Realizing Σ_1 Formulas in \mathcal{R}

Wei WANG

Dept. of Maths, Nanjing University, China wwang.cn@gmail.com

Liang YU

Dept. of Maths, NUS, Singapore

yuliang.nju@gmail.com

THE MOST TRIVIAL TALK

Motivation

» Σ_1 Formulas in ${\cal R}$

» Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles

Remarks and questions

In model theory and set theory indiscernibles play important roles in finding elementary embeddings and substructures.

Motivation

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles

Remarks and questions

In model theory and set theory indiscernibles play important roles in finding elementary embeddings and substructures.

But little was known about \mathcal{R} , the partial order of computably enumerable degrees.

Motivation

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles

Remarks and questions

In model theory and set theory indiscernibles play important roles in finding elementary embeddings and substructures.

But little was known about \mathcal{R} , the partial order of computably enumerable degrees.

Another motivation is to investigate incapabilities of simple formulas in term of definability.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

» Indiscernibles

» Partial orders

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

Remarks and questions

Given a language \mathcal{L} and a model \mathcal{M} of \mathcal{L} . **Definition 1.** An *n*-type $t(v_1, \ldots, v_n)$ of \mathcal{M} is a set of formulas such that all $\varphi \in t$ have free variables among v_1, \ldots, v_n and the theory $Th(\mathcal{M}) \cup \{\varphi(c_1, \ldots, c_n) : \varphi \in t\}$ is consistent (where $c_1, \ldots, c_n \notin \mathcal{L}$).

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

» Indiscernibles

» Partial orders

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

Remarks and questions

Given a language \mathcal{L} and a model \mathcal{M} of \mathcal{L} . **Definition 1.** An *n*-type $t(v_1, \ldots, v_n)$ of \mathcal{M} is a set of formulas such that all $\varphi \in t$ have free variables among v_1, \ldots, v_n and the theory $Th(\mathcal{M}) \cup \{\varphi(c_1, \ldots, c_n) : \varphi \in t\}$ is consistent (where $c_1, \ldots, c_n \notin \mathcal{L}$).

Given t an *n*-type and an *n*-tuple $\overrightarrow{a} \in M$

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

» Indiscernibles

» Partial orders

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

Remarks and questions

Given a language \mathcal{L} and a model \mathcal{M} of \mathcal{L} . **Definition 1.** An *n*-type $t(v_1, \ldots, v_n)$ of \mathcal{M} is a set of formulas such that all $\varphi \in t$ have free variables among v_1, \ldots, v_n and the theory $Th(\mathcal{M}) \cup \{\varphi(c_1, \ldots, c_n) : \varphi \in t\}$ is consistent (where $c_1, \ldots, c_n \notin \mathcal{L}$).

Given t an *n*-type and an *n*-tuple $\overrightarrow{a} \in M$ if $\mathcal{M} \models \varphi(\overrightarrow{a})$ for all $\varphi \in t$, we say \overrightarrow{a} realizes t;

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

- » Indiscernibles
- » Partial orders

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles

Remarks and questions

Given a language \mathcal{L} and a model \mathcal{M} of \mathcal{L} . **Definition 1.** An *n*-type $t(v_1, \ldots, v_n)$ of \mathcal{M} is a set of formulas such that all $\varphi \in t$ have free variables among v_1, \ldots, v_n and the theory $Th(\mathcal{M}) \cup \{\varphi(c_1, \ldots, c_n) : \varphi \in t\}$ is consistent (where $c_1, \ldots, c_n \notin \mathcal{L}$).

- Given *t* an *n*-type and an *n*-tuple $\overrightarrow{a} \in M$ if $\mathcal{M} \models \varphi(\overrightarrow{a})$ for all $\varphi \in t$, we say \overrightarrow{a} realizes *t*;
- *t* is complete if either $\varphi \in t$ or $\neg \varphi \in t$ for any $\varphi(v_1, \ldots, v_n)$; all types mentioned would be assumed complete.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

- » Indiscernibles
- » Partial orders

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

Remarks and questions

Given a language \mathcal{L} and a model \mathcal{M} of \mathcal{L} . **Definition 1.** An *n*-type $t(v_1, \ldots, v_n)$ of \mathcal{M} is a set of formulas such that all $\varphi \in t$ have free variables among v_1, \ldots, v_n and the theory $Th(\mathcal{M}) \cup \{\varphi(c_1, \ldots, c_n) : \varphi \in t\}$ is consistent (where $c_1, \ldots, c_n \notin \mathcal{L}$).

- Given *t* an *n*-type and an *n*-tuple $\overrightarrow{a} \in M$ if $\mathcal{M} \models \varphi(\overrightarrow{a})$ for all $\varphi \in t$, we say \overrightarrow{a} realizes *t*;
- *t* is complete if either $\varphi \in t$ or $\neg \varphi \in t$ for any $\varphi(v_1, \ldots, v_n)$; all types mentioned would be assumed complete.

We simply say type when the arity is clear.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

» Indiscernibles

» Partial orders

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

Remarks and questions

Given a language \mathcal{L} and a model \mathcal{M} of \mathcal{L} . **Definition 1.** An *n*-type $t(v_1, \ldots, v_n)$ of \mathcal{M} is a set of formulas such that all $\varphi \in t$ have free variables among v_1, \ldots, v_n and the theory $Th(\mathcal{M}) \cup \{\varphi(c_1, \ldots, c_n) : \varphi \in t\}$ is consistent (where $c_1, \ldots, c_n \notin \mathcal{L}$).

- Given t an *n*-type and an *n*-tuple $\overrightarrow{a} \in M$
- if $\mathcal{M} \models \varphi(\overrightarrow{a})$ for all $\varphi \in t$, we say \overrightarrow{a} realizes *t*;
- *t* is complete if either $\varphi \in t$ or $\neg \varphi \in t$ for any $\varphi(v_1, \ldots, v_n)$; all types mentioned would be assumed complete.

We simply say type when the arity is clear.

We define Σ_n (complete) type with the formulas restricted to Σ_n formulas.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

» Indiscernibles

» Partial orders

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

Remarks and questions

Definition 2. $I \subseteq M$ is a set of (*n*-)indiscernibles if and only if all finite tuples in I realize same (Σ_n) types given they are of same lengths.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

» Indiscernibles

» Partial orders

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

Remarks and questions

Definition 2. $I \subseteq M$ is a set of (*n*-)indiscernibles if and only if all finite tuples in I realize same (Σ_n) types given they are of same lengths.

Definition 3. Suppose there is a binary relation symbol \leq in \mathcal{L} . We call $I = \{a_l \in M : l \in L\} \subseteq M$ is a set of (*n*-)order-indiscernibles if

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

» Indiscernibles

» Partial orders

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

Remarks and questions

Definition 2. $I \subseteq M$ is a set of (*n*-)indiscernibles if and only if all finite tuples in I realize same (Σ_n) types given they are of same lengths.

