Logic and Medvedev Degrees

Sebastiaan Terwijn
(Technical University of Vienna)

The Medvedev lattice

A mass problem is a subset $\mathcal{A} \subseteq \omega^{\omega}$.
Medvedev reducibility: $\mathcal{A} \leq_{M} \mathcal{B}$ if there is a computable functional Ψ such that $\Psi(\mathcal{B}) \subseteq \mathcal{A}$.

There is also a nonuniform version of this:

Muchnik reducibility: $\mathcal{A} \leq{ }_{w} \mathcal{B}$ if

$$
(\forall X \in \mathcal{B})(\exists Y \in \mathcal{A})\left[Y \leq_{T} X\right]
$$

\mathfrak{M} is the structure of all mass problems modulo $\leq_{M^{\prime}}$ equivalence. \mathfrak{M} is a lattice in a natural way, with lattice operations

$$
\mathcal{A}+\mathcal{B}=\{f \oplus g: f \in \mathcal{A} \wedge g \in B\}
$$

and

$$
\mathcal{A} \times \mathcal{B}=0^{\wedge} \mathcal{A} \cup 1^{\wedge} \mathcal{B}
$$

Idem for the Muchnik degrees \mathfrak{M}_{w}.

History

- Heyting (1930)
- Kolmogorov (1931)
- Kleene (1945)
- Medvedev $(1955,1962)$

The Medvedev lattice (continued)
\mathfrak{M} has a zero element 0 , the degree of any \mathcal{A} containing a recursive set. 1 is the degree of \emptyset.

It is possible to endow \mathfrak{M} with an operation \rightarrow by

$$
\mathcal{A} \rightarrow \mathcal{B}=\operatorname{least}\left\{\mathcal{C}: \mathcal{A}+\mathcal{C} \geq_{M} \mathcal{B}\right\}
$$

Negation is defined by $\neg \mathcal{A}=\mathcal{A} \rightarrow 1$.

A propositional formula is true in \mathfrak{M} if its interpretation in \mathfrak{M} always yields $\mathbf{0}$. Here \vee is interpreted by \times and \wedge by + . 0 plays the role of true and 1 of false. (!)

Example: $\mathcal{A} \rightarrow \mathcal{A}$ is true, $\mathcal{A} \vee \neg \mathcal{A}$ is false.

The theory $\operatorname{Th}(\mathfrak{M})$ of \mathfrak{M} consists of all formulas that are true in \mathfrak{M}.

The logic of \mathfrak{M}

Theorem (Medvedev, Jankov, Sorbi)
$\mathrm{Th}(\mathfrak{M})=\mathrm{IPC}+\neg \mathcal{A} \vee \neg \neg \mathcal{A}$.

For any principal filter $\mathcal{G} \subseteq \mathfrak{M}, \mathfrak{M} / \mathcal{G}$ is again a Brouwer algebra. Negation in $\mathfrak{M} / \mathcal{G}$ is defined by $\neg \mathcal{A}=\mathcal{A} \rightarrow \mathcal{G}$.

We can now talk about $\operatorname{Th}(\mathfrak{M} / \mathcal{G})$ for various \mathcal{G}. We have the following beautiful result:

Theorem (Skvortsova) There exists $\mathcal{G} \subseteq \mathfrak{M}$ such that $\operatorname{Th}(\mathfrak{M} / \mathcal{G})=\operatorname{IPC}$.

Join-reducible elements

An element \mathcal{D} is join-reducible if there are \mathcal{A} and \mathcal{B} incomparable such that $\mathcal{A}+\mathcal{B}=\mathcal{D}$.

Note that \mathfrak{M} satisfies $\neg \mathcal{A} \vee \neg \neg \mathcal{A}$ because 1 is join-irreducible:

Proposition If \mathcal{D} is join-reducible and \mathcal{G} is the principal filter generated by \mathcal{D}, then the weak law of the excluded middle does not hold in Th $(\mathfrak{M} / \mathcal{G})$.

In fact we have

Theorem (Sorbi) For every principal filter \mathcal{G} generated by a join-irreducible element greater than

$$
0^{\prime}=\{f: f \text { noncomputable }\}
$$

it holds that $\operatorname{Th}(\mathfrak{M} / \mathcal{G})=\operatorname{IPC}+\neg \mathcal{A} \vee \neg \neg \mathcal{A}$.

