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Motivation

In model theory and set theory indiscernibles play important
roles in finding elementary embeddings and substructures.
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Motivation

In model theory and set theory indiscernibles play important
roles in finding elementary embeddings and substructures.

But little was known about R, the partial order of computably
enumerable degrees.
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Motivation

In model theory and set theory indiscernibles play important
roles in finding elementary embeddings and substructures.

But little was known about R, the partial order of computably
enumerable degrees.

Another motivation is to investigate incapabilities of simple
formulas in term of definability.
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Types

Given a language L and a model M of L.
Definition 1. An n-type t(v1, . . . , vn) of M is a set of formulas
such that all ϕ ∈ t have free variables among v1, . . . , vn and the
theory Th(M) ∪ {ϕ(c1, . . . , cn) : ϕ ∈ t} is consistent (where
c1, . . . , cn 6∈ L).
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Types

Given a language L and a model M of L.
Definition 1. An n-type t(v1, . . . , vn) of M is a set of formulas
such that all ϕ ∈ t have free variables among v1, . . . , vn and the
theory Th(M) ∪ {ϕ(c1, . . . , cn) : ϕ ∈ t} is consistent (where
c1, . . . , cn 6∈ L).

Given t an n-type and an n-tuple −→a ∈ M
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Types

Given a language L and a model M of L.
Definition 1. An n-type t(v1, . . . , vn) of M is a set of formulas
such that all ϕ ∈ t have free variables among v1, . . . , vn and the
theory Th(M) ∪ {ϕ(c1, . . . , cn) : ϕ ∈ t} is consistent (where
c1, . . . , cn 6∈ L).

Given t an n-type and an n-tuple −→a ∈ M
� if M |= ϕ(−→a ) for all ϕ ∈ t, we say −→a realizes t;
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Types

Given a language L and a model M of L.
Definition 1. An n-type t(v1, . . . , vn) of M is a set of formulas
such that all ϕ ∈ t have free variables among v1, . . . , vn and the
theory Th(M) ∪ {ϕ(c1, . . . , cn) : ϕ ∈ t} is consistent (where
c1, . . . , cn 6∈ L).

Given t an n-type and an n-tuple −→a ∈ M
� if M |= ϕ(−→a ) for all ϕ ∈ t, we say −→a realizes t;
� t is complete if either ϕ ∈ t or ¬ϕ ∈ t for any ϕ(v1, . . . , vn);

all types mentioned would be assumed complete.
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Types

Given a language L and a model M of L.
Definition 1. An n-type t(v1, . . . , vn) of M is a set of formulas
such that all ϕ ∈ t have free variables among v1, . . . , vn and the
theory Th(M) ∪ {ϕ(c1, . . . , cn) : ϕ ∈ t} is consistent (where
c1, . . . , cn 6∈ L).

Given t an n-type and an n-tuple −→a ∈ M
� if M |= ϕ(−→a ) for all ϕ ∈ t, we say −→a realizes t;
� t is complete if either ϕ ∈ t or ¬ϕ ∈ t for any ϕ(v1, . . . , vn);

all types mentioned would be assumed complete.

We simply say type when the arity is clear.



» Σ1 Formulas in R

» Motivation

Terminologies

» Types

» Indiscernibles

» Partial orders

1-indiscernibles in R

Towards 2-indiscernibles

Remarks and questions

W. WANG and L. YU Realizing Σ1 Formulas in R - slide #4

Types

Given a language L and a model M of L.
Definition 1. An n-type t(v1, . . . , vn) of M is a set of formulas
such that all ϕ ∈ t have free variables among v1, . . . , vn and the
theory Th(M) ∪ {ϕ(c1, . . . , cn) : ϕ ∈ t} is consistent (where
c1, . . . , cn 6∈ L).

Given t an n-type and an n-tuple −→a ∈ M
� if M |= ϕ(−→a ) for all ϕ ∈ t, we say −→a realizes t;
� t is complete if either ϕ ∈ t or ¬ϕ ∈ t for any ϕ(v1, . . . , vn);

all types mentioned would be assumed complete.

We simply say type when the arity is clear.

We define Σn (complete) type with the formulas restricted to Σn

formulas.
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Indiscernibles

Definition 2. I ⊆ M is a set of (n-)indiscernibles if and only if all
finite tuples in I realize same (Σn) types given they are of same
lengths.
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Indiscernibles

Definition 2. I ⊆ M is a set of (n-)indiscernibles if and only if all
finite tuples in I realize same (Σn) types given they are of same
lengths.

Definition 3. Suppose there is a binary relation symbol ≤ in L. We
call I = {al ∈ M : l ∈ L} ⊆ M is a set of (n-)order-indiscernibles if
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Indiscernibles

Definition 2. I ⊆ M is a set of (n-)indiscernibles if and only if all
finite tuples in I realize same (Σn) types given they are of same
lengths.

Definition 3. Suppose there is a binary relation symbol ≤ in L. We
call I = {al ∈ M : l ∈ L} ⊆ M is a set of (n-)order-indiscernibles if
� L is a linear ordered index set, I is linear ordered by ≤ and

isomorphic to L (under al 7→ l) and
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Indiscernibles

Definition 2. I ⊆ M is a set of (n-)indiscernibles if and only if all
finite tuples in I realize same (Σn) types given they are of same
lengths.

