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The Medvedev lattice
A mass problem is a subset A C wV¥.

Medvedev reducibility: A <,; B if there is a
computable functional W such that W(B) C A.

There is also a nonuniform version of this:

Muchnik reducibility: A <, B if
WX eB)(FY e A)[Y <r X].

I is the structure of all mass problems modulo
<pm—equivalence. 9 is a lattice in a natural
way, with lattice operations

A+B={fog:fecArge B}
and

AXxB=0"AULB.

Idem for the Muchnik degrees 91,,.

The Medvedev lattice (continued)

9N has a zero element 0, the degree of any A
containing a recursive set. 1 is the degree of 0.

It is possible to endow 2t with an operation —
by

A— B= Ieast{C CA4C >y B}.

Negation is defined by -4 = A4 — 1.

A propositional formula is true in 9 if its in-
terpretation in 9 always yields 0. Here V is
interpreted by x and A by +. 0 plays the role
of true and 1 of false. (!)

Example: A — A is true, AV —A is false.

The theory Th(9) of 9 consists of all formu-
las that are true in 9.



The logic of I

Theorem (Medvedev, Jankov, Sorbi)
Th(M) = IPC + -AV ——A.

For any principal filter G C 9, /G is again a
Brouwer algebra. Negation in 91/G is defined
by -A=A4—43.

We can now talk about Th(9t/G) for various
G. We have the following beautiful result:

Theorem (Skvortsova) There exists G C M
such that Th(9/G) = IPC.

Join-reducible elements

An element D is join-reducible if there are A
and B incomparable such that A4+ B = D.

Note that 9t satisfies - AV ——A because 1 is
join-irreducible:

Proposition If D is join-reducible and G is the
principal filter generated by D, then the weak
law of the excluded middle does not hold in
Th(OM/G).

In fact we have

Theorem (Sorbi) For every principal filter G
generated by a join-irreducible element greater

than
0= {f o f noncomputable}

it holds that Th(M/G) =1IPC + - AV ——A.

Join-irreducible elements

0 and 1 are trivial examples of join-irreducible
elements.

Other examples: Let f be noncomputable and
define

Bf={gig$Tf}

Then the degree of Bf is join-irreducible.

A condition for join-reducibility
C(A) = {f: Fe)[®e(f) € Al}.

Splittings in the Turing degrees give many ex-
amples of join-reducible elements of 9:

Lemma (Sorbi) Suppose A is a mass problem
such that:

There exist functions g, h & C(A) (1)
such that g |7 h and gdh € C(A).
Then A is join-reducible.

Proof. If condition (1) holds then

A= (Ax {g}) + (Ax {h}).

By incomparability of g and h and the fact that
they cannot compute anything in A, it follows
that A x {g} and A x {h} are incomparable. O



Join-reducibility in 91,

Proposition Sorbi's condition (1) character-
izes the join-reducible Muchnik degrees.

Proof. Sorbi's Lemma also holds for the Much-
nik degrees, so we only have to show that if (1)
does not hold for A then A is join-irreducible.
So suppose (1) does not hold, and suppose
that A = B+ C and A £ B. We show that
A < C. Since A= C(A) (since A is Muchnik),
A £ B implies that there is g € B\ C(A). Now
A< {g@h the C}, via W say. But then, since
W(gdh) <rgdh, all h € C must be in C(A)
by the failure of (1). Hence A = C(A) <C via
the identity. OJ

N.B. Dyment showed that every Muchnik de-
gree is meet-reducible.

Join-reducibility in 91

Theorem Condition (1) does not characterize
the join-reducible elements of M: There is a
join-reducible A such that (1) does not hold.

Proof. Construct A by brute force, using re-
sults about lattice embeddings into the Turing
degrees. O

Medvedev degrees of M9 classes

Simpson introduced the structure B of Med-
vedev degrees of nonempty I‘I(l) subsets of 2%.
B is a lattice under <, in the same way as 97,
with meet x and join 4 defined as before. 8
has smallest element 0, the degree of 2%, and
largest degree 1, the degree of the class of all
PA-complete sets.

A sample of results:

e (Binns and Simpson) Every finite distribu-
tive lattice is embeddable into L.

e (Cenzer and Hinman) ‘B is dense.

e (Binns) Every degree in ‘B splits in two
lesser ones.

Medvedev reducibility and sets of positive
measure

B posesses many natural elements that are
strictly between 0 and 1. A Fl(l) class is special
if has no computable elements.

Theorem (Simpson) Let P be any special I'I(f
class of positive measure. Then the Medvedev
degree of P is strictly between 0 and 1.

The proof uses considerations about 1-random
sets. Define the left shift T : 2¢¥ — 2% by
T(X)(n) = X(n4+1). Let TF denote the k-
iteration of T.

Theorem (Kucera) For any I‘I(l) class P of pos-
itive measure we have the following: For every
1-random X there exists k£ such that Tk(X) e P.



Sets of positive measure (continued)

It follows from the theorem that in particular
(VX 1-random )(IY € P)[X =7 Y. (2)

Next we show that KucCera's theorem and its
corollary (2) do not hold uniformly:

Proposition Let P be any special I'I(l) class of
positive measure. Then P £,y R, where R is
the class of 1-random sets.

Proof. Suppose that P <j;y R via ®. Then
dom(®) contains a computable set: Since R
is dense in 2% we can recursively find for any
o € 2<¥ an extension 7 J o such that ®(7) |.
Let X € dom(®) be computable. Then ®(X)
is also computable, hence since P is special
there is n such that ®(X[n) € U, where U is
the open complement of P. Now let Z be a
1-random set extending X[n. Then ®(Z) ¢
U, but also ®(Z) € P by assumption on &,
contradiction. O

Sets of positive measure (continued)

Simpson, using Kucera's theorem, proved that
the Muchnik degrees of positive measure have
a largest element. The next theorem shows
that this does not hold for the Medvedev de-
grees, answering a question posed by Simpson.

Theorem (Simpson and Slaman, Terwijn) The
set of elements of B of positive measure does
not have a maximal element.

Connection with constructive logic

Theorem (Terwijn) P is not a Heyting alge-
bra.

Proof builds on results by Jockusch and Soare,
Sorbi, and Binns and Simpson.

Conjecture P is not a Brouwer algebra.
If 5B does not allow for suitable implication op-
erators, we can go back to the larger structure

M, and look at natural quotients there.

Conjecture Th(9/PA) = IPC.

The conjecture Th(M/PA) = IPC

e IPC C Th(9M/PA)

e Th(M/PA) CIPC + —a VvV ——a because PA
is closed and by a general result of Sorbi
and Terwijn.

e Th(M/PA) #1IPC+ —aV ——a because PA
is join-reducible (Binns) and by a general
result by Sorbi.



The conjecture Th(9/PA) = IPC

e Skvortsova: If A € M is Muchnik then
Th(Mt/A) satisfies the Kreisel-Putnam for-
mula

(—p—=qVvr) = (p—=qV(p—r)
and hence Th(M/A) D IPC.

e The Turing degrees of PA are upwards closed
(Solovay), but the Medvedev degree of PA
is not Muchnik.

e PA is effectively homogeneous. Hence by
Skvortsova it satisfies

(p—aqvr)—=(@—-aVp—r)
where p is interpreted by PA and ¢ and r
by arbitrary Medvedev degrees.