Join-irreducible elements

0 and 1 are trivial examples of join-irreducible elements.

Other examples: Let f be noncomputable and define

$$
\mathcal{B}_{f}=\left\{g: g \not \mathbb{Z}_{T} f\right\}
$$

Then the degree of \mathcal{B}_{f} is join-irreducible.

A condition for join-reducibility

$C(\mathcal{A})=\left\{f:(\exists e)\left[\Phi_{e}(f) \in \mathcal{A}\right]\right\}$.
Splittings in the Turing degrees give many examples of join-reducible elements of \mathfrak{M} :

Lemma (Sorbi) Suppose \mathcal{A} is a mass problem such that:

There exist functions $g, h \notin C(\mathcal{A})$
such that $\left.g\right|_{T} h$ and $g \oplus h \in C(\mathcal{A})$.
Then \mathcal{A} is join-reducible.

Proof. If condition (1) holds then

$$
\mathcal{A}=(\mathcal{A} \times\{g\})+(\mathcal{A} \times\{h\})
$$

By incomparability of g and h and the fact that they cannot compute anything in \mathcal{A}, it follows that $\mathcal{A} \times\{g\}$ and $\mathcal{A} \times\{h\}$ are incomparable.

Join-reducibility in \mathfrak{M}_{w}

Proposition Sorbi's condition (1) characterizes the join-reducible Muchnik degrees.

Proof. Sorbi's Lemma also holds for the Muchnik degrees, so we only have to show that if (1) does not hold for \mathcal{A} then \mathcal{A} is join-irreducible. So suppose (1) does not hold, and suppose that $\mathcal{A} \equiv \mathcal{B}+\mathcal{C}$ and $\mathcal{A} \not \leq \mathcal{B}$. We show that $\mathcal{A} \leq \mathcal{C}$. Since $\mathcal{A} \equiv C(\mathcal{A})$ (since \mathcal{A} is Muchnik), $\mathcal{A} \not \leq \mathcal{B}$ implies that there is $g \in \mathcal{B} \backslash C(\mathcal{A})$. Now $\mathcal{A} \leq\{g \oplus h: h \in \mathcal{C}\}$, via Ψ say. But then, since $\Psi(g \oplus h) \leq_{T} g \oplus h$, all $h \in \mathcal{C}$ must be in $C(\mathcal{A})$ by the failure of (1). Hence $\mathcal{A} \equiv C(\mathcal{A}) \leq \mathcal{C}$ via the identity.
N.B. Dyment showed that every Muchnik degree is meet-reducible.

Join-reducibility in \mathfrak{M}

Theorem Condition (1) does not characterize the join-reducible elements of \mathfrak{M} : There is a join-reducible \mathcal{A} such that (1) does not hold.

Proof. Construct \mathcal{A} by brute force, using results about lattice embeddings into the Turing degrees.

Medvedev degrees of Π_{1}^{0} classes

Simpson introduced the structure \mathfrak{P} of Medvedev degrees of nonempty Π_{1}^{0} subsets of 2^{ω}. \mathfrak{P} is a lattice under \leq_{M} in the same way as \mathfrak{M}, with meet \times and join + defined as before. \mathfrak{P} has smallest element 0 , the degree of 2^{ω}, and largest degree 1 , the degree of the class of all PA-complete sets.

A sample of results:

- (Binns and Simpson) Every finite distributive lattice is embeddable into \mathfrak{P}.
- (Cenzer and Hinman) \mathfrak{P} is dense.
- (Binns) Every degree in \mathfrak{P} splits in two lesser ones.

Medvedev reducibility and sets of positive measure

\mathfrak{P} posesses many natural elements that are strictly between 0 and 1 . A Π_{1}^{0} class is special if has no computable elements.

Theorem (Simpson) Let P be any special Π_{1}^{0} class of positive measure. Then the Medvedev degree of P is strictly between $\mathbf{0}$ and 1 .