Definition 3. Suppose there is a binary relation symbol ≤ in L. We
call I = {al ∈ M : l ∈ L} ⊆ M is a set of (n-)order-indiscernibles if
� L is a linear ordered index set, I is linear ordered by ≤ and

isomorphic to L (under al 7→ l) and

� all ≤-ascending finite tuples in I realize same (Σn) types given
they are of same length.
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Partial orders

Given a partial order P, let 0P and 1P denote its least element
and greatest element respectively. We always assume that
given partial orders are finite and have 0P defined.
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Partial orders

Given a partial order P, let 0P and 1P denote its least element
and greatest element respectively. We always assume that
given partial orders are finite and have 0P defined.

An element of P is an atom iff it is not 0P but bounds nothing
other than 0P. Let A(P) denote the set of atoms of P, and
A(x) denote the atoms bounded by x ∈ P.
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Partial orders

Given a partial order P, let 0P and 1P denote its least element
and greatest element respectively. We always assume that
given partial orders are finite and have 0P defined.

An element of P is an atom iff it is not 0P but bounds nothing
other than 0P. Let A(P) denote the set of atoms of P, and
A(x) denote the atoms bounded by x ∈ P.

We say x, y ∈ P form a minimal pair iff A(x) ∩A(y) = ∅, and
call a subset −→x ⊆ P an antichain iff its elements are pairwise
≤P-incomparable.
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Partial orders

Given a partial order P, let 0P and 1P denote its least element
and greatest element respectively. We always assume that
given partial orders are finite and have 0P defined.

An element of P is an atom iff it is not 0P but bounds nothing
other than 0P. Let A(P) denote the set of atoms of P, and
A(x) denote the atoms bounded by x ∈ P.

We say x, y ∈ P form a minimal pair iff A(x) ∩A(y) = ∅, and
call a subset −→x ⊆ P an antichain iff its elements are pairwise
≤P-incomparable.

In this talk we will fix L = {≤} and the structure R = (R,≤).
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Slaman-Soare’s Theorem

Let Q be partial orders with 0Q and 1Q, P a sub partial order of
Q, and S ⊂ Q. Define
1. U(S) = {x ∈ P : ∀y ∈ S(x ≥ y)}, and U(y) = U({y});

2. V(S) = {x ∈ P : ∀y ∈ S(x ≤ y)}, and V(y) = V({y});

3. Z(y) = {z ∈ Q\P : z < y and V(y) 6⊆ V(U(z))}.
For notational simplicity, we write VU(S) for V(U(S)) and etc.
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Slaman-Soare’s Theorem

Let Q be partial orders with 0Q and 1Q, P a sub partial order of
Q, and S ⊂ Q. Define
1. U(S) = {x ∈ P : ∀y ∈ S(x ≥ y)}, and U(y) = U({y});

2. V(S) = {x ∈ P : ∀y ∈ S(x ≤ y)}, and V(y) = V({y});

3. Z(y) = {z ∈ Q\P : z < y and V(y) 6⊆ V(U(z))}.
For notational simplicity, we write VU(S) for V(U(S)) and etc.

Theorem 4 (Slaman and Soare). Every embedding of P into R
can be extended to an embedding of Q into R iff both conditions
below fail

(i) ∃x, y ∈ Q(x 6≥ y and VU(y) ⊆ VUV(x));

(ii) ∃x ∈ Q\P(Z(x) 6= ∅ and VU(Z(x) ∪ V(x)) 6⊆ V(x)).
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1-order-indiscernibles ...

Lempp observed that the following follows from
Slaman-Soare’s Theorem by simple calculations.
Proposition 5. Every chain in R not containing 0 and 0′ is an
infinite class of order 1-indiscernibles. Hence no degree besides 0 and
0′ is Π1 definable in R.
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1-order-indiscernibles ...

Lempp observed that the following follows from
Slaman-Soare’s Theorem by simple calculations.
Proposition 5. Every chain in R not containing 0 and 0′ is an
infinite class of order 1-indiscernibles. Hence no degree besides 0 and
0′ is Π1 definable in R.

Fix f : P → R an embedding of a sub partial order of Q onto a
chain. Then P is a chain in Q, let x0 < x1 < . . . < xn

enumerate P.



» Σ1 Formulas in R

» Motivation

Terminologies

1-indiscernibles in R

» Slaman-Soare’s Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

W. WANG and L. YU Realizing Σ1 Formulas in R - slide #8

1-order-indiscernibles ...

Lempp observed that the following follows from
Slaman-Soare’s Theorem by simple calculations.
Proposition 5. Every chain in R not containing 0 and 0′ is an
infinite class of order 1-indiscernibles. Hence no degree besides 0 and
0′ is Π1 definable in R.

Fix f : P → R an embedding of a sub partial order of Q onto a
chain. Then P is a chain in Q, let x0 < x1 < . . . < xn

enumerate P.

We may in addition assume that P is maximal in Q, thus
x0 = 0Q and xn = 1Q.
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1-order-indiscernibles ...

Lempp observed that the following follows from
Slaman-Soare’s Theorem by simple calculations.
Proposition 5. Every chain in R not containing 0 and 0′ is an
infinite class of order 1-indiscernibles. Hence no degree besides 0 and
0′ is Π1 definable in R.

Fix f : P → R an embedding of a sub partial order of Q onto a
chain. Then P is a chain in Q, let x0 < x1 < . . . < xn

enumerate P.

We may in addition assume that P is maximal in Q, thus
x0 = 0Q and xn = 1Q.

