Logic and Medvedev Degrees

Sebastiaan Terwijn (Technical University of Vienna)

History

- Heyting (1930)
- Kolmogorov (1931)
- Kleene (1945)
- Medvedev (1955, 1962)

The Medvedev lattice

A mass problem is a subset $\mathcal{A} \subseteq \omega^{\omega}$.

Medvedev reducibility: $A \leq_M B$ if there is a computable functional Ψ such that $\Psi(B) \subseteq A$.

There is also a nonuniform version of this:

Muchnik reducibility: $\mathcal{A} \leq_w \mathcal{B}$ if $(\forall X \in \mathcal{B})(\exists Y \in \mathcal{A})[Y \leq_T X].$

 \mathfrak{M} is the structure of all mass problems modulo \leq_M -equivalence. \mathfrak{M} is a *lattice* in a natural way, with lattice operations

 $\mathcal{A} + \mathcal{B} = \left\{ f \oplus g : f \in \mathcal{A} \land g \in B \right\}$

and

 $\mathcal{A} \times \mathcal{B} = 0^{\widehat{}} \mathcal{A} \cup 1^{\widehat{}} \mathcal{B}.$

Idem for the Muchnik degrees \mathfrak{M}_w .

The Medvedev lattice (continued)

 \mathfrak{M} has a zero element $\mathbf{0}$, the degree of any \mathcal{A} containing a recursive set. **1** is the degree of \emptyset .

It is possible to endow ${\mathfrak M}$ with an operation \rightarrow by

 $\mathcal{A} \to \mathcal{B} = \mathsf{least} \big\{ \mathcal{C} : \mathcal{A} + \mathcal{C} \geq_M \mathcal{B} \big\}.$

Negation is defined by $\neg \mathcal{A} = \mathcal{A} \rightarrow 1$.

A propositional formula is **true** in \mathfrak{M} if its interpretation in \mathfrak{M} always yields 0. Here \vee is interpreted by \times and \wedge by +. 0 plays the role of true and 1 of false. (!)

Example: $\mathcal{A} \to \mathcal{A}$ is true, $\mathcal{A} \lor \neg \mathcal{A}$ is false.

The **theory** $Th(\mathfrak{M})$ of \mathfrak{M} consists of all formulas that are true in \mathfrak{M} .

The logic of ${\mathfrak M}$

Theorem (Medvedev, Jankov, Sorbi) Th(\mathfrak{M}) = IPC + $\neg \mathcal{A} \lor \neg \neg \mathcal{A}$.

For any principal filter $\mathcal{G} \subseteq \mathfrak{M}$, \mathfrak{M}/\mathcal{G} is again a Brouwer algebra. Negation in \mathfrak{M}/\mathcal{G} is defined by $\neg \mathcal{A} = \mathcal{A} \rightarrow \mathcal{G}$.

We can now talk about $Th(\mathfrak{M}/\mathcal{G})$ for various \mathcal{G} . We have the following beautiful result:

Theorem (Skvortsova) There exists $\mathcal{G} \subseteq \mathfrak{M}$ such that $Th(\mathfrak{M}/\mathcal{G}) = IPC$.

Join-reducible elements

An element \mathcal{D} is **join-reducible** if there are \mathcal{A} and \mathcal{B} incomparable such that $\mathcal{A} + \mathcal{B} = \mathcal{D}$.

Note that $\mathfrak M$ satisfies $\neg \mathcal A \vee \neg \neg \mathcal A$ because 1 is join-irreducible:

Proposition If \mathcal{D} is join-reducible and \mathcal{G} is the principal filter generated by \mathcal{D} , then the weak law of the excluded middle does not hold in $\mathsf{Th}(\mathfrak{M}/\mathcal{G})$.

In fact we have

Theorem (Sorbi) For every principal filter \mathcal{G} generated by a join-irreducible element greater than

 $0' = \left\{ f : f \text{ noncomputable} \right\}$ it holds that Th(\mathfrak{M}/\mathcal{G}) = IPC + $\neg \mathcal{A} \lor \neg \neg \mathcal{A}$.

