
LECTURES ON HARMONIC ANALYSIS FOR REDUCTIVE � -ADIC GROUPS

STEPHEN DEBACKER

1. INTRODUCTION

In his paper The characters of reductive � -adic groups [14] Harish-Chandra outlines his

philosophy about harmonic analysis on reductive � -adic groups. According to this philos-

ophy, there are two distinguished classes of distributions on the group: orbital integrals

and characters. Similarly, there are two classes of distributions on the Lie algebra which

are interesting: orbital integrals and their Fourier transforms. The real meat of his philos-

ophy states that we ought to treat orbital integrals on both the group and its Lie algebra in

the “same way” and similarly, we should think of characters and the Fourier transform of

orbital integrals in the same way. This philosophy has many manifestations (see, for exam-

ple, Robert Kottwitz’s excellent article [12]). In this series of lectures, we will examine the

various distributions discussed above and discuss one of the deepest connections between

them: the Harish-Chandra–Howe local character expansion. Because of requests on the

part of participants, I will spend much time reviewing the basics of � -adic fields and dis-

cussing some of the uses of Moy-Prasad filtrations in the representation theory of reductive
� -adic groups. As such, at a small cost in terms of generality, I will concentrate on those

techniques which use this theory. These lectures and the notes are meant as an informal

and elementary introduction to the material. For complete, rigorous proofs, please see the

references.

Very little of the material in this set of lectures is original. I have borrowed heavily from

the work and lectures of Harish-Chandra, Roger Howe, Robert Kottwitz, Allen Moy, Gopal

Prasad, Paul Sally, Jr., and J.-L. Waldspurger, among others. I thank the organizers of this

conference, in particular, Eng-Chye Tan and Chen-Bo Zhu, for inviting me and allowing

me to present this series of tutorials.

2. BASICS

2.1. An introduction to the � -adics. The usual introductory mathematical analysis course

proceeds roughly as follows: The class agrees to agree that the set of natural numbers
����������	���
�
�
�
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is very natural and therefore a good place to begin the course. In order to form a group

with respect to addition, the additive identity and additive inverses are tossed in to the mix

to give us the integers ����� � 
�
�
������ �	� 	���� ���	� ����
 ��������� 	���
�
�
� 

This set does not form a group with respect to multiplication; it is therefore enlarged to

form � , the field of rational numbers. Everything so far has been very natural.

At this point, the incompleteness of the rationals is demonstrated by proving that the

square root of two is not rational. To compensate for this, the fact that the rationals are

ordered (that is, there is a notion of nonpositive and nonnegative) is invoked to define the

absolute value, ��� , of any rational number � :
 �� �

�� � � if ��� 
� � if ��� 
 

As usual, the absolute value gives you a metric with respect to which you complete the

rationals. We recall that two Cauchy sequences
� �	�  and

� ����  of rational numbers are said

to be equivalent with respect to ��� provided that
� ��� � � ��  is a Cauchy sequence which

converges to zero. The set of real numbers is then defined to be the set of equivalence

classes of Cauchy sequences with respect to  �� , that is, the completion of � with respect

to ��� .
It turns out, however, that the normal absolute value provides just one of an infinite

number of incompatible ways to complete the rational numbers1, and, from the proper

perspective, this completion is a somewhat unnatural object.

Let � be any prime. If � is a nonzero rational number, then there is a unique integer �
such that � � ��� �! #"!$ with �&%  and �'% $ . We can then define the � -adic absolute value, �� ( , on � by setting  �� ( � 


if � � 

and  �� ( � �*)+� otherwise. The � -adic absolute value

has the following properties.

Exercise 2.1.1. If ,.- and ,�/ are rational numbers, then

(1)  ,.-0 (&� 

, and  ,.-0 ( � 


if and only if ,.- � 

,

(2)  ,.-1�	,�/. ( �  ,2-0 (3�4 ,�/5 ( , and

(3)  ,.-768,�/5 (&9�:';!<*=> ,2-0 ( �  ,�/5 (5? .
Exercise 2.1.2. In the last item of the previous exercise, show that if  ,@-0 (BA�  ,�/5 ( then the

inequality is an equality. Is the converse of this statement true?