The proof uses considerations about 1-random sets. Define the left shift $T: 2^{\omega} \rightarrow 2^{\omega}$ by $T(X)(n)=X(n+1)$. Let T^{k} denote the k iteration of T.

Theorem (Kučera) For any Π_{1}^{0} class \mathcal{P} of positive measure we have the following: For every 1-random X there exists k such that $T^{k}(X) \in \mathcal{P}$.

Sets of positive measure (continued)

It follows from the theorem that in particular

$$
\begin{equation*}
(\forall X \text { 1-random })(\exists Y \in \mathcal{P})\left[X \equiv_{T} Y\right] . \tag{2}
\end{equation*}
$$

Next we show that Kučera's theorem and its corollary (2) do not hold uniformly:

Proposition Let \mathcal{P} be any special Π_{1}^{0} class of positive measure. Then $\mathcal{P} \mathbb{Z}_{M} \mathcal{R}$, where \mathcal{R} is the class of 1-random sets.

Proof. Suppose that $\mathcal{P} \leq_{M} \mathcal{R}$ via Φ. Then dom(Ф) contains a computable set: Since \mathcal{R} is dense in 2^{ω} we can recursively find for any $\sigma \in 2^{<\omega}$ an extension $\tau \sqsupset \sigma$ such that $\Phi(\tau) \downarrow$. Let $X \in \operatorname{dom}(\Phi)$ be computable. Then $\Phi(X)$ is also computable, hence since \mathcal{P} is special there is n such that $\Phi(X \mid n) \in \mathcal{U}$, where \mathcal{U} is the open complement of \mathcal{P}. Now let Z be a 1 -random set extending $X \upharpoonright n$. Then $\Phi(Z) \in$ \mathcal{U}, but also $\Phi(Z) \in \mathcal{P}$ by assumption on Φ, contradiction.

Sets of positive measure (continued)

Simpson, using Kučera's theorem, proved that the Muchnik degrees of positive measure have a largest element. The next theorem shows that this does not hold for the Medvedev degrees, answering a question posed by Simpson.

Theorem (Simpson and Slaman, Terwijn) The set of elements of \mathfrak{P} of positive measure does not have a maximal element.

Connection with constructive logic

Theorem (Terwijn) \mathfrak{P} is not a Heyting algebra.

Proof builds on results by Jockusch and Soare, Sorbi, and Binns and Simpson.

Conjecture \mathfrak{P} is not a Brouwer algebra.

If \mathfrak{P} does not allow for suitable implication operators, we can go back to the larger structure \mathfrak{M}, and look at natural quotients there.

Conjecture $\operatorname{Th}(\mathfrak{M} / P A)=\operatorname{IPC}$.

The conjecture $\operatorname{Th}(\mathfrak{M} / P A)=\mathrm{IPC}$

- $\operatorname{IPC} \subseteq \operatorname{Th}(\mathfrak{M} / P A)$
- Th $(\mathfrak{M} / P A) \subseteq \operatorname{IPC}+\neg \alpha \vee \neg \neg \alpha$ because PA is closed and by a general result of Sorbi and Terwijn.
- Th $(\mathfrak{M} / P A) \neq \mathrm{IPC}+\neg \alpha \vee \neg \neg \alpha$ because PA is join-reducible (Binns) and by a general result by Sorbi.

The conjecture $\operatorname{Th}(\mathfrak{M} / P A)=\mathrm{IPC}$

- Skvortsova: If $\mathbf{A} \in \mathfrak{M}$ is Muchnik then Th($\mathfrak{M} / \mathbf{A})$ satisfies the Kreisel-Putnam formula

$$
(\neg p \rightarrow q \vee r) \rightarrow(\neg p \rightarrow q) \vee(\neg p \rightarrow r)
$$

and hence $\operatorname{Th}(\mathfrak{M} / \mathbf{A}) \supsetneq \operatorname{IPC}$.

- The Turing degrees of PA are upwards closed (Solovay), but the Medvedev degree of PA is not Muchnik.
- PA is effectively homogeneous. Hence by Skvortsova it satisfies

$$
(p \rightarrow q \vee r) \rightarrow(p \rightarrow q) \vee(p \rightarrow r)
$$

where p is interpreted by PA and q and r by arbitrary Medvedev degrees.