A condition for join-reducibility

 $C(\mathcal{A}) = \left\{ f : (\exists e) [\Phi_e(f) \in \mathcal{A}] \right\}.$

Splittings in the Turing degrees give many examples of join-reducible elements of \mathfrak{M} :

Lemma (Sorbi) Suppose \mathcal{A} is a mass problem such that:

There exist functions $g,h \notin C(\mathcal{A})$ (1) such that $g \mid_T h$ and $g \oplus h \in C(\mathcal{A})$. Then \mathcal{A} is join-reducible.

Proof. If condition (1) holds then

 $\mathcal{A} = (\mathcal{A} \times \{g\}) + (\mathcal{A} \times \{h\}).$

By incomparability of g and h and the fact that they cannot compute anything in A, it follows that $A \times \{g\}$ and $A \times \{h\}$ are incomparable. \Box

Join-irreducible elements

 ${\bf 0}$ and ${\bf 1}$ are trivial examples of join-irreducible elements.

Other examples: Let \boldsymbol{f} be noncomputable and define

$\mathcal{B}_f = \left\{ g : g \not\leq_T f \right\}$

Then the degree of \mathcal{B}_f is join-irreducible.

Join-reducibility in \mathfrak{M}_w

Proposition Sorbi's condition (1) characterizes the join-reducible Muchnik degrees.

Proof. Sorbi's Lemma also holds for the Muchnik degrees, so we only have to show that if (1) does not hold for \mathcal{A} then \mathcal{A} is join-irreducible. So suppose (1) does not hold, and suppose that $\mathcal{A} \equiv \mathcal{B} + \mathcal{C}$ and $\mathcal{A} \not\leq \mathcal{B}$. We show that $\mathcal{A} \leq \mathcal{C}$. Since $\mathcal{A} \equiv C(\mathcal{A})$ (since \mathcal{A} is Muchnik), $\mathcal{A} \not\leq \mathcal{B}$ implies that there is $g \in \mathcal{B} \setminus C(\mathcal{A})$. Now $\mathcal{A} \leq \{g \oplus h : h \in \mathcal{C}\}$, via Ψ say. But then, since $\Psi(g \oplus h) \leq_T g \oplus h$, all $h \in \mathcal{C}$ must be in $C(\mathcal{A})$ by the failure of (1). Hence $\mathcal{A} \equiv C(\mathcal{A}) \leq \mathcal{C}$ via the identity.

N.B. Dyment showed that *every* Muchnik degree is meet-reducible.

Join-reducibility in \mathfrak{M}

Theorem Condition (1) does not characterize the join-reducible elements of \mathfrak{M} : There is a join-reducible \mathcal{A} such that (1) does not hold.

Proof. Construct \mathcal{A} by brute force, using results about lattice embeddings into the Turing degrees.

Medvedev degrees of Π_1^0 classes

Simpson introduced the structure \mathfrak{P} of Medvedev degrees of nonempty Π_1^0 subsets of 2^{ω} . \mathfrak{P} is a lattice under \leq_M in the same way as \mathfrak{M} , with meet \times and join + defined as before. \mathfrak{P} has smallest element 0, the degree of 2^{ω} , and largest degree 1, the degree of the class of all *PA-complete* sets.

A sample of results:

- (Binns and Simpson) Every finite distributive lattice is embeddable into \mathfrak{P} .
- (Cenzer and Hinman) \mathfrak{P} is dense.
- (Binns) Every degree in \mathfrak{P} splits in two lesser ones.

Medvedev reducibility and sets of positive measure

 \mathfrak{P} posesses many natural elements that are strictly between 0 and 1. A Π_1^0 class is **special** if has no computable elements.

Theorem (Simpson) Let *P* be any special Π_1^0 class of positive measure. Then the Medvedev degree of *P* is strictly between **0** and **1**.