From Exercise 2.1.1, it follows that we can define a metric on � with respect to the
� -adic absolute value. We define � ( to be the completion of � with respect to ��� ( . The
� -adic absolute value on � extends continuously (and uniquely) to a � -adic absolute value �� ( � � (DC ��
 � � � E�GF � 

. We define the valuation H ( on � ( by  IJ ( � � )+KEL�MON�P forIQFR��S( and H ( = 
 ? �UT
. Thus H ( = �WV ? �YX

for
X F � .

1The field of real numbers is, up to isomorphism, the unique totally ordered completion of the rationals.
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We remark that Ostrowski’s theorem tells us that the only nondiscrete, locally compact

fields of characteristic zero are the field of real numbers, the field of complex numbers, and

the finite extensions of � ( . That is, these are the only fields of characteristic zero on which

integration naturally makes sense.

2.2. The structure of � ( and additive characters. If we define
� ( to be the set of I8F� ( such that  IJ (&9 �

, then
� ( is a maximal compact open subring in � ( . As in [33], it can

be identified with the completion of
�

with respect to  �� ( . We call
� ( the ring of integers

in � ( . The subset of
� ( consisting of those elements of

� ( with � -adic absolute value less

than one forms a maximal ideal = � ? � � � ( of
� ( . The quotient

� ( "4= � ? is isomorphic to� ( , the field with � elements. It follows that we can write� ( � �
������� M ( ) - P =	��6 � � ( ? 


As a slight tangent, we remark that Hensel’s lemma (see nearly any book on local fields)

tells us that we can lift a generator of
� S( to

� S( , the group of units in
� ( . Thus, the square

root of two is an element of, for example, ��
 .

The set of compact open subrings � � � ( for �8� 

forms a neighborhood basis of zero.

The sets � � � ( also make sense for � � 

, and we note that

� ( ������� � � � ( 

Since

� S( �Y� (�� � � ( , it follows immediately that

(1) � ( � ��
��� ������ � � � S( 


From this one can show that for each I F � S( if  IJ ( � � ) V , then there exist unique

coefficients  5�BF ��
 ����������
�
�
 = � � � ?  such that

I � ����� V  5��� � �



This is called the � -adic expansion of I . For example, the � -adic expansion of
� " 	 is

� 6 	 �.=��.?*6 � �5=�� / ? 6 	 �5=�����?*6 � �5=��� �? 6 	 �5=��"!	?*6D�	� � 

If IQFR� ( and  IJ ( � � ) V , then we define the tail of I to be the integer

# =�I+? �
�� �%$ ��&� V  5��� � � if  IJ ( � � ) V and

X 9 

, and


if I F � � ( .

We then define ' =�I+? �)(+*-, .�, /0, 1024365L 


Exercise 2.2.1. Show that
'

defines an additive character of � ( and that the restriction to
� � ( of

'
is trivial, yet the restriction of

'
to
� ( is not trivial.

It is a fact that � ( is isomorphic to the Pontrjagin dual 7� ( of � ( via the map  98C;: $<8C' = $> #?-= .
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2.3. General notation. From now on, let � denote a finite extension of � ( , let � denote

the ring of integers of � , and let � denote a uniformizer so that � � ��� where � is the

prime ideal. We define � V ��� � V ��� for
X F �

. We let � � � � "�� denote the residue

field, and we let � �  �  . As before, we fix a valuation H such that H*= �4? � �
. We fix an

additive character

'
of � that is trivial on � and not trivial on � .

We let � denote the general linear group realized as the set of �	� � matrices with

entries in � having nonzero determinant. We let 
 denote the Lie algebra of � . We realize
 as � � = �4? , the set of ��� � matrices with entries in the field � , having the usual bracket

operation. Let �� denote a Haar measure on 
 and let �� denote a Haar measure on � .

We let � denote the Borel subgroup of � consisting of upper triangular matrices, and

we let � denote the maximal split torus consisting of diagonal matrices.