Definition 3. Suppose there is a binary relation symbol ≤ in L. We call I = {a_l ∈ M : l ∈ L} ⊆ M is a set of (n-)order-indiscernibles if
L is a linear ordered index set, I is linear ordered by ≤ and isomorphic to L (under a₁ → l) and

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

» Indiscernibles

» Partial orders

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

Remarks and questions

Definition 2. $I \subseteq M$ is a set of (*n*-)indiscernibles if and only if all finite tuples in I realize same (Σ_n) types given they are of same lengths.

Definition 3. Suppose there is a binary relation symbol \leq in \mathcal{L} . We call $I = \{a_l \in M : l \in L\} \subseteq M$ is a set of (*n*-)order-indiscernibles if

- *L* is a linear ordered index set, *I* is linear ordered by \leq and isomorphic to *L* (under $a_l \mapsto l$) and
- all ≤-ascending finite tuples in I realize same (Σ_n) types given they are of same length.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

» Indiscernibles

» Partial orders

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

Remarks and questions

Given a partial order P, let 0_P and 1_P denote its least element and greatest element respectively. We always assume that given partial orders are finite and have 0_P defined.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

» Indiscernibles

» Partial orders

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

Remarks and questions

Given a partial order P, let 0_P and 1_P denote its least element and greatest element respectively. We always assume that given partial orders are finite and have 0_P defined.

An element of *P* is an atom iff it is not 0_P but bounds nothing other than 0_P . Let $\mathcal{A}(P)$ denote the set of atoms of *P*, and $\mathcal{A}(x)$ denote the atoms bounded by $x \in P$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

» Indiscernibles

» Partial orders

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

Remarks and questions

Given a partial order P, let 0_P and 1_P denote its least element and greatest element respectively. We always assume that given partial orders are finite and have 0_P defined.

An element of *P* is an atom iff it is not 0_P but bounds nothing other than 0_P . Let $\mathcal{A}(P)$ denote the set of atoms of *P*, and $\mathcal{A}(x)$ denote the atoms bounded by $x \in P$.

We say $x, y \in P$ form a minimal pair iff $\mathcal{A}(x) \cap \mathcal{A}(y) = \emptyset$, and call a subset $\overrightarrow{x} \subseteq P$ an antichain iff its elements are pairwise \leq_P -incomparable.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

» Types

» Indiscernibles

» Partial orders

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

Remarks and questions

Given a partial order P, let 0_P and 1_P denote its least element and greatest element respectively. We always assume that given partial orders are finite and have 0_P defined.

An element of *P* is an atom iff it is not 0_P but bounds nothing other than 0_P . Let $\mathcal{A}(P)$ denote the set of atoms of *P*, and $\mathcal{A}(x)$ denote the atoms bounded by $x \in P$.

We say $x, y \in P$ form a minimal pair iff $\mathcal{A}(x) \cap \mathcal{A}(y) = \emptyset$, and call a subset $\overrightarrow{x} \subseteq P$ an antichain iff its elements are pairwise \leq_P -incomparable.

In this talk we will fix $\mathcal{L} = \{\leq\}$ and the structure $\mathcal{R} = (\mathbf{R}, \leq)$.

Slaman-Soare's Theorem

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

- » 1-order-indiscernibles
 » 1-indiscernibles
- » Questions

Towards 2-indiscernibles

Remarks and questions

Let *Q* be partial orders with 0_Q and 1_Q , *P* a sub partial order of *Q*, and $S \subset Q$. Define 1. $U(S) = \{x \in P : \forall y \in S(x \ge y)\}$, and $U(y) = U(\{y\})$; 2. $V(S) = \{x \in P : \forall y \in S(x \le y)\}$, and $V(y) = V(\{y\})$; 3. $Z(y) = \{z \in Q \setminus P : z < y \text{ and } V(y) \nsubseteq V(U(z))\}$. For notational simplicity, we write VU(S) for V(U(S)) and etc.

Slaman-Soare's Theorem

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles
 » 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

Let *Q* be partial orders with 0_Q and 1_Q , *P* a sub partial order of *Q*, and $S \subset Q$. Define 1. $U(S) = \{x \in P : \forall y \in S(x \ge y)\}$, and $U(y) = U(\{y\})$; 2. $V(S) = \{x \in P : \forall y \in S(x \le y)\}$, and $V(y) = V(\{y\})$; 3. $Z(y) = \{z \in Q \setminus P : z < y \text{ and } V(y) \not\subseteq V(U(z))\}$. For notational simplicity, we write VU(S) for V(U(S)) and etc.

Theorem 4 (Slaman and Soare). Every embedding of P into \mathcal{R} can be extended to an embedding of Q into \mathcal{R} iff both conditions below fail

(*i*) $\exists x, y \in Q(x \geq y \text{ and } VU(y) \subseteq VUV(x));$

(*ii*) $\exists x \in Q \setminus P(Z(x) \neq \emptyset \text{ and } VU(Z(x) \cup V(x)) \not\subseteq V(x)).$

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

Lempp observed that the following follows from Slaman-Soare's Theorem by simple calculations. **Proposition 5.** Every chain in \mathcal{R} not containing **0** and **0'** is an infinite class of order 1-indiscernibles. Hence no degree besides **0** and **0'** is Π_1 definable in \mathcal{R} .

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

Lempp observed that the following follows from Slaman-Soare's Theorem by simple calculations. **Proposition 5.** Every chain in \mathcal{R} not containing **0** and **0'** is an infinite class of order 1-indiscernibles. Hence no degree besides **0** and **0'** is Π_1 definable in \mathcal{R} .

Fix $f : P \to \mathcal{R}$ an embedding of a sub partial order of Q onto a chain. Then P is a chain in Q, let $x_0 < x_1 < \ldots < x_n$ enumerate P.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

Lempp observed that the following follows from Slaman-Soare's Theorem by simple calculations. **Proposition 5.** Every chain in \mathcal{R} not containing **0** and **0'** is an infinite class of order 1-indiscernibles. Hence no degree besides **0** and **0'** is Π_1 definable in \mathcal{R} .

Fix $f : P \to \mathcal{R}$ an embedding of a sub partial order of Q onto a chain. Then P is a chain in Q, let $x_0 < x_1 < \ldots < x_n$ enumerate P.

We may in addition assume that *P* is maximal in *Q*, thus $x_0 = 0_Q$ and $x_n = 1_Q$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

Lempp observed that the following follows from Slaman-Soare's Theorem by simple calculations. **Proposition 5.** Every chain in \mathcal{R} not containing **0** and **0'** is an infinite class of order 1-indiscernibles. Hence no degree besides **0** and **0'** is Π_1 definable in \mathcal{R} .

Fix $f : P \to \mathcal{R}$ an embedding of a sub partial order of Q onto a chain. Then P is a chain in Q, let $x_0 < x_1 < \ldots < x_n$ enumerate P.

We may in addition assume that *P* is maximal in *Q*, thus $x_0 = 0_Q$ and $x_n = 1_Q$.

