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History

• Heyting (1930)

• Kolmogorov (1931)

• Kleene (1945)

• Medvedev (1955, 1962)

The Medvedev lattice

A mass problem is a subset A ⊆ ωω.

Medvedev reducibility: A ≤M B if there is a

computable functional Ψ such that Ψ(B) ⊆ A.

There is also a nonuniform version of this:

Muchnik reducibility: A ≤w B if

(∀X ∈ B)(∃Y ∈ A)[Y ≤T X ].

M is the structure of all mass problems modulo

≤M–equivalence. M is a lattice in a natural

way, with lattice operations

A + B =
{
f ⊕ g : f ∈ A ∧ g ∈ B

}

and

A× B = 0 ̂A ∪ 1̂B.

Idem for the Muchnik degrees Mw.

The Medvedev lattice (continued)

M has a zero element 0, the degree of any A

containing a recursive set. 1 is the degree of ∅.

It is possible to endow M with an operation →

by

A → B = least
{
C : A + C ≥M B

}
.

Negation is defined by ¬A = A → 1.

A propositional formula is true in M if its in-

terpretation in M always yields 0. Here ∨ is

interpreted by × and ∧ by +. 0 plays the role

of true and 1 of false. (!)

Example: A → A is true, A ∨ ¬A is false.

The theory Th(M) of M consists of all formu-

las that are true in M.



The logic of M

Theorem (Medvedev, Jankov, Sorbi)

Th(M) = IPC + ¬A ∨ ¬¬A.

For any principal filter G ⊆ M, M/G is again a

Brouwer algebra. Negation in M/G is defined

by ¬A = A → G.

We can now talk about Th(M/G) for various

G. We have the following beautiful result:

Theorem (Skvortsova) There exists G ⊆ M

such that Th(M/G) = IPC.

Join-reducible elements

An element D is join-reducible if there are A

and B incomparable such that A + B = D.

Note that M satisfies ¬A ∨ ¬¬A because 1 is

join-irreducible:

Proposition If D is join-reducible and G is the

principal filter generated by D, then the weak

law of the excluded middle does not hold in

Th(M/G).

In fact we have

Theorem (Sorbi) For every principal filter G

generated by a join-irreducible element greater

than
0
′ =

{
f : f noncomputable

}

it holds that Th(M/G) = IPC + ¬A ∨ ¬¬A.

Join-irreducible elements

0 and 1 are trivial examples of join-irreducible

elements.

Other examples: Let f be noncomputable and

define

Bf =
{
g : g 6≤T f

}

Then the degree of Bf is join-irreducible.

A condition for join-reducibility

C(A) =
{
f : (∃e)[Φe(f) ∈ A]

}
.

Splittings in the Turing degrees give many ex-

amples of join-reducible elements of M:

Lemma (Sorbi) Suppose A is a mass problem

such that:

There exist functions g, h 6∈ C(A)

such that g |T h and g⊕h ∈ C(A).

(1)

Then A is join-reducible.

Proof. If condition (1) holds then

A = (A× {g}) + (A× {h}).

By incomparability of g and h and the fact that

they cannot compute anything in A, it follows

that A× {g} and A× {h} are incomparable. �



Join-reducibility in Mw

Proposition Sorbi’s condition (1) character-

izes the join-reducible Muchnik degrees.

Proof. Sorbi’s Lemma also holds for the Much-

nik degrees, so we only have to show that if (1)

does not hold for A then A is join-irreducible.

So suppose (1) does not hold, and suppose

that A ≡ B + C and A 6≤ B. We show that

A ≤ C. Since A ≡ C(A) (since A is Muchnik),

A 6≤ B implies that there is g ∈ B \ C(A). Now

A ≤
{
g ⊕ h : h ∈ C

}
, via Ψ say. But then, since

Ψ(g ⊕ h) ≤T g ⊕ h, all h ∈ C must be in C(A)

by the failure of (1). Hence A ≡ C(A) ≤ C via

the identity. �

N.B. Dyment showed that every Muchnik de-

gree is meet-reducible.