The map =�� ��� ? 8C���� =�� � � ? from 
���
 to � defines a � -invariant, nondegenerate,

symmetric, bilinear form on 
 . As such, it allows us to identify 
 with the Pontrjagin dual� 
 of 
 via the map � 8C : � 8C ' = ��� =�� � � ? ?-= .
A compact, open, � -submodule of 
 is called a lattice. For example, for each integer � ,

we can define the standard filtration lattice� � ��� � � ��� �*=�� ?
of 
 . As another example, consider the Iwahori filtration lattices � �� � defined by� �� � � � �!� F�
  �#" � F$�&%('�)+*-, /.�/ ���  


Note that for all integers � �10 , we have � " � � � �	� �32 " and � " �+� �4 � � � " 2 /. .

More concretely, for � � �
we have� - �65 ������87

and � � � 5:9�9� 9 7<; � -  / � 5 � 9��� 7=; �2- � � �+� � 

For � � 	

we have� � �?> 9�9@9� 9@9��� 98A ; � -  � �?> � 9�9��� 9����� A ; � /  � �?> � � 9� ���B *DC 9 ��� A ; �2- � � ��� � 

From these examples, it is easy to see that the image of � � in

� � " � - � � �*=�� ? is a Borel

subalgebra with nilradical equal to the image of � -  � in
� � " � - � � �*=�� ? . (We remark that

in all of these examples, the lattice in 
 is a direct sum of copies of lattices of � .)

We have similar filtrations of � by compact open subgroups. The standard filtration

subgroups are defined by E � �GFIH �*=�� ? and E � � � 6 � � for positive integers � . We note

that, up to conjugacy, E � is the unique maximal compact open subgroup of � . We also

define the Iwahori subgroup � � � � S� and, for positive integers � , we define the Iwahori

filtration subgroups � �4 � � � 6G� �4 � . It is easy to check that if

 9 � 9 0 , then E " is a

normal subgroup of E � and the lattices
� V (

X F � ) are invariant under the action of E " .
Similar statements apply to the Iwahori filtration lattices and subgroups.

If

 � 0 9 � 9 �J0

, then
� " " � � is an abelian group which is isomorphic via the map

induced by � 8C = � 6K� ? to E " "LE � . Similarly, � "  � "�� �  � is isomorphic to � "  � "L� �  � .
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Given a lattice � in 
 we define the dual lattice ��� of � by� � � �!� F�
  ��� =�� � � ? F<� for all � F��  

For example, for any integer � , the dual lattice of

� � is
� M - ) � P , and the dual lattice of � �4 � is� M - ) � P  � . We let � �� =4
4? denote the set of functions on 
 which are compactly supported,

complex valued, and locally constant. We recall that a function � on 
 is said to be locally

constant if for each � FK
 there exists a lattice ��� such that � =�� 6
	�? � � =�� ? for all	 in ��� . If we assume that our � is compactly supported, then this lattice can be chosen

uniformly. We let � �� = � ? denote the functions on � which are compactly supported,

complex-valued, and locally constant (that is, translation invariant with respect to some

compact open subgroup of � ).

For �QF�� �� =4
4? we define � , the Fourier transform of � , by the formula

� =�� ? ����� � = � ? � ' = ��� =�� � � ? ?� �
for � in 
 . For example, if � ��� denotes the characteristic function of a lattice � in 
 , then

7� ��� is � � � � up to a constant. We normalize the measure +� on 
 so that � =�� ? � � = � � ?
for all �QF�� �� =4
#? and � F�
 .

Exercise 2.3.1. Show that this normalization of measures implies that for � sufficiently

small, the measure of the lattice � with respect to �� is given by one over the square root

of the index of � in ��� , that is,

:���;������ =�� ? � � � � � ��� ) -  / 

Exercise 2.3.2. Show that the map � 8C � from � �� =4
#? to itself is a bijection.

