collapse of α, then ϕ defines F � N [H]
over N [H] from M and the collapse of E. (I.e., there are club many generically correct X.)
As is well known, this gives us an α-universally Baire code for F � M∞[g] in M∞[g]. It is
easy to see that the code (T, T ∗) has the property that p[T ]∩M∞[g][H] = F ∩M∞[g][H] for
all size < α generic H. �

Claim 3.The function F = z �→ M(z), for z ∈ R
V , has Wadge rank θ0 in D(M∞, λ∞).

Proof. Suppose F were OD(z) in D(M∞, λ∞), where z ∈ R. By 6.1, we then get F (z) ∈
M(z), a contradiction. Thus F has Wadge rank at least θ0.

Let M(z)− be the proper class model obtained by iterating away the last extender of
M(z), and put

Fn(z) = type of 1st n indiscernibles over M(z)−,

for n < ω and z ∈ R. It is clear that F is Wadge equivalent to the join of the Fn’s. (This is
actually just a matter of definition; strictly speaking, F (z) isn’t even a real. It is coded by
its 1st order theory, however, and this theory is easily intercomputable with the join of the
Fn(z).) It is enough then to show that each Fn is OD(R) in D(M∞, λ∞).

For this, note first that Fn is uniformly Turing invariant, that is, it is a jump operator.
Also, Fn(z) ∈ M(z) for all z, so we can set

g(z) = least α such that Fn(z) ∈ M(z)|α,

and
G(z) = Σ1 theory of p in M(z)|g(z),

where p is the first standard parameter of M(z)|g(z). Clearly z ≡T y ⇒ g(z) = g(y), so g
induces a function from the Turing degrees D to OR, which has an ordinal rank γ in ORD

mod the Martin measure. Also, G is a jump operator, so by the prewellordering of jump
operators (see [19]) we have a recursively pointed perfect set P and an e such that ∀x ∈ P ,
Fn(x) = {e}G(x). Clearly γ and P determine the value of Fn(x) on a pointed perfect set’s
worth of x. However, it is then easy to see that this determines the value of Fn(x) at all x.
Thus Fn is definable over D(M∞, λ∞) from γ and P . �

The claims complete our proof. �

Remark 7.2 Something close to 7.1 was first proved by Woodin, by another method.

We can produce mouse operators sitting at the higher θα in D(M I
∞, λI

∞) by nesting the
M-operator at various depths. For the mouse operators Mα we define this way, Mα(x) will
only be defined for a “cone” of x, namely, those α which are countable in the first admissible
set over x. This is because we want Mα(x) to project to x. So we need to extend definition
5.1 in order to call them mouse operators.
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Definition 7.3 Let M be a mouse operator, and let P be a premouse, with λ ≤ o(P).
We say that P is M-closed below λ iff whenever ξ < λ and ξ is a cutpoint of P, then
M(P|ξ) � P.

Notice that for each of our paradigmatic operators (M, λ) we have a large cardinal
hypothesis ϕ such that λ is the first η such that the truth of ϕ in M is witnessed by the
total extenders from the M|η-sequence. Let us call ϕ the hypothesis associated to (M, λ).

Definition 7.4 Let (M, λ) be paradigmatic, with associated hypothesis ϕ. For α < ω1, we
define the mouse operator Mα by setting M0 = M, and for x such that α is countable in
the least admissible set over x:

Mα+1(x) = minimal active x-mouse P such that

∃γ < crit(Ḟ P)( P is Mα- closed below γ

and P |= ϕ, as witnessed by total extenders of P|γ).

Fot η a limit ordinal which is countable in the least admissible set over x:

Mη(x) =
⋃

α<η

Mα(x).

Theorem 7.5 Let (M, λ) be paradigmatic, and D = D(MI
∞, λI

∞) where I is I(M, λ)-
generic. Then

(a) if M = M �

adr
, then for all n < ω, the Mn-operator is in D and has Wadge rank θn in

D;

(b) if M = M �

dc
, M �

in.lim
, or M �

wdn.lim
, then for all α < ω1, the Mα operator is in D,

and has Wadge rank θα in D.