The proof uses considerations about 1-random sets. Define the **left shift** $T : 2^{\omega} \to 2^{\omega}$ by T(X)(n) = X(n+1). Let T^k denote the *k*-iteration of *T*.

Theorem (Kučera) For any Π_1^0 class \mathcal{P} of positive measure we have the following: For every 1-random X there exists k such that $T^k(X) \in \mathcal{P}$.

Sets of positive measure (continued)

It follows from the theorem that in particular

 $(\forall X \text{ 1-random })(\exists Y \in \mathcal{P})[X \equiv_T Y].$ (2)

Next we show that Kučera's theorem and its corollary (2) do not hold *uniformly*:

Proposition Let \mathcal{P} be any special Π_1^0 class of positive measure. Then $\mathcal{P} \not\leq_M \mathcal{R}$, where \mathcal{R} is the class of 1-random sets.

Proof. Suppose that $\mathcal{P} \leq_M \mathcal{R}$ via Φ . Then dom(Φ) contains a computable set: Since \mathcal{R} is dense in 2^{ω} we can recursively find for any $\sigma \in 2^{<\omega}$ an extension $\tau \sqsupset \sigma$ such that $\Phi(\tau) \downarrow$. Let $X \in \text{dom}(\Phi)$ be computable. Then $\Phi(X)$ is also computable, hence since \mathcal{P} is special there is n such that $\Phi(X \upharpoonright n) \in \mathcal{U}$, where \mathcal{U} is the open complement of \mathcal{P} . Now let Z be a 1-random set extending $X \upharpoonright n$. Then $\Phi(Z) \in \mathcal{U}$, but also $\Phi(Z) \in \mathcal{P}$ by assumption on Φ , contradiction.

Sets of positive measure (continued)

Simpson, using Kučera's theorem, proved that the *Muchnik* degrees of positive measure have a largest element. The next theorem shows that this does not hold for the Medvedev degrees, answering a question posed by Simpson.

Theorem (Simpson and Slaman, Terwijn) The set of elements of \mathfrak{P} of positive measure does not have a maximal element.

Connection with constructive logic

Theorem (Terwijn) $\mathfrak P$ is not a Heyting algebra.

Proof builds on results by Jockusch and Soare, Sorbi, and Binns and Simpson.

Conjecture \mathfrak{P} is not a Brouwer algebra.

If \mathfrak{P} does not allow for suitable implication operators, we can go back to the larger structure \mathfrak{M} , and look at natural quotients there.

Conjecture $Th(\mathfrak{M}/PA) = IPC$.

The conjecture $Th(\mathfrak{M}/PA) = IPC$

- IPC \subseteq Th(\mathfrak{M}/PA)
- Th(𝔅/PA) ⊆ IPC + ¬α ∨ ¬¬α because PA is closed and by a general result of Sorbi and Terwijn.
- Th(𝔅/PA) ≠ IPC + ¬α ∨ ¬¬α because PA is join-reducible (Binns) and by a general result by Sorbi.

The conjecture $Th(\mathfrak{M}/PA) = IPC$

• Skvortsova: If $\mathbf{A}\in\mathfrak{M}$ is Muchnik then $\mathsf{Th}(\mathfrak{M}/\mathbf{A})$ satisfies the Kreisel-Putnam formula

 $(\neg p \rightarrow q \lor r) \rightarrow (\neg p \rightarrow q) \lor (\neg p \rightarrow r)$ and hence $\mathsf{Th}(\mathfrak{M}/\mathbf{A}) \supseteq \mathsf{IPC}.$

- The Turing degrees of PA are upwards closed (Solovay), but the Medvedev degree of PA is not Muchnik.
- PA is *effectively homogeneous*. Hence by Skvortsova it satisfies

$(p \rightarrow q \lor r) \rightarrow (p \rightarrow q) \lor (p \rightarrow r)$

where p is interpreted by PA and q and r by arbitrary Medvedev degrees.