Join-reducibility in M

Theorem Condition (1) does not characterize

the join-reducible elements of M: There is a

join-reducible A such that (1) does not hold.

Proof. Construct A by brute force, using re-

sults about lattice embeddings into the Turing

degrees. �

Medvedev degrees of Π0
1 classes

Simpson introduced the structure P of Med-

vedev degrees of nonempty Π0
1 subsets of 2ω.

P is a lattice under ≤M in the same way as M,

with meet × and join + defined as before. P

has smallest element 0, the degree of 2ω, and

largest degree 1, the degree of the class of all

PA-complete sets.

A sample of results:

• (Binns and Simpson) Every finite distribu-

tive lattice is embeddable into P.

• (Cenzer and Hinman) P is dense.

• (Binns) Every degree in P splits in two

lesser ones.

Medvedev reducibility and sets of positive

measure

P posesses many natural elements that are

strictly between 0 and 1. A Π0
1 class is special

if has no computable elements.

Theorem (Simpson) Let P be any special Π0
1

class of positive measure. Then the Medvedev

degree of P is strictly between 0 and 1.

The proof uses considerations about 1-random

sets. Define the left shift T : 2ω → 2ω by

T (X)(n) = X(n + 1). Let T k denote the k-

iteration of T .

Theorem (Kučera) For any Π0
1 class P of pos-

itive measure we have the following: For every

1-random X there exists k such that T k(X) ∈ P.



Sets of positive measure (continued)

It follows from the theorem that in particular

(∀X 1-random )(∃Y ∈ P)[X ≡T Y ]. (2)

Next we show that Kučera’s theorem and its

corollary (2) do not hold uniformly :

Proposition Let P be any special Π0
1 class of

positive measure. Then P 6≤M R, where R is

the class of 1-random sets.

Proof. Suppose that P ≤M R via Φ. Then

dom(Φ) contains a computable set: Since R

is dense in 2ω we can recursively find for any

σ ∈ 2<ω an extension τ A σ such that Φ(τ) ↓.

Let X ∈ dom(Φ) be computable. Then Φ(X)

is also computable, hence since P is special

there is n such that Φ(X�n) ∈ U, where U is

the open complement of P. Now let Z be a

1-random set extending X�n. Then Φ(Z) ∈

U, but also Φ(Z) ∈ P by assumption on Φ,

contradiction. �

Sets of positive measure (continued)

Simpson, using Kučera’s theorem, proved that

the Muchnik degrees of positive measure have

a largest element. The next theorem shows

that this does not hold for the Medvedev de-

grees, answering a question posed by Simpson.

Theorem (Simpson and Slaman, Terwijn) The

set of elements of P of positive measure does

not have a maximal element.

Connection with constructive logic

Theorem (Terwijn) P is not a Heyting alge-

bra.

Proof builds on results by Jockusch and Soare,

Sorbi, and Binns and Simpson.

Conjecture P is not a Brouwer algebra.

If P does not allow for suitable implication op-

erators, we can go back to the larger structure

M, and look at natural quotients there.

Conjecture Th(M/PA) = IPC.

The conjecture Th(M/PA) = IPC

• IPC ⊆ Th(M/PA)

• Th(M/PA) ⊆ IPC + ¬α ∨ ¬¬α because PA

is closed and by a general result of Sorbi

and Terwijn.

• Th(M/PA) 6= IPC + ¬α ∨ ¬¬α because PA

is join-reducible (Binns) and by a general

result by Sorbi.



The conjecture Th(M/PA) = IPC

• Skvortsova: If A ∈ M is Muchnik then

Th(M/A) satisfies the Kreisel-Putnam for-

mula

(¬p → q ∨ r) → (¬p → q) ∨ (¬p → r)

and hence Th(M/A) ) IPC.

• The Turing degrees of PA are upwards closed

(Solovay), but the Medvedev degree of PA

is not Muchnik.

• PA is effectively homogeneous. Hence by

Skvortsova it satisfies

(p → q ∨ r) → (p → q) ∨ (p → r)

where p is interpreted by PA and q and r

by arbitrary Medvedev degrees.