Proof sketch. We show that (a) and (b) hold when α = n = 1, and leave the rest to the
reader.

First, 4.6 generalizes in the following way.

Lemma 7.6 Let I and J be generic R-genericity iterations of M(x) below λ(x) and M1(y)
below λ1(y), respectively. Then D(M(x)I

∞, λ(x)I
∞) = D(M1(y)J

∞, λ1(y)J
∞).

The proof is like that of 4.6. The main additional point is that an appropriate generic
extenision of M(x) can reconstruct M1(y) arbitrarily high below λ(x). This follows from
7.1.

Next, 6.1 generalizes as follows:
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Lemma 7.7 Under the hypotheses of theorem 7.5, we have that for x, y countable transitive
with x ⊆ y,

x ∈ OD(z �→ M(z), y)D ⇔ x ∈ M1(y).

The proof is just like that of 6.1, using 7.6 in place of 4.6. These two lemmas imply that
if the M1 operator is in D, then it has Wadge rank θ1 there. The proof is the same as that
which shows the M0 operator sits at θ0.

To see that the M1 operator is in D, we relativise the argument of 7.1. Let δ be the least
Woodin cardinal above the least < λ-strong cardinal of M, and let

i:M → N

come from a genericity iteration below δ and above that strong cardinal, with M ∈ N [g],
where g is Col(ω, i(δ))-generic. We will show in the next section that

N [g] = M1[〈N |i(δ), g〉].

We can therefore apply the argument of 7.1, doing a further genericity iteration j:N → P in
the window between the first < i(λ)-strong cardinal of N [g] and its next Woodin, and add
a universally Baire code of the M1 operator to some P [g][h]. By derived model invariance,
we may assume the I in our theorem started out going to N and then P , so we are done.

�

One can avoid using the identityN [g] = M1[〈N |i(δ), g〉], borrowed from the next section,
in the proof above. It is enough that N [g] can reconstructi an iterate P of M1[〈N |i(δ), g〉]
via a construction which provides full background extenders for the total extenders on the
P-sequence. Note here that because of the background condition, every set in Vi(λ) ∩N [g] is
generic over P by a forcing of size < i(λ). This means that P is close enough to N [g] that
the arument of 7.1 still works.

8 The ∗-transform

In this section, we describe a method for translating mice with extenders overlapping some
δ into relativised mice having δ as a cutpoint.

Suppose that M is an ω1 + 1-iterable, sound x-mouse, and M projects to x. Let T be
a normal iteration tree on M played according to its unique iteration strategy, and let N
be the last model of T . Suppose δ is a cardinal of N , and not measurable in N or any
Ult(N , E) with lh(E) ≥ δ. Let τ be the order type of

SN
δ = {κ < δ | ∃E(E is on the N -sequence

and crit(E) = κ and lh(E) ≥ δ}.
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For α < τ , let

κα = αth member of SN
δ ,

and
γα = least γ such that κα < ν(ET

γ ),

where we assume that γα exists for all α < τ , and

Pα = Mγα|ξα,

where ξα is the largest ξ such that Mγα|ξ and Mγα| lh(ET
γα

have the same subsets of κα.
Note that Pα is the model to which an extender with critical point κα would be applied in
any normal continuation of T . We now define

Φδ(T ) = 〈Pα | α < τ〉.

Φδ(T ) is essentially the sub-phalanx of Φ(T ) containing the models we might actually go
back to in a normal continuation of T using extenders of length ≥ δ. For example, if T is
the genericity iteration of M we used in the proof of 7.1, which lived in the window between
the least < λ-strong of M and the next Woodin δ, and i:M → N is the iteration map of
T , then Φi(δ)(T ) = 〈M〉.

Theorem 8.1 (Closson, Neeman, Steel) If M, T ,N , and δ are as above, and g is Col(ω, ξ)
generic over N , for some ξ ≤ δ, and Φδ(T ) is in the least admissible set over 〈N |δ, g〉, then

N [g] =∗ R,

for some 〈N |δ, g〉-mouse R.