Finally, we normalize �� so that the map � 8C = � 6 � ? takes �� into �� . So, for

example, we have that for all
0 F ��� � ,

:��	;������ = � " ? � :���;����� 4=�E " ? 

3. MOY-PRASAD FILTRATIONS

In this section we describe the Moy-Prasad filtration lattices of 
 and subgroups of � .

3.1. The apartment of � . Recall that � is the group consisting of diagonal matrices in� . We write
# F � as

# � = # - � # / ��
�
�
�� # �W? with
# " F �*S for

� 9 0 9 � . Let !#"$ �2=�� ? �&%(' :R=�� � �*S*? denote the set of roots of � with respect to � (that is, the nontrivial

eigencharacters for the action of � on 
 ). More explicitly! � ��) � "  � 9 � A� 0 9 � and
) � " = # ? � # � " # "  


With respect to our Borel subgroup � we let * denote the set of simple roots; that is,* � � ��) � M �32 - P  � 9 � 9 =	� � � ?  . We let ! 2 denote the set of positive roots in ! . We fix

a Chevalley basis ��+ �-,/. � ��0321 F�* and 3 F4!  
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Here = + ? ��� ��� ���
and

= ,�� / ' ? ��� �
���� ���
�

if � ���*� �� �
if � ���*� =	��6 � ?

otherwise,

and =�� � / ' ? ��� ��� � � � " � 

We see that the center of 
 is � � + and the

,�.
together with

+
form a basis for 	 , the Lie

algebra of � .

For example, for
FIH /2= �#? we have+ � 5 - �� - 7 � ,���
 * � 5 - �� ) - 7 � � ��
 * � 5 � -� � 7 �

and � � * 
 � 5 � �- � 7 


Let
+ = � ? 9 � denote the center of � . For

� 9 � 9 � define � � F $ � =�� ? �%(' :Q= � S � � ? by setting

=� � =���? ? � " �
���� ��� � if � � 0 � �
�

if � � 0 A� �

otherwise,

for � F � S .

With respect to our choice of a Chevalley basis, we can identify � � � =�� ? , the apart-

ment2 corresponding to � , with the real vector space

= $ � =�� ?���� ? "4= $ � = + = � ? ?���� ? 

Let I � denote the origin in � . The apartment of � is an =	� � � ? -dimensional Euclidean

space spanned by the set
� I � 6��� �  � 9U� 9 �  . Note that these spanning vectors satisfy

the relation 
 � �
� �� � 


3.2. A simplicial structure for the apartment of � . We let� ��� � � 6 �  � F4! and � F � 
denote the set of affine roots of � with respect to � and H . For � ��� 6 �UF �

we let�� ��� F4! .

If � ��� 6 � F � and $ � � �8, � F $ � =�� ?���� , then we define

� : � � � � , � = � � 6 � , ��� � � � ��� 

Here � � � denotes the usual pairing between characters and cocharacters. Note that if "! F $ � =�� ? and  $# F $ � = + = � ? ? , then � =  %! 6  $# ? � �3=  "! ? . Consequently, we can and

shall think of an affine root as a function on � =�� ? . For �YF � , we define,'& � � I F(� =�� ?*�� =�I+? � 
� 

2In these notes, we are always looking at the reduced building and apartments.
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The
,'&

are hyperplanes in � =�� ? and they provide us with a simplicial decomposition of

� =�� ? .
For example, for

FIH /2= �4? the apartment � =�� ? is one-dimensional and it is spanned by

the vectors I � 6 ��*- � I � � �� / . See Figure 1.PSfrag replacements

, � 2 �
I �

,�� ) -

��*-
FIGURE 1. The standard apartment for

FIH /2= �#? .
For

FIH � = �#? the apartment � =�� ? is two dimensional, and it is spanned by the vectorsI � 6 �� - , I � 6 �� / , and I � 6 �� � � I � � = ��*-76 �� /�? . See, for example Figure 2.

PSfrag replacements

��*-
�� �

� ���

I �
� 	 
�� 

� ���
���
� 	 
�� 
�

, . 2 �

��� � �

FIGURE 2. The standard apartment for
FIH � = �4?