The problem is when there exists a g : Q → R extending f .
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... 1-order-indiscernibles

It follows from easy calculations that for x, y ∈ Q
1. VUV(x) = V(x) = {xi : xi ≤ ux} where ux is the greatest

xj such that xj ≤ x;

2. VU(y) = {xi : xi ≤ vy} where vy is the least xj such that
xj ≥ y.
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... 1-order-indiscernibles

It follows from easy calculations that for x, y ∈ Q
1. VUV(x) = V(x) = {xi : xi ≤ ux} where ux is the greatest

xj such that xj ≤ x;

2. VU(y) = {xi : xi ≤ vy} where vy is the least xj such that
xj ≥ y.

If x 6≥ y then vy 6∈ VUV(x). Thus Theorem 4(i) fails:

¬∃x, y ∈ Q(x 6≥ y and VU(y) ⊆ VUV(x)).
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... 1-order-indiscernibles

It follows from easy calculations that for x, y ∈ Q
1. VUV(x) = V(x) = {xi : xi ≤ ux} where ux is the greatest

xj such that xj ≤ x;

2. VU(y) = {xi : xi ≤ vy} where vy is the least xj such that
xj ≥ y.

If x 6≥ y then vy 6∈ VUV(x). Thus Theorem 4(i) fails:

¬∃x, y ∈ Q(x 6≥ y and VU(y) ⊆ VUV(x)).

If Z(x) 6= ∅, then vx > uz since V(x) 6⊆ VU(z) for any
z ∈ Z(x). Thus VU(Z(x) ∪ V(x)) = VUV(x) = V(x) and
Theorem 4(ii) fails too.

¬∃x ∈ Q\P(Z(x) 6= ∅ and VU(Z(x) ∪ V(x)) 6⊆ V(x)).
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... 1-order-indiscernibles

It follows from easy calculations that for x, y ∈ Q
1. VUV(x) = V(x) = {xi : xi ≤ ux} where ux is the greatest

xj such that xj ≤ x;

2. VU(y) = {xi : xi ≤ vy} where vy is the least xj such that
xj ≥ y.

If x 6≥ y then vy 6∈ VUV(x). Thus Theorem 4(i) fails:

¬∃x, y ∈ Q(x 6≥ y and VU(y) ⊆ VUV(x)).

If Z(x) 6= ∅, then vx > uz since V(x) 6⊆ VU(z) for any
z ∈ Z(x). Thus VU(Z(x) ∪ V(x)) = VUV(x) = V(x) and
Theorem 4(ii) fails too.

¬∃x ∈ Q\P(Z(x) 6= ∅ and VU(Z(x) ∪ V(x)) 6⊆ V(x)).

Hence there is always an extension g : Q → R.
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1-indiscernibles: non-order version

Now we turn to 1-indiscernibles and prove the following.
Theorem 6. There exists an infinite class of 1-indiscernibles.
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1-indiscernibles: non-order version

Now we turn to 1-indiscernibles and prove the following.
Theorem 6. There exists an infinite class of 1-indiscernibles.

Given a partial order P and an embedding

f : 〈−→x ,≤P〉 → 〈{dn : n < ω},≤〉,

when does there exist an extension g : P → R of f ?
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1-indiscernibles: overall strategy

We will find 〈dn : n < ω〉 as a sequence of independent and
pairwise capping c.e. degrees.
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1-indiscernibles: overall strategy

We will find 〈dn : n < ω〉 as a sequence of independent and
pairwise capping c.e. degrees.

Two necessary conditions of positive solutions follows:
�

−→x is an antichain, and
�

−→x pairwise forming minimal pairs.

We call them the antichain condition and the minimal pairs
condition respectively.
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1-indiscernibles: overall strategy

We will find 〈dn : n < ω〉 as a sequence of independent and
pairwise capping c.e. degrees.

Two necessary conditions of positive solutions follows:
�

−→x is an antichain, and
�

−→x pairwise forming minimal pairs.

We call them the antichain condition and the minimal pairs
condition respectively.

Our strategy is to make the conditions altogether sufficient. In
fact we need one more sequence for aid.
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1-indiscernibles: a technical lemma

Lemma 7. There are 〈dn : n < ω〉 and 〈an,k : n, k < ω〉 such that
(i) dm ∧ dn = 0 whenever m 6= n;

(ii) an,k ≤ dn for arbitrary n and k;

(iii) for any finite subsets F ⊂ ω, G ⊂ ω × ω and 〈n, k〉 ∈ ω × ω, if
n 6∈ F and 〈n, k〉 6∈ G then an,k 6≤

∨∨
m∈Fdm ∪

∨∨
〈i,j〉∈Gai,j.
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1-indiscernibles: a technical lemma

Lemma 7. There are 〈dn : n < ω〉 and 〈an,k : n, k < ω〉 such that
(i) dm ∧ dn = 0 whenever m 6= n;

(ii) an,k ≤ dn for arbitrary n and k;

(iii) for any finite subsets F ⊂ ω, G ⊂ ω × ω and 〈n, k〉 ∈ ω × ω, if
n 6∈ F and 〈n, k〉 6∈ G then an,k 6≤

∨∨
m∈Fdm ∪

∨∨
〈i,j〉∈Gai,j.