Remark 8.2 The equalityN [g] = R cannot literally be true, since the two are structures for
different languages. What we mean is that the two structures are fine-structurally equivalent,
in that they have the same projecta, standard parameters, and Levy hierarchy past some
point. (It can happen that their universes are different, although they are the same if N [g]
is admissible.) We prefer not to spell out here the details of this notion of equivalence, which
we call intertranslatability. We write =∗ for it.

Proof. We define the ∗-transform, which associates to initial segments Q[g] of N [g] mice
Q[g]∗ over 〈N |δ, g〉, in such a way that Q[g] and Q[g]∗ are intertranslatable. Let Φδ(T ) =
〈Pα | α < τ〉.

To begin with, letting α > δ be least such that N|α |= KP, there is clearly a unique
mouse R over 〈N |δ, g〉 such that N|α[g] =∗ P , and we let (N|α[g])∗ be this unique R.

Let U be the tree of all finite sequences 〈E0, ..., En〉 such that each Ei is an extender
with crit(Ei) < δ and lh(Ei) ≥ δ, and E0 is on the N -sequence, and Ei+1 is on the sequence
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of Ult(Mγα, Ei) for α such that crit(Ei) = κα. For 〈E0, ..., En〉 in U , we write P( �E) for
Ult(Mγα, En), where κα = crit(En). Here we understand that P(∅) = N . Because our

initial M is iterable, U is wellfounded. We shall define Q[g]∗ for all Q�P( �E) where �E ∈ U
such that o(Q) is at least the first admissible over N|δ. The definition is by induction on

the U-rank of �E, with a subinduction on o(Q).
The inductive clauses are as follows:

(a) if o(Q) = ωα + ω, then Q[g]∗ is obtained from Q|α[g]∗ by taking one step in the
J -hierarchy.

(b) if o(Q) is a limit ordinal and Q is passive, then Q[g]∗ =
⋃
{(Q|η)[g]∗ | η < o(Q)}.

(c) if Q is active with last extender E, and crit(E) > δ, then letting Q = (R, E), we set
Q[g]∗ = (R[g]∗, E).

(d) if Q is active with last extender E, and crit(E) = κα < δ, then Q[g]∗ = Ultn(Pα, E)[g]∗,
where n is least such that ρn+1(Pα) ≤ κα. .

Our non-measurability assumption on δ guarantees that these cases are exhaustive.
The detailed verification that Q[g] and Q[g]∗ are intertranslatable takes some work.

However, the basic idea is quite simple. Since Φδ(T ) is coded into 〈Q|δ, g〉, Q[g] can recover
Q[g]∗ by employing the inductive definition we just gave. Conversely, if we want to recover
Q[g] from Q[g]∗, all is trivial unless inductive clause (d) applies. Adopting the notation
there, we simply note that Q∗ can recover Pα and E as an appropriate core of itself, and
associated core-embedding extender. It is worth noting that in this direction, we do not need
to use g.

(For example, let Q be the first level of N such that case (d) applies in defining Q[g]∗.
It is not hard to see that crit(E) = κ0 then. Let n be least such that ρn+1 ≤ κ0. We
have Ultn(P0, E)[g]∗ = Ultn(P0, E)[g] because E is the first extender overlapping δ. We can
regard Ultn(P0, E)[g] as a mouse Q[g]∗ over 〈N |δ, g〉. The universes of Q[g] and Q[g]∗ are

different in this case, but one has that the rΣ
Q[g]∗
n+1 subsets of δ are the same as the rΣ

Q[g]
1

subsets of δ. Moreover, ρn+1(Q[g]∗) ≤ δ, and Q[g]∗ is n + 1-sound as a mouse over 〈N |δ, g〉.
Similarly, ρ1(Q) ≤ δ, and Q is 1-sound. So Q[g] and Q[g]∗ are intertranslatable.) �

We can use the ∗-transform to compute the length of certain Solovay sequences.

Theorem 8.3 (a) For M = M �

adr
and λ the sup of its Woodins, D(M, λ) |= θ = θω.