The problem is when there exists a $g : Q \to \mathcal{R}$ extending f.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

It follows from easy calculations that for $x, y \in Q$ 1. $VUV(x) = V(x) = \{x_i : x_i \le u_x\}$ where u_x is the greatest x_j such that $x_j \le x$;

2. $VU(y) = \{x_i : x_i \le v_y\}$ where v_y is the least x_j such that $x_j \ge y$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

It follows from easy calculations that for $x, y \in Q$ 1. $VUV(x) = V(x) = \{x_i : x_i \le u_x\}$ where u_x is the greatest x_i such that $x_i \le x$;

2. $VU(y) = \{x_i : x_i \le v_y\}$ where v_y is the least x_j such that $x_j \ge y$.

If $x \ge y$ then $v_y \notin VUV(x)$. Thus Theorem 4(i) fails:

 $\neg \exists x, y \in Q(x \not\geq y \text{ and } VU(y) \subseteq VUV(x)).$

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

It follows from easy calculations that for $x, y \in Q$ 1. $VUV(x) = V(x) = \{x_i : x_i \le u_x\}$ where u_x is the greatest x_i such that $x_i \le x$;

2. $VU(y) = \{x_i : x_i \le v_y\}$ where v_y is the least x_j such that $x_j \ge y$.

If $x \ge y$ then $v_y \notin VUV(x)$. Thus Theorem 4(i) fails:

 $\neg \exists x, y \in Q(x \not\geq y \text{ and } VU(y) \subseteq VUV(x)).$

If $Z(x) \neq \emptyset$, then $v_x > u_z$ since $V(x) \not\subseteq VU(z)$ for any $z \in Z(x)$. Thus $VU(Z(x) \cup V(x)) = VUV(x) = V(x)$ and Theorem 4(ii) fails too.

 $\neg \exists x \in Q \setminus P(Z(x) \neq \emptyset \text{ and } VU(Z(x) \cup V(x)) \not\subseteq V(x)).$

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

It follows from easy calculations that for $x, y \in Q$ 1. $VUV(x) = V(x) = \{x_i : x_i \le u_x\}$ where u_x is the greatest x_i such that $x_i \le x$;

2. $VU(y) = \{x_i : x_i \le v_y\}$ where v_y is the least x_j such that $x_j \ge y$.

If $x \ge y$ then $v_y \notin VUV(x)$. Thus Theorem 4(i) fails:

 $\neg \exists x, y \in Q(x \not\geq y \text{ and } VU(y) \subseteq VUV(x)).$

If $Z(x) \neq \emptyset$, then $v_x > u_z$ since $V(x) \not\subseteq VU(z)$ for any $z \in Z(x)$. Thus $VU(Z(x) \cup V(x)) = VUV(x) = V(x)$ and Theorem 4(ii) fails too.

 $\neg \exists x \in Q \setminus P(Z(x) \neq \emptyset \text{ and } VU(Z(x) \cup V(x)) \not\subseteq V(x)).$

Hence there is always an extension $g : Q \rightarrow \mathcal{R}$.

1-indiscernibles: non-order version

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

Now we turn to 1-indiscernibles and prove the following. **Theorem 6.** *There exists an infinite class of 1-indiscernibles.*

1-indiscernibles: non-order version

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

Now we turn to 1-indiscernibles and prove the following. **Theorem 6.** There exists an infinite class of 1-indiscernibles. Given a partial order P and an embedding

 $f:\langle \overrightarrow{x},\leq_P\rangle \to \langle \{\mathbf{d}_n:n<\omega\},\leq\rangle,$

when does there exist an extension $g: P \rightarrow \mathcal{R}$ of f?

1-indiscernibles: overall strategy

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

We will find $\langle \mathbf{d}_n : n < \omega \rangle$ as a sequence of independent and pairwise capping c.e. degrees.

1-indiscernibles: overall strategy

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

We will find $\langle \mathbf{d}_n : n < \omega \rangle$ as a sequence of independent and pairwise capping c.e. degrees.

Two necessary conditions of positive solutions follows:

- \overrightarrow{x} is an antichain, and
- \overrightarrow{x} pairwise forming minimal pairs.

We call them the antichain condition and the minimal pairs condition respectively.

1-indiscernibles: overall strategy

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

We will find $\langle \mathbf{d}_n : n < \omega \rangle$ as a sequence of independent and pairwise capping c.e. degrees.

Two necessary conditions of positive solutions follows:

- \vec{x} is an antichain, and
- \overrightarrow{x} pairwise forming minimal pairs.

We call them the antichain condition and the minimal pairs condition respectively.

Our strategy is to make the conditions altogether sufficient. In fact we need one more sequence for aid.

1-indiscernibles: a technical lemma

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

Lemma 7. There are $\langle \mathbf{d}_n : n < \omega \rangle$ and $\langle \mathbf{a}_{n,k} : n, k < \omega \rangle$ such that (*i*) $\mathbf{d}_m \wedge \mathbf{d}_n = 0$ whenever $m \neq n$; (*ii*) $\mathbf{a}_{n,k} \leq \mathbf{d}_n$ for arbitrary n and k; (*iii*) for any finite subsets $F \subset \omega, G \subset \omega \times \omega$ and $\langle n, k \rangle \in \omega \times \omega$, if $n \notin F$ and $\langle n, k \rangle \notin G$ then $\mathbf{a}_{n,k} \nleq \bigvee_{m \in F} \mathbf{d}_m \cup \bigvee_{\langle i, j \rangle \in G} \mathbf{a}_{i,j}$.

1-indiscernibles: a technical lemma

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

Lemma 7. There are $\langle \mathbf{d}_n : n < \omega \rangle$ and $\langle \mathbf{a}_{n,k} : n, k < \omega \rangle$ such that (*i*) $\mathbf{d}_m \wedge \mathbf{d}_n = 0$ whenever $m \neq n$; (*ii*) $\mathbf{a}_{n,k} \leq \mathbf{d}_n$ for arbitrary n and k; (*iii*) for any finite subsets $F \subset \omega, G \subset \omega \times \omega$ and $\langle n, k \rangle \in \omega \times \omega$, if $n \notin F$ and $\langle n, k \rangle \notin G$ then $\mathbf{a}_{n,k} \nleq \bigvee_{m \in F} \mathbf{d}_m \cup \bigvee_{\langle i, j \rangle \in G} \mathbf{a}_{i,j}$.

Note that:

- (ii) and (iii) $\Rightarrow \langle \mathbf{d}_n : n < \omega \rangle$ is an independent sequence;
- (iii) \Rightarrow for *F* an arbitrary finite subset of ω the class of degrees

 $\{\mathbf{a}_{n,k}: \langle n,k\rangle \in (\omega \setminus F) \times \omega\} \cup \{\mathbf{d}_n: n \in F\}$

is also independent.

1-indiscernibles: proving the lemma ...

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

We simultaneously construct two infinite sequences of c.e. sets $\langle D_n : n < \omega \rangle$ and $\langle A_{n,k} : n, k < \omega \rangle$ such that $D_n = \bigoplus_{k < \omega} A_{n,k}$,

1-indiscernibles: proving the lemma ...