Note that:
� (ii) and (iii) ⇒〈dn : n < ω〉 is an independent sequence;
� (iii) ⇒ for F an arbitrary finite subset of ω the class of

degrees

{an,k : 〈n, k〉 ∈ (ω\F) × ω} ∪ {dn : n ∈ F}

is also independent.
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1-indiscernibles: proving the lemma ...

We simultaneously construct two infinite sequences of c.e. sets
〈Dn : n < ω〉 and 〈An,k : n, k < ω〉 such that Dn =

⊕
k<ω An,k,
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1-indiscernibles: proving the lemma ...

We simultaneously construct two infinite sequences of c.e. sets
〈Dn : n < ω〉 and 〈An,k : n, k < ω〉 such that Dn =

⊕
k<ω An,k,

Mm,n,e : Φe(Dm) = Φe(Dn) is total ⇒ Φe(Dm) ≤T ∅

for all m 6= n and e, and
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1-indiscernibles: proving the lemma ...

We simultaneously construct two infinite sequences of c.e. sets
〈Dn : n < ω〉 and 〈An,k : n, k < ω〉 such that Dn =

⊕
k<ω An,k,

Mm,n,e : Φe(Dm) = Φe(Dn) is total ⇒ Φe(Dm) ≤T ∅

for all m 6= n and e, and

PF,G,n,k,e : An,k 6= Ψe(DF ⊕ AG)

for all finite F ⊂ ω, G ⊂ ω × ω, n 6∈ F and 〈n, k〉 6∈ G (where
DF =

⊕
m∈F Dm and AG =

⊕
〈i,j〉∈G Ai,j).
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1-indiscernibles: ... proving the lemma

An M-strategy: typical minimal pairs strategy.
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1-indiscernibles: ... proving the lemma

An M-strategy: typical minimal pairs strategy.

A P-strategy: at expansionary stage, enumerate a witness into
An,k and properly restraint DF ⊕ AG.
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1-indiscernibles: ... proving the lemma

An M-strategy: typical minimal pairs strategy.

A P-strategy: at expansionary stage, enumerate a witness into
An,k and properly restraint DF ⊕ AG.

It is straightforward to combine the strategies.

Let dn = deg(Dn) and an,k = deg(An,k). This end the proof of
the lemma.
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1-indiscernibles: expanding the p.o.

To prove the antichain condition and the minimal pairs
condition are sufficient, assume them for an embedding f .
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1-indiscernibles: expanding the p.o.

To prove the antichain condition and the minimal pairs
condition are sufficient, assume them for an embedding f .

If f maps 0P to some dn then the extension always exists.
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1-indiscernibles: expanding the p.o.

To prove the antichain condition and the minimal pairs
condition are sufficient, assume them for an embedding f .

If f maps 0P to some dn then the extension always exists.

Assume otherwise, for each u ∈ P\A(P) we add an atom zu

such that zu ≤P u and

if u 6≤P v ∈ P then zu 6≤P v. (1)

Denote the resulting partial order by P′. It suffices to extend f
to some g : P′ → R.
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1-indiscernibles: defining an extension

0P. Let g(0P) = 0.
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1-indiscernibles: defining an extension

0P. Let g(0P) = 0.

Atoms. Let z1, . . . , zm enumerate A(P′)\−→x . For zk(1 ≤ k ≤ m),
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1-indiscernibles: defining an extension

0P. Let g(0P) = 0.

Atoms. Let z1, . . . , zm enumerate A(P′)\−→x . For zk(1 ≤ k ≤ m),
� if it is bounded by some x, let g(z) = an,k where dn = f (x);
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1-indiscernibles: defining an extension

0P. Let g(0P) = 0.

Atoms. Let z1, . . . , zm enumerate A(P′)\−→x . For zk(1 ≤ k ≤ m),
� if it is bounded by some x, let g(z) = an,k where dn = f (x);
� otherwise let g(z) = an,k where dn 6∈ ran( f ).
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1-indiscernibles: defining an extension

0P. Let g(0P) = 0.

Atoms. Let z1, . . . , zm enumerate A(P′)\−→x . For zk(1 ≤ k ≤ m),
� if it is bounded by some x, let g(z) = an,k where dn = f (x);
� otherwise let g(z) = an,k where dn 6∈ ran( f ).

Non-atoms. For w ∈ P′\(A(P′) ∪ {0P}), let g(w) be the joint of
∨∨

{dn : f−1(dn) ≤P w}

and ∨∨
{g(z) : z ∈ A(w) and ¬∃x(z ≤P x ≤P w)}.
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1-indiscernibles: verifying the extension

g is obviously well defined.
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1-indiscernibles: verifying the extension

g is obviously well defined.

To verify that g extends f , if w ∈ −→x in the last case of the
definition of g, then

∨∨
{an : f−1(an) ≤P w} = f (w), and

{g(z) : z ∈ A(w) and there is no x such that z ≤P x ≤P w} = ∅.
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1-indiscernibles: verifying the extension

g is obviously well defined.

To verify that g extends f , if w ∈ −→x in the last case of the
definition of g, then

∨∨
{an : f−1(an) ≤P w} = f (w), and

{g(z) : z ∈ A(w) and there is no x such that z ≤P x ≤P w} = ∅.

To verify that g is an embedding, the definition of non-atoms
case guarantees that g(u) ≤ g(v) if u ≤P v.
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1-indiscernibles: verifying the extension

g is obviously well defined.