(b) For M = M �

dc
or M = M �

in.lim
, and λ the sup of its Woodins in either case, we have

D(M, λ) |= θ = θω1.
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Proof. We prove (b), the proof of (a) being similar. Let I be I(M, λ)-generic, and A ∈ Hom∗
I .

By 7.5, it suffices to show that A is projective in some operator Mτ , where τ < ω1.
Let A have a < λ∞-UB code in M∞[g], where g is generic on Col(ω, μ0). Let n be large

enough that μ = crit(in,∞) > μ0. Let T be the iteration tree giving rise to i0,n. Let ξ be the
least Woodin of M I

n above μ. We can do a genericity iteration of M I
n in the window (μ, ξ),

producing a normal tree U and associated embedding k: M I
n → P so that Φμ(T ) ∈ P [g][h]

for some h which is P- generic over Col(ω, k(ξ)).
Let γ be the least Woodin of P strictly above k(ξ), and let Σ be the iteration strat-

egy for M. By the proof of 4.0.1, A is projective in the window-based fragment Γ =
Σ|(T �U , [k(ξ), γ]), and so it suffices to show this fragment is projective in some Mτ . Let τ
be the order type of the cardinals of P which are strong past γ. Note that because ξ and γ
were chosen to be least, the cardinals of P which are strong past γ are all < μ, and moreover

Φγ(T �U) = Φμ(T ).

We can compute Γ from Mτ using Q-structures. Letting W be played according to Γ,
and b = Γ(W), we have that b is the unique cofinal branch c of W such that Q(c,W) is
iterable when backed up by the phalanx Φδ(W)(T �U�W) = Φμ(T ). (We use here that W
does not drop.) The branch oracle Q(b,W) may involve extenders overlapping δ(W), but
these can be transformed away, and we get b is the unique cofinal branch c of W such that
Q(W)[g][h]∗ � Mτ (〈M(W), (g, h)〉). The key here is that Q(W)[g][h]∗ reaches no further
than this in the hierarchy of mice over 〈M(W), (g, h)〉). That can be proved by looking a
little more closely at the definition of the ∗-transform. �

Remark 8.4 The author first discovered a verion of the way Q[g]∗ recoversQ[g] which works
without the g coding Φδ(T ), and used this to prove 8.3. Itay Neeman then observed that the
process simplified considerably in the presence of a g coding Φδ(T ), and would likely lead in
that case to a level-by-level intertranslation. Erik Closson worked out the intertranslation
in full detail.

9 A long Solovay sequence

We shall show in this section that θω1 < θ in the derived model associated to M �

wdn.lim
,

and then give some indication as to how to prove that in fact θ = θθ holds there.
It is easy to say what the mouse operator sitting at θω1 is. Let us fix M = M �

wdn.lim
throughout this section, and let the Mα-operator be obtained from M as in 7.4.

Definition 9.1 For any countable transitive set x,

Mω1(x) = Mωx
1 (x),

where ωx
1 is the height of the least admissible set to which x belongs.
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Clearly Mα is projective in Mω1, for all α < ω1. It is enough then to show that, letting
λ be the Woodin limit of Woodins in M, and D = D(MI

∞, λI
∞) where I ∈ I(M, λ)-generic,

that Mω1 ∈ D.

Claim 1. If Mω1 |V M∞[g]
λ∞ ∈ M∞[g], for some g generic over M∞ for a poset of size < λ∞,

then Mω1 ∈ D.

Proof. The same proof that worked for M0 in 7.1 works here. Since Mω1 condenses to itself,
and determines itself on small generic extensions, we get club many generically correct hulls
of M∞[g], and hence a UB code in M∞[g] for Mω1 . �

Now let
M |= κ is λ + ω-reflecting in λ.

That there is such a κ follows from the Woodinness of λ, and this is all of the Woodin
property we shall need to show that Mω1 ∈ D. Let ξ be the least Woodin of M above κ,
and let

k:M → P
come from a genericity iteration T on M|ξ with all critical points > κ, such that

M ∈ P [g], where g is Col(ω, k(ξ))-generic over P .