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

We simultaneously construct two infinite sequences of c.e. sets $\langle D_n : n < \omega \rangle$ and $\langle A_{n,k} : n, k < \omega \rangle$ such that $D_n = \bigoplus_{k < \omega} A_{n,k}$, $\mathcal{M}_{m,n,e} : \Phi_e(D_m) = \Phi_e(D_n)$ is total $\Rightarrow \Phi_e(D_m) \leq_{\mathrm{T}} \emptyset$

for all $m \neq n$ and e, and

1-indiscernibles: proving the lemma ...

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

We simultaneously construct two infinite sequences of c.e. sets $\langle D_n : n < \omega \rangle$ and $\langle A_{n,k} : n, k < \omega \rangle$ such that $D_n = \bigoplus_{k < \omega} A_{n,k}$, $\mathcal{M}_{m,n,e} : \Phi_e(D_m) = \Phi_e(D_n)$ is total $\Rightarrow \Phi_e(D_m) \leq_{\mathrm{T}} \emptyset$ for all $m \neq n$ and e, and

$$\mathcal{P}_{F,G,n,k,e}: A_{n,k} \neq \Psi_e(D_F \oplus A_G)$$

for all finite $F \subset \omega, G \subset \omega \times \omega, n \notin F$ and $\langle n, k \rangle \notin G$ (where $D_F = \bigoplus_{m \in F} D_m$ and $A_G = \bigoplus_{\langle i,j \rangle \in G} A_{i,j}$).

1-indiscernibles: ... proving the lemma

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

An \mathcal{M} -strategy: typical minimal pairs strategy.

1-indiscernibles: ... proving the lemma

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

An \mathcal{M} -strategy: typical minimal pairs strategy.

A \mathcal{P} -strategy: at expansionary stage, enumerate a witness into $A_{n,k}$ and properly restraint $D_F \oplus A_G$.

1-indiscernibles: ... proving the lemma

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

An \mathcal{M} -strategy: typical minimal pairs strategy.

A \mathcal{P} -strategy: at expansionary stage, enumerate a witness into $A_{n,k}$ and properly restraint $D_F \oplus A_G$.

It is straightforward to combine the strategies.

Let $\mathbf{d}_n = \mathbf{deg}(D_n)$ and $\mathbf{a}_{n,k} = \mathbf{deg}(A_{n,k})$. This end the proof of the lemma.

1-indiscernibles: expanding the p.o.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

To prove the antichain condition and the minimal pairs condition are sufficient, assume them for an embedding f.

1-indiscernibles: expanding the p.o.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

To prove the antichain condition and the minimal pairs condition are sufficient, assume them for an embedding f.

If f maps 0_P to some d_n then the extension always exists.

1-indiscernibles: expanding the p.o.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

To prove the antichain condition and the minimal pairs condition are sufficient, assume them for an embedding f.

If f maps 0_P to some d_n then the extension always exists.

Assume otherwise, for each $u \in P \setminus \mathcal{A}(P)$ we add an atom z_u such that $z_u \leq_P u$ and

if
$$u \not\leq_P v \in P$$
 then $z_u \not\leq_P v$. (1)

Denote the resulting partial order by P'. It suffices to extend f to some $g: P' \to \mathcal{R}$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

 0_P . Let $g(0_P) = 0$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

0_P . Let $g(0_P) = 0$.

Atoms. Let z_1, \ldots, z_m enumerate $\mathcal{A}(P') \setminus \overrightarrow{x}$. For $z_k (1 \le k \le m)$,

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

0_{*P*}. Let $g(0_P) = 0$.

Atoms. Let z_1, \ldots, z_m enumerate $\mathcal{A}(P') \setminus \overrightarrow{x}$. For $z_k (1 \le k \le m)$, \blacksquare if it is bounded by some x, let $g(z) = \mathbf{a}_{n,k}$ where $\mathbf{d}_n = f(x)$;

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

0_P . Let $g(0_P) = 0$.

Atoms. Let z_1, \ldots, z_m enumerate $\mathcal{A}(P') \setminus \overrightarrow{x}$. For $z_k (1 \le k \le m)$, \blacksquare if it is bounded by some x, let $g(z) = \mathbf{a}_{n,k}$ where $\mathbf{d}_n = f(x)$;

• otherwise let $g(z) = \mathbf{a}_{n,k}$ where $\mathbf{d}_n \notin ran(f)$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

- » Slaman-Soare's Theorem
- » 1-order-indiscernibles
- » 1-indiscernibles
- » Questions

Towards 2-indiscernibles

Remarks and questions

0_P . Let $g(0_P) = 0$.

Atoms. Let z_1, \ldots, z_m enumerate $\mathcal{A}(P') \setminus \overrightarrow{x}$. For $z_k (1 \le k \le m)$, \blacksquare if it is bounded by some x, let $g(z) = \mathbf{a}_{n,k}$ where $\mathbf{d}_n = f(x)$;

• otherwise let $g(z) = \mathbf{a}_{n,k}$ where $\mathbf{d}_n \notin ran(f)$.

Non-atoms. For $w \in P' \setminus (\mathcal{A}(P') \cup \{0_P\})$, let g(w) be the joint of

$$\bigvee \{\mathbf{d}_n : f^{-1}(\mathbf{d}_n) \leq_P w\}$$

and

$$\bigvee \{g(z): z \in \mathcal{A}(w) \text{ and } \neg \exists x (z \leq_P x \leq_P w)\}.$$

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

g is obviously well defined.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

g is obviously well defined.

To verify that g extends f, if $w \in \vec{x}$ in the last case of the definition of g, then

$$\bigvee \{\mathbf{a}_n: f^{-1}(\mathbf{a}_n) \leq_P w\} = f(w)$$
, and

 $\{g(z): z \in \mathcal{A}(w) \text{ and there is no } x \text{ such that } z \leq_P x \leq_P w\} = \emptyset.$

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

g is obviously well defined.

To verify that g extends f, if $w \in \vec{x}$ in the last case of the definition of g, then

$$\bigvee \{\mathbf{a}_n : f^{-1}(\mathbf{a}_n) \leq_P w\} = f(w)$$
, and

 $\{g(z): z \in \mathcal{A}(w) \text{ and there is no } x \text{ such that } z \leq_P x \leq_P w\} = \emptyset.$

To verify that *g* is an embedding, the definition of non-atoms case guarantees that $g(u) \le g(v)$ if $u \le_P v$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

g is obviously well defined.

To verify that g extends f, if $w \in \vec{x}$ in the last case of the definition of g, then

$$\bigvee \{\mathbf{a}_n : f^{-1}(\mathbf{a}_n) \leq_P w\} = f(w)$$
, and

 $\{g(z): z \in \mathcal{A}(w) \text{ and there is no } x \text{ such that } z \leq_P x \leq_P w\} = \emptyset.$

To verify that *g* is an embedding, the definition of non-atoms case guarantees that $g(u) \le g(v)$ if $u \le_P v$.

If $u \not\leq_P v$, then by (1), $z_u \not\leq_P x$ for $x \leq_P v$. Hence by Lemma 7(iii), $g(z_u) \not\leq g(v)$ and thus $g(u) \not\leq g(v)$.