To verify that g extends f , if w ∈ −→x in the last case of the
definition of g, then

∨∨
{an : f−1(an) ≤P w} = f (w), and

{g(z) : z ∈ A(w) and there is no x such that z ≤P x ≤P w} = ∅.

To verify that g is an embedding, the definition of non-atoms
case guarantees that g(u) ≤ g(v) if u ≤P v.

If u 6≤P v, then by (1), zu 6≤P x for x ≤P v. Hence by Lemma
7(iii), g(zu) 6≤ g(v) and thus g(u) 6≤ g(v).



An easier proof

17-1

An infinite partial order P has the universal extensibility
property or u.e.p. iff for any finite partial orders Q ⊆ R, if
Q is a sub partial order of R and there exists an
embedding f : Q → P then there exists an embedding
g : R → P extending f .

It is easy to prove that there exists a countable partial
order having u.e.p. and such a partial order must have a
countable antichain. Then by embedding such a p.o. into
R one can find that any antichain of the embedding form
a set of 1-indiscernibles.

This much simpler proof of Theorem 6 is observed by
Slaman.
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Questions

It is tempting to conjecture that the antichain condition and the
minimal pairs condition are also sufficient for a sequence to be
1-indiscernibles.
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Questions

It is tempting to conjecture that the antichain condition and the
minimal pairs condition are also sufficient for a sequence to be
1-indiscernibles.

But if there exist c.e. degrees a and b such that a ∧ b = 0 and
∀c ≤ a(c > 0 → c ∨ b = a ∨ b), then the two conditions might
be not sufficient.
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Questions

It is tempting to conjecture that the antichain condition and the
minimal pairs condition are also sufficient for a sequence to be
1-indiscernibles.

But if there exist c.e. degrees a and b such that a ∧ b = 0 and
∀c ≤ a(c > 0 → c ∨ b = a ∨ b), then the two conditions might
be not sufficient.

Question 8. Characterizing 1-indiscernibles.
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Questions

It is tempting to conjecture that the antichain condition and the
minimal pairs condition are also sufficient for a sequence to be
1-indiscernibles.

But if there exist c.e. degrees a and b such that a ∧ b = 0 and
∀c ≤ a(c > 0 → c ∨ b = a ∨ b), then the two conditions might
be not sufficient.

Question 8. Characterizing 1-indiscernibles.

Lempp suggested a more basic question.

Question 9. When do two finite sequences realize same Σ1

formulas?
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Dividing Σ1 and Σ2 formulas

The success of finding 1-indiscernibles leads us to find
2-indiscernibles. However Σ2 formulas are far more powerful
and Σ2 types are far more complicate.
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Dividing Σ1 and Σ2 formulas

The success of finding 1-indiscernibles leads us to find
2-indiscernibles. However Σ2 formulas are far more powerful
and Σ2 types are far more complicate.
Proposition 10. No finite sequence of c.e. degrees is Σ1 definable.
Neither the predicate x ∧ y = z nor the predicate x ∨ y = z is Σ1

definable.

Proof. By the proof of embedding arbitrary finite partial orders
into R.
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Dividing Σ1 and Σ2 formulas

The success of finding 1-indiscernibles leads us to find
2-indiscernibles. However Σ2 formulas are far more powerful
and Σ2 types are far more complicate.
Proposition 10. No finite sequence of c.e. degrees is Σ1 definable.
Neither the predicate x ∧ y = z nor the predicate x ∨ y = z is Σ1

definable.

Proof. By the proof of embedding arbitrary finite partial orders
into R.

However, 0, 0′, the predicate x ∧ y = z and the predicate
x ∨ y = z are all Π1 definable, hence Σ2 definable.



» Σ1 Formulas in R

» Motivation

Terminologies

1-indiscernibles in R

Towards 2-indiscernibles

» Dividing Σ1 and Σ2 formulas

» One more difference

» An excuse and a question

Remarks and questions

W. WANG and L. YU Realizing Σ1 Formulas in R - slide #20

One more difference

We will prove the following.
Theorem 11. Every nonprincipal ideal is a Σ1 elementary
substructure of R.
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One more difference

We will prove the following.
Theorem 11. Every nonprincipal ideal is a Σ1 elementary
substructure of R.

On the contrary, Σ2 elementary substructures always contain
0′ since the fact there exists a greatest element is Σ2 in R and
the predicate x is not maximal is Σ1.

Hence no proper ideal could be a Σ2 elementary substructure.
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Overall strategy

Fix I a nonprincipal ideal of R. It suffices to prove that for any
finite partial order P and an embedding f : P → R, there exists
an embedding g : P → I extending f ↾ P− where P− = f−1 ↾ I.
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Overall strategy

Fix I a nonprincipal ideal of R. It suffices to prove that for any
finite partial order P and an embedding f : P → R, there exists
an embedding g : P → I extending f ↾ P− where P− = f−1 ↾ I.

Let x1, . . . , xn be an enumeration of P− = f−1(I), ai = f (xi) for
i(0 < i ≤ n) and a0 = 0.
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Overall strategy

Fix I a nonprincipal ideal of R. It suffices to prove that for any
finite partial order P and an embedding f : P → R, there exists
an embedding g : P → I extending f ↾ P− where P− = f−1 ↾ I.

Let x1, . . . , xn be an enumeration of P− = f−1(I), ai = f (xi) for
i(0 < i ≤ n) and a0 = 0.