We may as well assume that T is the first tree used in I , and therefore it is enough to show

Claim 2. Mω1|V P [g]
k(λ) ∈ P [g].

Proof. We show that P [g] can compute Mω1(x) by using the ∗-transform. To this end,
let η be a cardinal of P [g] such that k(ξ) < η < k(λ). Let Fη be the first extender F on
the P-sequence such that κ < crit(F ) ≤ η and lh(F ) ≥ η, if there is one, and let Fη be a
principal ultrafilter otherwise. Note that crit(Fη) > k(ξ). Set

Pη = Ult(P , Fη).

The choice of Fη guarantees that there are no extenders G on the sequence of Pη such that
κ < crit(G) ≤ η and lh(G) ≥ η. Thus

Φη(T �〈Fη〉) = 〈M〉,

and since M is coded into 〈P|k(ξ), g〉, we can define the ∗-transform of Pη[g] at η as in the
proof of 8.1. We write

Q[g]∗,η

for the 〈P|η, g〉-mouse we get by applying the transform at η to an appropriate Q[g].
We now show by induction on α < k(λ):
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Subclaim. If η is a cardinal of P such that k(ξ) < η < k(λ), and α ≤ ω
〈P|η,g〉
1 , then

Mα(〈P|η, g〉) � Q[g]∗,η, for some proper initial segment Q of Pη.

Proof. We have done the case α = 0 in the proof of 7.1. Let α be a limit ordinal, and
α ≤ ω

〈P|η,g〉
1 . By induction, we get that the function f(β) = Mβ(〈P|η, g〉), defined on all

β < α, is in Pη[g]. But then f ∈ Pη[g]∗,η, so f ∈ Q[g]∗,η for some Q � Pη. Clearly then
Mα(〈P|η, g〉) � Q[g]∗,η.

Now suppose the subclaim holds for α. Fix η such that k(ξ) < η < λ, η is a cardinal

of P [g], and α < ω
〈P|η,g〉
1 . We want to show Mα+1(〈P|η, g〉) is a proper initial segment of

Pη[g]∗,η. Note that κ is k(λ)+ω reflecting in k(λ) in Pη, as it is not moved by our embedding
from M to Pη. Let A be the theory in Pη|(k(λ) + ω) of parameters in Pη|k(λ), and let E
be an extender on the Pη-sequence so that crit(E) = κ, and

iE(A) ∩ η+ = A ∩ η+

holds in Pη. Let
Q = Pη| lh(E).

It is enough to show Mα+1(〈P|η, g〉) �Q[g]∗,η. But Q[g]∗,η = Ult(M, E)[g]∗,η, which reaches
the Woodin-limit-of-Woodins hypothesis, so it is enough to show that Ult(M, E)[g]∗,η is
Mα-closed.

Now by our induction hypothesis, P [g] |= “ for all β ≤ α, for all cardinals ν such

that k(ξ) < ν < k(λ) and β ≤ ω
〈P|ν,g〉
1 , Pν [g]∗,ν has a proper initial segment satisfying “I am

Mβ(〈P|ν, g〉)””. Let us call the sentence in quotes ψ(k(ξ),M, g, k(λ), α), where we have dis-
played the parameters about which it speaks. We then get Pη[g] |= ψ[k(ξ),M, g, k(λ), iFη(α)],
using that k(ξ), k(λ),M, and g are fixed by iFη . But iFη (α) ≥ α, so inspecting ψ, we
see Pη[g] |= ψ[k(ξ),M, g, k(λ), α]. Letting τ be a term such that M = τ g, we can fix
p ∈ Col(ω, k(ξ)) such that

Pη |= p � ψ(k(ξ), τ, ġ, k(λ), α).

Because iE(A) ∩ η+ = A ∩ η+ holds in Pη,

Ult(Pη, E) |= p � ψ(k(ξ), τ, ġ, k(λ), α).

But M embeds into Pη with critical point > κ, and hence Ult(M, E) embeds into Ult(Pη, E)
with critical point > η+,Pη . Thus

Ult(M, E) |= p � ψ(k(ξ), τ, ġ, k(λ), α).