An easier proof

An infinite partial order *P* has the universal extensibility property or u.e.p. iff for any finite partial orders $Q \subseteq R$, if *Q* is a sub partial order of *R* and there exists an embedding $f : Q \rightarrow P$ then there exists an embedding $g : R \rightarrow P$ extending *f*.

It is easy to prove that there exists a countable partial order having u.e.p. and such a partial order must have a countable antichain. Then by embedding such a p.o. into \mathcal{R} one can find that any antichain of the embedding form a set of 1-indiscernibles.

This much simpler proof of Theorem 6 is observed by Slaman.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

It is tempting to conjecture that the antichain condition and the minimal pairs condition are also sufficient for a sequence to be 1-indiscernibles.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

It is tempting to conjecture that the antichain condition and the minimal pairs condition are also sufficient for a sequence to be 1-indiscernibles.

But if there exist c.e. degrees a and b such that $a \wedge b = 0$ and $\forall c \leq a(c > 0 \rightarrow c \lor b = a \lor b)$, then the two conditions might be not sufficient.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

It is tempting to conjecture that the antichain condition and the minimal pairs condition are also sufficient for a sequence to be 1-indiscernibles.

But if there exist c.e. degrees a and b such that $a \wedge b = 0$ and $\forall c \leq a(c > 0 \rightarrow c \lor b = a \lor b)$, then the two conditions might be not sufficient.

Question 8. *Characterizing 1-indiscernibles.*

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

» Slaman-Soare's Theorem

» 1-order-indiscernibles

» 1-indiscernibles

» Questions

Towards 2-indiscernibles

Remarks and questions

It is tempting to conjecture that the antichain condition and the minimal pairs condition are also sufficient for a sequence to be 1-indiscernibles.

But if there exist c.e. degrees a and b such that $a \wedge b = 0$ and $\forall c \leq a(c > 0 \rightarrow c \lor b = a \lor b)$, then the two conditions might be not sufficient.

Question 8. *Characterizing 1-indiscernibles.*

Lempp suggested a more basic question.

Question 9. When do two finite sequences realize same Σ_1 formulas?

Dividing Σ_1 and Σ_2 formulas

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in \mathcal{R}

Towards 2-indiscernibles

» Dividing Σ_1 and Σ_2 formulas

» One more difference

» An excuse and a question

Remarks and questions

The success of finding 1-indiscernibles leads us to find 2-indiscernibles. However Σ_2 formulas are far more powerful and Σ_2 types are far more complicate.

Dividing Σ_1 and Σ_2 formulas

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles

» Dividing Σ_1 and Σ_2 formulas

» One more difference

» An excuse and a question

Remarks and questions

The success of finding 1-indiscernibles leads us to find 2-indiscernibles. However Σ_2 formulas are far more powerful and Σ_2 types are far more complicate.

Proposition 10. No finite sequence of c.e. degrees is Σ_1 definable. Neither the predicate $x \wedge y = z$ nor the predicate $x \vee y = z$ is Σ_1 definable.

Proof. By the proof of embedding arbitrary finite partial orders into \mathcal{R} .

Dividing Σ_1 and Σ_2 formulas

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas

» One more difference

» An excuse and a question

Remarks and questions

The success of finding 1-indiscernibles leads us to find 2-indiscernibles. However Σ_2 formulas are far more powerful and Σ_2 types are far more complicate.

Proposition 10. No finite sequence of c.e. degrees is Σ_1 definable. Neither the predicate $x \wedge y = z$ nor the predicate $x \vee y = z$ is Σ_1 definable.

Proof. By the proof of embedding arbitrary finite partial orders into \mathcal{R} .

However, 0, 0', the predicate $x \wedge y = z$ and the predicate $x \vee y = z$ are all Π_1 definable, hence Σ_2 definable.

One more difference

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in \mathcal{R}

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas

» One more difference

» An excuse and a question

Remarks and questions

We will prove the following. **Theorem 11.** Every nonprincipal ideal is a Σ_1 elementary substructure of \mathcal{R} .

One more difference

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a question

Remarks and questions

We will prove the following. **Theorem 11.** Every nonprincipal ideal is a Σ_1 elementary substructure of \mathcal{R} .

On the contrary, Σ_2 elementary substructures always contain 0' since the fact there exists a greatest element is Σ_2 in \mathcal{R} and the predicate *x* is not maximal is Σ_1 .

Hence no proper ideal could be a Σ_2 elementary substructure.

Overall strategy

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in \mathcal{R}

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas

» One more difference

» An excuse and a question

Remarks and questions

Fix I a nonprincipal ideal of \mathcal{R} . It suffices to prove that for any finite partial order P and an embedding $f: P \to \mathcal{R}$, there exists an embedding $g: P \to I$ extending $f \upharpoonright P^-$ where $P^- = f^{-1} \upharpoonright I$.

Overall strategy

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a question

Remarks and questions

Fix I a nonprincipal ideal of \mathcal{R} . It suffices to prove that for any finite partial order P and an embedding $f: P \to \mathcal{R}$, there exists an embedding $g: P \to I$ extending $f \upharpoonright P^-$ where $P^- = f^{-1} \upharpoonright I$.

Let x_1, \ldots, x_n be an enumeration of $P^- = f^{-1}(\mathbf{I})$, $\mathbf{a}_i = f(x_i)$ for $i(0 < i \le n)$ and $\mathbf{a}_0 = \mathbf{0}$.

Overall strategy

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a question

Remarks and questions

Fix I a nonprincipal ideal of \mathcal{R} . It suffices to prove that for any finite partial order P and an embedding $f: P \to \mathcal{R}$, there exists an embedding $g: P \to I$ extending $f \upharpoonright P^-$ where $P^- = f^{-1} \upharpoonright I$.

Let x_1, \ldots, x_n be an enumeration of $P^- = f^{-1}(\mathbf{I})$, $\mathbf{a}_i = f(x_i)$ for $i(0 < i \le n)$ and $\mathbf{a}_0 = \mathbf{0}$.