Since I is nonprincipal we can find some c ∈ I such that
c >

∨∨
i≤nai. The idea is to extend f in [0, c).
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A technical lemma

Lemma 12. There exist an independent sequence of degrees in [0, c],
say 〈bi,k : i ≤ n, k ∈ ω〉, such that ai ≤ bi,k, and for any finite

H ⊂ {0, 1, . . . , n} × ω,

ai 6≤
∨∨

j∈H0
aj ⇒ ai 6≤

∨∨
〈j,k〉∈H

bj,k (2)

where H0 = {j : ∃k(〈j, k〉 ∈ H)}.
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A technical lemma

Lemma 12. There exist an independent sequence of degrees in [0, c],
say 〈bi,k : i ≤ n, k ∈ ω〉, such that ai ≤ bi,k, and for any finite

H ⊂ {0, 1, . . . , n} × ω,

ai 6≤
∨∨

j∈H0
aj ⇒ ai 6≤

∨∨
〈j,k〉∈H

bj,k (2)

where H0 = {j : ∃k(〈j, k〉 ∈ H)}.

Let Ai ⊆ ω[2i] represent ai for i ≤ n and C represent c. We will
construct c.e. sets 〈Bi,k : i ≤ n, k ∈ ω〉 such that



» Σ1 Formulas in R

» Motivation

Terminologies

1-indiscernibles in R

Towards 2-indiscernibles

» Dividing Σ1 and Σ2 formulas

» One more difference

» An excuse and a question

Remarks and questions

W. WANG and L. YU Realizing Σ1 Formulas in R - slide #22

A technical lemma

Lemma 12. There exist an independent sequence of degrees in [0, c],
say 〈bi,k : i ≤ n, k ∈ ω〉, such that ai ≤ bi,k, and for any finite

H ⊂ {0, 1, . . . , n} × ω,

ai 6≤
∨∨

j∈H0
aj ⇒ ai 6≤

∨∨
〈j,k〉∈H

bj,k (2)

where H0 = {j : ∃k(〈j, k〉 ∈ H)}.

Let Ai ⊆ ω[2i] represent ai for i ≤ n and C represent c. We will
construct c.e. sets 〈Bi,k : i ≤ n, k ∈ ω〉 such that
� Bi,k ≤T C;
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A technical lemma

Lemma 12. There exist an independent sequence of degrees in [0, c],
say 〈bi,k : i ≤ n, k ∈ ω〉, such that ai ≤ bi,k, and for any finite

H ⊂ {0, 1, . . . , n} × ω,

ai 6≤
∨∨

j∈H0
aj ⇒ ai 6≤

∨∨
〈j,k〉∈H

bj,k (2)

where H0 = {j : ∃k(〈j, k〉 ∈ H)}.

Let Ai ⊆ ω[2i] represent ai for i ≤ n and C represent c. We will
construct c.e. sets 〈Bi,k : i ≤ n, k ∈ ω〉 such that
� Bi,k ≤T C;
� 〈Bi,k : i ≤ n, k ∈ ω〉 are pairwise disjoin;
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A technical lemma

Lemma 12. There exist an independent sequence of degrees in [0, c],
say 〈bi,k : i ≤ n, k ∈ ω〉, such that ai ≤ bi,k, and for any finite

H ⊂ {0, 1, . . . , n} × ω,

ai 6≤
∨∨

j∈H0
aj ⇒ ai 6≤

∨∨
〈j,k〉∈H

bj,k (2)

where H0 = {j : ∃k(〈j, k〉 ∈ H)}.

Let Ai ⊆ ω[2i] represent ai for i ≤ n and C represent c. We will
construct c.e. sets 〈Bi,k : i ≤ n, k ∈ ω〉 such that
� Bi,k ≤T C;
� 〈Bi,k : i ≤ n, k ∈ ω〉 are pairwise disjoin;
� A ∩ B = ∅ where A =

⋃
i≤n Ai and B =

⋃
i≤n,k∈ω Bi,k.
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Proving the lemma: the requirements

To make the sequence independent, for m ∈ ω,
〈i, k〉 ∈ (n + 1)× ω and finite H ⊂ (n + 1) × ω, we make

Pe : Bi,k = Φm(
⋃

j∈H0

Aj ∪
⋃

〈j,l〉∈H

Bj,l) ⇒ C ≤T A.
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Proving the lemma: the requirements

To make the sequence independent, for m ∈ ω,
〈i, k〉 ∈ (n + 1)× ω and finite H ⊂ (n + 1) × ω, we make

Pe : Bi,k = Φm(
⋃

j∈H0

Aj ∪
⋃

〈j,l〉∈H

Bj,l) ⇒ C ≤T A.

To make (2), for i and H satisfying the left hand side of (2) and
m, we make

Ne : Ai = Ψm(
⋃

j∈H0

Aj ∪
⋃

〈j,l〉∈H

Bj,l) ⇒ Ai ≤T

⋃

j∈H0

Aj.

Note that there are only finitely many such pairs (i, H0).
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Proving the lemma: the requirements

To make the sequence independent, for m ∈ ω,
〈i, k〉 ∈ (n + 1)× ω and finite H ⊂ (n + 1) × ω, we make

Pe : Bi,k = Φm(
⋃

j∈H0

Aj ∪
⋃

〈j,l〉∈H

Bj,l) ⇒ C ≤T A.

To make (2), for i and H satisfying the left hand side of (2) and
m, we make

Ne : Ai = Ψm(
⋃

j∈H0

Aj ∪
⋃

〈j,l〉∈H

Bj,l) ⇒ Ai ≤T

⋃

j∈H0

Aj.