It is easy to see that this implies that Ult(M, E)[g] is Mα-closed below iE(λ). �

The subclaim completes the proof of Claim 2. �
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Now we may assume that the first iteration tree used in I is the tree giving rise to k. In
that case, we get the hypothesis of Claim 1 from Claim 2, and so we have Mω1 ∈ D.

Now suppose γ < θD. We want to show θγ < θ holds in D. Assume first that there is a
prewellorder ≤∗ of R of order type γ such that ≤∗ has a UB code in M, or more precisely,
is captured by (∅, ∅) in the sense of the proof of 4.6. (This is true if ≤∗ is projective, for
example.) For x ∈ R and n < ω, we define a mouse operator Mx,n which, we shall show,
has Wadge rank approximately ω|x| + n in D. (Here and below, |x| is the rank of x in ≤∗.

It will suffice to define Mx,n � R, by the following lemma.

Definition 9.2 A mouse-jump operator is a function x �→ N (x) defined for a Turing cone
of reals x, such that for some sentence φ is the language of relativised ms-mice, we have for
all x ∈ dom(N )

(a) N (x) is the least ω1 + 1-iterable ms-mouse P over x such that P |= φ, and

(b) if y ≡T x, then N (y) is the canonical re-arrangement of N (x) as a y-mouse.

Lemma 9.3 Assume AD+. Let N be a mouse-jump operator defined in the cone above x0;
then there is a unique mouse operator N+ defined on all countable transitive sets Y such
that x0 ∈ Y , and such that whenever g is N+(Y )-generic over Col(ω, Y ), and z(Y, g) is a
real canonically coding Y and g (so that x0 ≤T z(Y, g)), then

N+(Y )[g] = N (z(Y, g)).

Moreover, the N+-operator satisfies condensation, in that if π:P → N+(Y ) is elementary
and x0 ∈ ran(π), then P = N+(π−1(Y ).

Proof. We construct N+(Y ) as follows. Let g be generic over Col(ω, Y ) for the collection of
all OD(Y ∪ {Y }) dense sets. (Our only use of AD+ is to conclude that there is such a g.)
Let z = z(Y, g). One can now construct N+(Y ) by using the extender sequence of N (z), as
in [16]. In the end we have that for our particular g, N+(Y )[g] = N (z(Y, g)). But since the
N -operator is given by a sentence, the identity we have for g holds for all N+(Y )-generics,
as desired.

It is easy to see that N+ satisfies condensation. �

We shall define mouse-jump operators N x,n, and then let Mx,n = (N x,n)+. The operator
N x,n will be defined on the Turing cone above x. The definition of N x,n proceeds by induction
on the lexicographic order on R×ω determined by ≤∗. If |x| = 0, then we set N x,0 = M � R.
If |x| > 0, then for z ∈ R,

N x,0(z) =
⋃

{N y,n(z) | y ≤T x ∧ y <∗ x ∧ n < ω}.
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It is important here that N x,0 is a mouse-jump operator itself, and for that one needs to use
the definability of ≤∗� {y | y ≤T z} over M(z). This is where we use the assumption that
≤∗ has a UB code in M.

Finally,

N x,n+1(z) = minimal active (N x,n)+-closed z-mouse R
such that R |= there is a Woodin limit of Woodins.

One can show that the Mx,n are in D by an argument like that given in the proof of
claim 2 above. It is also not hard to show Mx,n+1 is not ordinal definable from Mx,n and a
real over D, and is essentially Wadge least with this property.

In order to remove the assumption that ≤∗ has a UB code in M, we replace our Woodin
limit mouse operator M with a hybrid mouse operator MΣ, where Σ ∈ D is an iteration
strategy with condensation such that ≤∗ is Wadge reducible to Σ. HereMΣ(z) is the minimal
active Σ-mouse with a Woodin limit of Woodins. The invariance of the derived model proof
( see 4.6) extends so as to show that I-generic iterations of MΣ(z) yield the derived model
D as well. This can be used as above to show that the nestings of MΣ guided by ≤∗ are in
D.
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