Since I is nonprincipal we can find some $\mathbf{c} \in \mathbf{I}$ such that $\mathbf{c} > \bigvee_{i < n} \mathbf{a}_i$. The idea is to extend f in $[\mathbf{0}, \mathbf{c})$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

 $\label{eq:started} \begin{array}{l} \mbox{Towards 2-indiscernibles} \\ \mbox{"> Dividing Σ_1 and Σ_2 formulas} \\ \mbox{"> One more difference} \end{array}$

» An excuse and a question

Remarks and questions

Lemma 12. There exist an independent sequence of degrees in [0, c], say $\langle \mathbf{b}_{i,k} : i \leq n, k \in \omega \rangle$, such that $\mathbf{a}_i \leq \mathbf{b}_{i,k}$, and for any finite $H \subset \{0, 1, ..., n\} \times \omega$,

$$\mathbf{a}_{i} \leq \mathbf{W}_{j \in H_{0}} \mathbf{a}_{j} \Rightarrow \mathbf{a}_{i} \leq \mathbf{W}_{\langle j, k \rangle \in H} \mathbf{b}_{j,k}$$
(2)

where $H_0 = \{j : \exists k (\langle j, k \rangle \in H)\}.$

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\mathcal R$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a question

Remarks and questions

Lemma 12. There exist an independent sequence of degrees in [0, c], say $\langle \mathbf{b}_{i,k} : i \leq n, k \in \omega \rangle$, such that $\mathbf{a}_i \leq \mathbf{b}_{i,k}$, and for any finite $H \subset \{0, 1, ..., n\} \times \omega$,

$$\mathbf{a}_{i} \not\leq \bigvee_{j \in H_{0}} \mathbf{a}_{j} \Rightarrow \mathbf{a}_{i} \not\leq \bigvee_{\langle j, k \rangle \in H} \mathbf{b}_{j, k}$$
(2)

where $H_0 = \{j : \exists k (\langle j, k \rangle \in H)\}.$

Let $A_i \subseteq \omega^{[2i]}$ represent \mathbf{a}_i for $i \leq n$ and C represent \mathbf{c} . We will construct c.e. sets $\langle B_{i,k} : i \leq n, k \in \omega \rangle$ such that

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\mathcal R$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a question

Remarks and questions

Lemma 12. There exist an independent sequence of degrees in [0, c], say $\langle \mathbf{b}_{i,k} : i \leq n, k \in \omega \rangle$, such that $\mathbf{a}_i \leq \mathbf{b}_{i,k}$, and for any finite $H \subset \{0, 1, ..., n\} \times \omega$,

$$\mathbf{a}_{i} \not\leq \bigvee_{j \in H_{0}} \mathbf{a}_{j} \Rightarrow \mathbf{a}_{i} \not\leq \bigvee_{\langle j, k \rangle \in H} \mathbf{b}_{j, k}$$
(2)

where $H_0 = \{j : \exists k (\langle j, k \rangle \in H)\}.$

Let $A_i \subseteq \omega^{[2i]}$ represent \mathbf{a}_i for $i \leq n$ and C represent \mathbf{c} . We will construct c.e. sets $\langle B_{i,k} : i \leq n, k \in \omega \rangle$ such that $\mathbf{B}_{i,k} \leq_{\mathrm{T}} C$;

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\mathcal R$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a guestion

Remarks and questions

Lemma 12. There exist an independent sequence of degrees in [0, c], say $\langle \mathbf{b}_{i,k} : i \leq n, k \in \omega \rangle$, such that $\mathbf{a}_i \leq \mathbf{b}_{i,k}$, and for any finite $H \subset \{0, 1, ..., n\} \times \omega$,

$$\mathbf{a}_{i} \not\leq \bigvee_{j \in H_{0}} \mathbf{a}_{j} \Rightarrow \mathbf{a}_{i} \not\leq \bigvee_{\langle j, k \rangle \in H} \mathbf{b}_{j, k}$$
(2)

where $H_0 = \{j : \exists k (\langle j, k \rangle \in H) \}.$

Let $A_i \subseteq \omega^{[2i]}$ represent \mathbf{a}_i for $i \leq n$ and C represent \mathbf{c} . We will construct c.e. sets $\langle B_{i,k} : i \leq n, k \in \omega \rangle$ such that $\mathbf{B}_{i,k} \leq_{\mathrm{T}} C$;

• $\langle B_{i,k} : i \leq n, k \in \omega \rangle$ are pairwise disjoin;

A technical lemma

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a guestion

Remarks and questions

Lemma 12. There exist an independent sequence of degrees in [0, c], say $\langle \mathbf{b}_{i,k} : i \leq n, k \in \omega \rangle$, such that $\mathbf{a}_i \leq \mathbf{b}_{i,k}$, and for any finite $H \subset \{0, 1, ..., n\} \times \omega$,

$$\mathbf{a}_{i} \not\leq \bigvee_{j \in H_{0}} \mathbf{a}_{j} \Rightarrow \mathbf{a}_{i} \not\leq \bigvee_{\langle j, k \rangle \in H} \mathbf{b}_{j, k}$$
(2)

where $H_0 = \{j : \exists k (\langle j, k \rangle \in H) \}.$

Let $A_i \subseteq \omega^{[2i]}$ represent \mathbf{a}_i for $i \leq n$ and C represent \mathbf{c} . We will construct c.e. sets $\langle B_{i,k} : i \leq n, k \in \omega \rangle$ such that $\mathbf{B}_{i,k} \leq_{\mathrm{T}} C$;

- $\langle B_{i,k} : i \leq n, k \in \omega \rangle$ are pairwise disjoin;
- $A \cap B = \emptyset$ where $A = \bigcup_{i \leq n} A_i$ and $B = \bigcup_{i \leq n, k \in \omega} B_{i,k}$.

Proving the lemma: the requirements

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles

» Dividing Σ_1 and Σ_2 formulas

» One more difference

» An excuse and a question

Remarks and questions

To make the sequence independent, for $m \in \omega$, $\langle i, k \rangle \in (n+1) \times \omega$ and finite $H \subset (n+1) \times \omega$, we make

$$\mathcal{P}_e: B_{i,k} = \Phi_m(\bigcup_{j \in H_0} A_j \cup \bigcup_{\langle j,l \rangle \in H} B_{j,l}) \Rightarrow C \leq_{\mathrm{T}} A.$$

Proving the lemma: the requirements

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference

» An excuse and a question

Remarks and questions

To make the sequence independent, for $m \in \omega$, $\langle i, k \rangle \in (n+1) \times \omega$ and finite $H \subset (n+1) \times \omega$, we make

$$\mathcal{P}_e: B_{i,k} = \Phi_m(\bigcup_{j \in H_0} A_j \cup \bigcup_{\langle j,l \rangle \in H} B_{j,l}) \Rightarrow C \leq_{\mathrm{T}} A.$$

To make (2), for i and H satisfying the left hand side of (2) and m, we make

$$\mathcal{N}_e: A_i = \Psi_m(\bigcup_{j \in H_0} A_j \cup \bigcup_{\langle j,l \rangle \in H} B_{j,l}) \Rightarrow A_i \leq_{\mathrm{T}} \bigcup_{j \in H_0} A_j.$$

Note that there are only finitely many such pairs (i, H_0) .

Proving the lemma: the requirements

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a guestion

Remarks and questions

To make the sequence independent, for $m \in \omega$, $\langle i, k \rangle \in (n+1) \times \omega$ and finite $H \subset (n+1) \times \omega$, we make

$$\mathcal{P}_e: B_{i,k} = \Phi_m(\bigcup_{j \in H_0} A_j \cup \bigcup_{\langle j,l \rangle \in H} B_{j,l}) \Rightarrow C \leq_{\mathrm{T}} A.$$

To make (2), for i and H satisfying the left hand side of (2) and m, we make

$$\mathcal{N}_e: A_i = \Psi_m(\bigcup_{j \in H_0} A_j \cup \bigcup_{\langle j,l \rangle \in H} B_{j,l}) \Rightarrow A_i \leq_{\mathrm{T}} \bigcup_{j \in H_0} A_j.$$

Note that there are only finitely many such pairs (i, H_0) .