Note that there are only finitely many such pairs (i, H0).

We will use the trick of true stages computations and the true
stages will be uniformly defined as A ∪ B-true stages.
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Proving the lemma: the strategies

An Ne-strategy: Sacks preservation, by imposing restraints on
B.
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Proving the lemma: the strategies

An Ne-strategy: Sacks preservation, by imposing restraints on
B.

By the assumption of (i, H0), the restraints will drop at true
stages.
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Proving the lemma: the strategies

An Ne-strategy: Sacks preservation, by imposing restraints on
B.

By the assumption of (i, H0), the restraints will drop at true
stages.

A Pe-strategy: essentially Sacks Coding.

At stage s + 1, we enumerate 〈x, t, 2e + 1〉 in Bi,k iff x ∈ Cs+1,
〈x, t, 2e + 1〉 is not restrained and
(∀v)(t ≤ v ≤ s → x < lΦ(e, v)).

In addition, we impose a restraint on B to protect the
computation Φm ↾ lΦ(e, s).
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Proving the lemma: the strategies

An Ne-strategy: Sacks preservation, by imposing restraints on
B.

By the assumption of (i, H0), the restraints will drop at true
stages.

A Pe-strategy: essentially Sacks Coding.

At stage s + 1, we enumerate 〈x, t, 2e + 1〉 in Bi,k iff x ∈ Cs+1,
〈x, t, 2e + 1〉 is not restrained and
(∀v)(t ≤ v ≤ s → x < lΦ(e, v)).

In addition, we impose a restraint on B to protect the
computation Φm ↾ lΦ(e, s).

Since C 6≤T A, this restraint will drop at true stages.



An easier proof of the lemma

24-1

Slaman observed that Lemma 12 follows from
Slaman-Soare Theorem.

Suppose P is a finite p.o with greatest element 1P. Let
a0 = 0P, a1, . . . , an−1, an = 1P enumerate the elements of
P. For each m > 0 we define Q a finite super p.o. of P as
below.
1. for i < n and j < m we will have bij ∈ Q − P such that

ak ≤ bij ⇔ ak ≤ ai and ak ≥ bij ⇔ ak = 1P.

2. for H ⊆ n × m and |H| > 1 we will have cH ∈ Q − P
such that ak ≤ cH ⇔ ak ≤

∨∨
i∈H0

ai (where
H0 = {j : ∃k(〈k, j〉 ∈ H)}) and bij ≤ cH ⇔ 〈i, j〉 ∈ H.

3. for H′, H′′, cH′ ≤ cH′′ ⇔ H′ ⊆ H′′.

Recall the definitions before Slaman-Soare Theorem, for
z ∈ Q − P, U(z) = {1P} and VU(z) = P. Hence for
x ∈ Q − P, Z(x) = ∅ and the second condition of
Slaman-Soare Theorem fails. By easy caculations, the
first condition also fails.

Thus embeddings of P into R can always be extended to
embeddings of Q into R. It is easy to see that the bij’s
introduced satisfy the requirements of Lemma 12.
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Extending the embedding

Let y1, . . . , ym enumerate P\P−, define

g(yk) =
∨∨

{bi,l : xi <P yk and yl ≤P yk}.

For xi ∈ P−, define g(xi) = f (xi) = ai.
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Extending the embedding

Let y1, . . . , ym enumerate P\P−, define

g(yk) =
∨∨

{bi,l : xi <P yk and yl ≤P yk}.

For xi ∈ P−, define g(xi) = f (xi) = ai.

If u ≤P yk then g(u) ≤ g(yk).
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Extending the embedding

Let y1, . . . , ym enumerate P\P−, define

g(yk) =
∨∨

{bi,l : xi <P yk and yl ≤P yk}.

For xi ∈ P−, define g(xi) = f (xi) = ai.

If u ≤P yk then g(u) ≤ g(yk).

Assume u 6≤P yk. There are two cases
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Extending the embedding

Let y1, . . . , ym enumerate P\P−, define

g(yk) =
∨∨

{bi,l : xi <P yk and yl ≤P yk}.

For xi ∈ P−, define g(xi) = f (xi) = ai.

If u ≤P yk then g(u) ≤ g(yk).

Assume u 6≤P yk. There are two cases
� u is some xi. Since f is an embedding, ai 6≤

∨∨
j∈H0

aj where
H0 = {j ≤ n : xj < yk}. Hence (2) and the definition
together imply that g(u) = ai 6≤ g(yk).
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Extending the embedding

Let y1, . . . , ym enumerate P\P−, define

g(yk) =
∨∨

{bi,l : xi <P yk and yl ≤P yk}.

For xi ∈ P−, define g(xi) = f (xi) = ai.

If u ≤P yk then g(u) ≤ g(yk).

Assume u 6≤P yk. There are two cases
� u is some xi. Since f is an embedding, ai 6≤

∨∨
j∈H0

aj where
H0 = {j ≤ n : xj < yk}. Hence (2) and the definition
together imply that g(u) = ai 6≤ g(yk).

� u is some yl , then the independence of the sequence
〈bi,k : i ≤ n, k ∈ ω〉 implies that again g(u) 6≤ g(yk).
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Extending the embedding

Let y1, . . . , ym enumerate P\P−, define

g(yk) =
∨∨

{bi,l : xi <P yk and yl ≤P yk}.