We will use the trick of true stages computations and the true stages will be uniformly defined as $A \cup B$ -true stages.

» Σ_1 Formulas in ${\mathcal R}$ » Motivation

Terminologies

1-indiscernibles in $\mathcal R$

Towards 2-indiscernibles

» Dividing Σ_1 and Σ_2 formulas

» One more difference

» An excuse and a question

Remarks and questions

An N_e -strategy: Sacks preservation, by imposing restraints on B.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\ensuremath{\mathcal{R}}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference

» An excuse and a question

Remarks and questions

An N_e -strategy: Sacks preservation, by imposing restraints on B.

By the assumption of (i, H_0) , the restraints will drop at true stages.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a question

Remarks and questions

An N_e -strategy: Sacks preservation, by imposing restraints on B.

By the assumption of (i, H_0) , the restraints will drop at true stages.

A \mathcal{P}_e -strategy: essentially Sacks Coding.

At stage s + 1, we enumerate $\langle x, t, 2e + 1 \rangle$ in $B_{i,k}$ iff $x \in C_{s+1}$, $\langle x, t, 2e + 1 \rangle$ is not restrained and $(\forall v)(t \leq v \leq s \rightarrow x < l^{\Phi}(e, v)).$

In addition, we impose a restraint on *B* to protect the computation $\Phi_m \upharpoonright l^{\Phi}(e, s)$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a question

Remarks and questions

An N_e -strategy: Sacks preservation, by imposing restraints on B.

By the assumption of (i, H_0) , the restraints will drop at true stages.

A \mathcal{P}_e -strategy: essentially Sacks Coding.

At stage s + 1, we enumerate $\langle x, t, 2e + 1 \rangle$ in $B_{i,k}$ iff $x \in C_{s+1}$, $\langle x, t, 2e + 1 \rangle$ is not restrained and $(\forall v)(t \leq v \leq s \rightarrow x < l^{\Phi}(e, v)).$

In addition, we impose a restraint on *B* to protect the computation $\Phi_m \upharpoonright l^{\Phi}(e, s)$.

Since $C \leq_T A$, this restraint will drop at true stages.

An easier proof of the lemma

Slaman observed that Lemma 12 follows from Slaman-Soare Theorem.

Suppose *P* is a finite p.o with greatest element 1_P . Let $a_0 = 0_P, a_1, \ldots, a_{n-1}, a_n = 1_P$ enumerate the elements of *P*. For each m > 0 we define *Q* a finite super p.o. of *P* as below.

- 1. for i < n and j < m we will have $b_{ij} \in Q P$ such that $a_k \le b_{ij} \Leftrightarrow a_k \le a_i$ and $a_k \ge b_{ij} \Leftrightarrow a_k = 1_P$.
- 2. for $H \subseteq n \times m$ and |H| > 1 we will have $c_H \in Q P$ such that $a_k \leq c_H \Leftrightarrow a_k \leq \bigvee_{i \in H_0} a_i$ (where $H_0 = \{j : \exists k(\langle k, j \rangle \in H)\}$) and $b_{ij} \leq c_H \Leftrightarrow \langle i, j \rangle \in H$.

3. for
$$H', H'', c_{H'} \leq c_{H''} \Leftrightarrow H' \subseteq H''$$
.

Recall the definitions before Slaman-Soare Theorem, for $z \in Q - P$, $U(z) = \{1_P\}$ and VU(z) = P. Hence for $x \in Q - P$, $Z(x) = \emptyset$ and the second condition of Slaman-Soare Theorem fails. By easy caculations, the first condition also fails.

Thus embeddings of *P* into \mathcal{R} can always be extended to embeddings of *Q* into \mathcal{R} . It is easy to see that the b_{ij} 's introduced satisfy the requirements of Lemma 12.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\mathcal R$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference

» An excuse and a question

Remarks and questions

Let y_1, \ldots, y_m enumerate $P \setminus P^-$, define

 $g(y_k) = \bigvee \{ b_{i,l} : x_i <_P y_k \text{ and } y_l \leq_P y_k \}.$

For $x_i \in P^-$, define $g(x_i) = f(x_i) = a_i$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a question

Remarks and questions

Let y_1, \ldots, y_m enumerate $P \setminus P^-$, define $g(y_k) = \bigvee \{ b_{i,l} : x_i <_P y_k \text{ and } y_l \leq_P y_k \}.$ For $x_i \in P^-$, define $g(x_i) = f(x_i) = a_i.$

If $u \leq_P y_k$ then $g(u) \leq g(y_k)$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a question

Remarks and questions

Let y_1, \ldots, y_m enumerate $P \setminus P^-$, define $g(y_k) = \bigvee \{ b_{i,l} : x_i <_P y_k \text{ and } y_l \leq_P y_k \}.$ For $x_i \in P^-$, define $g(x_i) = f(x_i) = a_i.$ If $u \leq_P y_k$ then $g(u) \leq g(y_k).$

Assume $u \not\leq_P y_k$. There are two cases

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a question

F

Remarks and questions

Let y_1, \ldots, y_m enumerate $P \setminus P^-$, define

 $g(y_k) = \bigvee \{ b_{i,l} : x_i <_P y_k \text{ and } y_l \leq_P y_k \}.$

For
$$x_i \in P^-$$
, define $g(x_i) = f(x_i) = a_i$.

If $u \leq_P y_k$ then $g(u) \leq g(y_k)$.

Assume $u \not\leq_P y_k$. There are two cases u is some x_i . Since f is an embedding, $a_i \not\leq \bigvee_{j \in H_0} a_j$ where $H_0 = \{j \leq n : x_j < y_k\}$. Hence (2) and the definition together imply that $g(u) = a_i \not\leq g(y_k)$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a question

Remarks and questions

Let y_1, \ldots, y_m enumerate $P \setminus P^-$, define

$$g(y_k) = \bigvee \{ b_{i,l} : x_i <_P y_k \text{ and } y_l \leq_P y_k \}.$$

For
$$x_i \in P^-$$
, define $g(x_i) = f(x_i) = a_i$.

If $u \leq_P y_k$ then $g(u) \leq g(y_k)$.

Assume $u \not\leq_P y_k$. There are two cases

- *u* is some x_i . Since *f* is an embedding, $a_i \leq \bigvee_{j \in H_0} a_j$ where $H_0 = \{j \leq n : x_j < y_k\}$. Hence (2) and the definition together imply that $g(u) = a_i \leq g(y_k)$.
- *u* is some y_l , then the independence of the sequence $\langle b_{i,k} : i \leq n, k \in \omega \rangle$ implies that again $g(u) \not\leq g(y_k)$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference » An excuse and a question

Remarks and questions

Let y_1, \ldots, y_m enumerate $P \setminus P^-$, define

 $g(y_k) = \bigvee \{ b_{i,l} : x_i <_P y_k \text{ and } y_l \leq_P y_k \}.$

For
$$x_i \in P^-$$
, define $g(x_i) = f(x_i) = a_i$.

If $u \leq_P y_k$ then $g(u) \leq g(y_k)$.

Assume $u \not\leq_P y_k$. There are two cases

- *u* is some x_i . Since *f* is an embedding, $a_i \leq \bigvee_{j \in H_0} a_j$ where $H_0 = \{j \leq n : x_j < y_k\}$. Hence (2) and the definition together imply that $g(u) = a_i \leq g(y_k)$.
- *u* is some y_l , then the independence of the sequence $\langle b_{i,k} : i \leq n, k \in \omega \rangle$ implies that again $g(u) \not\leq g(y_k)$.

Hence $f \upharpoonright P^- \subseteq g : P \to [\mathbf{0}, \mathbf{c}) \subset \mathbf{I}$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\mathcal R$

Towards 2-indiscernibles

» Dividing Σ_1 and Σ_2 formulas

» One more difference

» An excuse and a question

Remarks and questions

Slaman demonstrated a much simpler solution to the existence of Σ_1 elementary substructure: embedding a countable partial order with u.e.p. into \mathcal{R} .

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\mathcal R$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference

» An excuse and a question

Remarks and questions

Slaman demonstrated a much simpler solution to the existence of Σ_1 elementary substructure: embedding a countable partial order with u.e.p. into \mathcal{R} .

Our excuse is that we can prove the following. **Corollary 13.** There exists (naturally) definable Σ_1 proper elementary substructures.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles » Dividing Σ_1 and Σ_2 formulas » One more difference

» An excuse and a question

Remarks and questions

Slaman demonstrated a much simpler solution to the existence of Σ_1 elementary substructure: embedding a countable partial order with u.e.p. into \mathcal{R} .

Our excuse is that we can prove the following. Corollary 13. There exists (naturally) definable Σ_1 proper elementary substructures.

The differences above might suggest that finding 2-indiscernibles is a much harder job.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in $\mathcal R$

» An excuse and a question

Remarks and questions

Slaman demonstrated a much simpler solution to the existence of Σ_1 elementary substructure: embedding a countable partial order with u.e.p. into \mathcal{R} .

Our excuse is that we can prove the following. **Corollary 13.** There exists (naturally) definable Σ_1 proper elementary substructures.

The differences above might suggest that finding 2-indiscernibles is a much harder job.

However we still raise the question. Question 14. For n > 1, does there exist n-indiscernibles?

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in \mathcal{R}

Towards 2-indiscernibles

Remarks and questions

 $\ensuremath{\text{\tiny \ensuremath{\text{\tiny B}}}\xspace}\xspace R?$

» Questions

Since meet-inaccessible degrees are downward dense (by Ambos-Spies; in fact, dense in \mathcal{R} by Ding and Zhang independently), 1-indiscernibles cannot generate any downward closed subset of \mathcal{R} (by joins and meets).

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles

Remarks and questions

 $\ensuremath{\text{ ~ s}}$ Generating R?

» Questions

Since meet-inaccessible degrees are downward dense (by Ambos-Spies; in fact, dense in \mathcal{R} by Ding and Zhang independently), 1-indiscernibles cannot generate any downward closed subset of \mathcal{R} (by joins and meets). If only consider \mathcal{R} , we get a direct proof using indiscerniblity. **Proposition 15.** There is no infinite class of 1-indiscernibles generating (by finite iterations of join and meet) all c.e. degrees.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles

Remarks and questions

 $\ensuremath{\text{ ~ s}}$ Generating R?

» Questions

Since meet-inaccessible degrees are downward dense (by Ambos-Spies; in fact, dense in \mathcal{R} by Ding and Zhang independently), 1-indiscernibles cannot generate any downward closed subset of \mathcal{R} (by joins and meets). If only consider \mathcal{R} , we get a direct proof using indiscerniblity. **Proposition 15.** There is no infinite class of 1-indiscernibles generating (by finite iterations of join and meet) all c.e. degrees.

Proof. Suppose some $\overrightarrow{a} \in I$ generates 0, then $0 = \bigwedge \overrightarrow{a}$.

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles

Remarks and questions

 $\ensuremath{\text{ ~ s}}$ Generating R?

» Questions

Since meet-inaccessible degrees are downward dense (by Ambos-Spies; in fact, dense in \mathcal{R} by Ding and Zhang independently), 1-indiscernibles cannot generate any downward closed subset of \mathcal{R} (by joins and meets). If only consider \mathcal{R} , we get a direct proof using indiscerniblity. **Proposition 15.** There is no infinite class of 1-indiscernibles generating (by finite iterations of join and meet) all c.e. degrees.

Proof. Suppose some $\overrightarrow{a} \in I$ generates 0, then $0 = \bigwedge \overrightarrow{a}$.

Let *n* be the least length of such tuples. The predicate the meet of x₁,..., x_n is 0 is Π₁ as its negation is Σ₁: (∃u, v)(u < v < x₁,..., x_n).

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles

Remarks and questions

» Generating R?

» Questions

Since meet-inaccessible degrees are downward dense (by Ambos-Spies; in fact, dense in \mathcal{R} by Ding and Zhang independently), 1-indiscernibles cannot generate any downward closed subset of \mathcal{R} (by joins and meets). If only consider \mathcal{R} , we get a direct proof using indiscerniblity. **Proposition 15.** There is no infinite class of 1-indiscernibles generating (by finite iterations of join and meet) all c.e. degrees.

Proof. Suppose some $\overrightarrow{a} \in I$ generates 0, then $0 = \bigwedge \overrightarrow{a}$.

- Let *n* be the least length of such tuples. The predicate the meet of x₁,..., x_n is 0 is Π₁ as its negation is Σ₁: (∃u, v)(u < v < x₁,..., x_n).
- By 1-indiscernibility, the meets of *n*-tuples of I are always 0.
 While by the choice of *n*, all element of I are cappable.

Questions

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles

Remarks and questions

» Generating R?

» Questions

Hence the roles played by (n-)indiscernibles in \mathcal{R} could not be very significant.

However it might still be interesting to investigate into relating concepts, e.g.

Questions

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles

Remarks and questions

» Generating R?

» Questions

Hence the roles played by (n-)indiscernibles in \mathcal{R} could not be very significant.

However it might still be interesting to investigate into relating concepts, e.g. **Question 16.** Σ_1 *Skölem hulls of 1-indiscernibles?*

Questions

» Σ_1 Formulas in \mathcal{R} » Motivation

Terminologies

1-indiscernibles in ${\cal R}$

Towards 2-indiscernibles

Remarks and questions

» Generating R?

» Questions

Hence the roles played by (n-)indiscernibles in \mathcal{R} could not be very significant.

However it might still be interesting to investigate into relating concepts, e.g. **Question 16.** Σ_1 *Skölem hulls of 1-indiscernibles?*

What happen if we turn to (\mathbf{R}, \lor, \le) ? **Question 17.** *Does there exist n-indiscernibles in* (\mathbf{R}, \lor, \le) *for* $n \ge 1$?

Thanks for your attentions.