For xi ∈ P−, define g(xi) = f (xi) = ai.

If u ≤P yk then g(u) ≤ g(yk).

Assume u 6≤P yk. There are two cases
� u is some xi. Since f is an embedding, ai 6≤

∨∨
j∈H0

aj where
H0 = {j ≤ n : xj < yk}. Hence (2) and the definition
together imply that g(u) = ai 6≤ g(yk).

� u is some yl , then the independence of the sequence
〈bi,k : i ≤ n, k ∈ ω〉 implies that again g(u) 6≤ g(yk).

Hence f ↾ P− ⊆ g : P → [0, c) ⊂ I.
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An excuse and a question

Slaman demonstrated a much simpler solution to the existence
of Σ1 elementary substructure: embedding a countable partial
order with u.e.p. into R.
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An excuse and a question

Slaman demonstrated a much simpler solution to the existence
of Σ1 elementary substructure: embedding a countable partial
order with u.e.p. into R.

Our excuse is that we can prove the following.
Corollary 13. There exists (naturally) definable Σ1 proper
elementary substructures.
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An excuse and a question

Slaman demonstrated a much simpler solution to the existence
of Σ1 elementary substructure: embedding a countable partial
order with u.e.p. into R.

Our excuse is that we can prove the following.
Corollary 13. There exists (naturally) definable Σ1 proper
elementary substructures.

The differences above might suggest that finding
2-indiscernibles is a much harder job.
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An excuse and a question

Slaman demonstrated a much simpler solution to the existence
of Σ1 elementary substructure: embedding a countable partial
order with u.e.p. into R.

Our excuse is that we can prove the following.
Corollary 13. There exists (naturally) definable Σ1 proper
elementary substructures.

The differences above might suggest that finding
2-indiscernibles is a much harder job.

However we still raise the question.
Question 14. For n > 1, does there exist n-indiscernibles?
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1-indiscernibles generating R?

Since meet-inaccessible degrees are downward dense (by
Ambos-Spies; in fact, dense in R by Ding and Zhang
independently), 1-indiscernibles cannot generate any
downward closed subset of R (by joins and meets).
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1-indiscernibles generating R?

Since meet-inaccessible degrees are downward dense (by
Ambos-Spies; in fact, dense in R by Ding and Zhang
independently), 1-indiscernibles cannot generate any
downward closed subset of R (by joins and meets).
If only consider R, we get a direct proof using indiscerniblity.
Proposition 15. There is no infinite class of 1-indiscernibles
generating (by finite iterations of join and meet) all c.e. degrees.
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1-indiscernibles generating R?

Since meet-inaccessible degrees are downward dense (by
Ambos-Spies; in fact, dense in R by Ding and Zhang
independently), 1-indiscernibles cannot generate any
downward closed subset of R (by joins and meets).
If only consider R, we get a direct proof using indiscerniblity.
Proposition 15. There is no infinite class of 1-indiscernibles
generating (by finite iterations of join and meet) all c.e. degrees.

Proof. � Suppose some −→a ∈ I generates 0, then 0 =
∧∧−→a .
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1-indiscernibles generating R?

Since meet-inaccessible degrees are downward dense (by
Ambos-Spies; in fact, dense in R by Ding and Zhang
independently), 1-indiscernibles cannot generate any
downward closed subset of R (by joins and meets).
If only consider R, we get a direct proof using indiscerniblity.
Proposition 15. There is no infinite class of 1-indiscernibles
generating (by finite iterations of join and meet) all c.e. degrees.

Proof. � Suppose some −→a ∈ I generates 0, then 0 =
∧∧−→a .

� Let n be the least length of such tuples. The predicate the
meet of x1, . . . , xn is 0 is Π1 as its negation is Σ1:
(∃u, v)(u < v < x1, . . . , xn).
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1-indiscernibles generating R?

Since meet-inaccessible degrees are downward dense (by
Ambos-Spies; in fact, dense in R by Ding and Zhang
independently), 1-indiscernibles cannot generate any
downward closed subset of R (by joins and meets).
If only consider R, we get a direct proof using indiscerniblity.
Proposition 15. There is no infinite class of 1-indiscernibles
generating (by finite iterations of join and meet) all c.e. degrees.

Proof. � Suppose some −→a ∈ I generates 0, then 0 =
∧∧−→a .

� Let n be the least length of such tuples. The predicate the
meet of x1, . . . , xn is 0 is Π1 as its negation is Σ1:
(∃u, v)(u < v < x1, . . . , xn).

� By 1-indiscernibility, the meets of n-tuples of I are always 0.
While by the choice of n, all element of I are cappable.
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Questions

Hence the roles played by (n-)indiscernibles in R could not be
very significant.

However it might still be interesting to investigate into relating
concepts, e.g.
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Questions

Hence the roles played by (n-)indiscernibles in R could not be
very significant.

However it might still be interesting to investigate into relating
concepts, e.g.
Question 16. Σ1 Skölem hulls of 1-indiscernibles?
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Questions

Hence the roles played by (n-)indiscernibles in R could not be
very significant.

However it might still be interesting to investigate into relating
concepts, e.g.
Question 16. Σ1 Skölem hulls of 1-indiscernibles?

What happen if we turn to (R,∨,≤)?
Question 17. Does there exist n-indiscernibles in (R,∨,≤) for
n ≥ 1?
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Thanks for your attentions.
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