The maximal facets in this simplicial decomposition of � =�� ? are called alcoves or

chambers of � =�� ? . For
FIH /2= �4? , the alcoves are open line segments. For

FIH � = �#? , an

alcove is the interior of an equilateral triangle. For
FIH  = �#? , an alcove is the interior of a

regular tetrahedron.

3.3. Some subgroups of � . Note that for all
) F4! , the root group

� � � � � 6�� ��� �
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is naturally isomorphic to � as an additive group. From (1), � , regarded as an additive

group, has a natural filtration indexed by
� � T

. Namely,

� � �!� ��� ��
� " � �	� " � / �!� " � �!� " � � � � �!� " � ) - �!� "U� �	� "Y� 

Similarly,

� �
has a natural filtration indexed by

� � T �� � � F �  �� � ) �� T
.

The problem is: how do we decide which � F � � F �  �� � ) 
corresponds to which

subgroup of
� �

? The solution to our problem lies with our choice of a Chevalley basis.

The choice of this basis determines the subgroup E � �GFIH �*=�� ? . We define

� � 2 � � � � ��� E � 

This completely determines a natural indexing of subgroups in

� �
by the set

� �YF �  �� �) 
.

For example, for
FIH � = �#? , we have

� � 
 * 2 " � > - B ' C 9 �� - �� � - A 


Similarly, we have a filtration of 
 � , the
)

-eigenspace in 
 , by setting


 � 2 � ��� � � =�� ? � 
 � 

Note that for all � F � we have an isomorphism of the corresponding additive subgroups
 & and

� &
via the map � 8C = � 6&� ? .

The maximal compact open subgroup

� � � � = # - � # / ��
�
�
 # � ? F$�  # � F�� S 
of � also has a filtration indexed by the integers. Because of future considerations, we

define, for , F ��� � ,

��� � � � # F$� � EH : � ��� = # ? = ��, for all
� F $ � =�� ?  


We also define

� � , � � � # F$� � EH : � ��� = # ?-=
	�, for all
� F $ � =�� ?  


It is a matter of definition to see that ��� � � % � / , and, for � F � � � , if � ��, 9 =	��6 � ? , then

��� � � = # - � # / ��
�
�
 � # �W? F�� �  # " F � 6&� M �32 - P �!� for
� 9 0 9 �  


We can define filtrations of 	 �GH� �5=�� ? in a similar fashion. For example, for
FIH � = �4? ,

we have

	 !�� / �?> B�� C 9 � �� B�� C 9 �� � B�� C 98A 
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3.4. The Moy-Prasad filtrations. Suppose ,BF � and I F � =�� ? . In [28, 27], Moy and

Prasad define filtration lattices of 
 according to the formulae
 N�� � ��� 	 � � �
� & ����� & MON�P � �	� 
 &

and 
 N�� � , � � 	 � , � �
� & ����� & MON�P � �	� 
 & 


For some people, it is easier to process these definitions when they are presented in the

following form. 
 N�� � ��� 	 � � �
� ��


�
V ���M � 2 V P MON�P � � 


� 2 V
and 
 N�� � , � � 	 � , � �� ��


�
V ���M � 2 V P MON�P � � 


� 2 V 


Similarly, if ,�� 

, then they define� N�� � ��� � ��� � � & � � & ����� & M N�P � �	�

and � N�� � , ��� � � � , � � & � � & ����� & M N�P � �	� 

These lattices (resp., subgroups) are referred to as the Moy-Prasad filtration lattices of 

(resp., subgroups of � ).

It follows immediately from the definitions that if � F�
 N�� � and
� F$
 N�� � , then � � � F
 N�� M � 2 �EP . The following exercise is highly recommended; we have previously considered

these statements for the congruence and Iwahori filtrations.

Exercise 3.4.1. Suppose � F � and , F � � � .

(1) Up to a constant
� 
 N�� � � � � 
 N�� M�)��EP , � .

(2) If � F@� N�� � , then � 
 N�� � � ) - � 
 N�� � and � 
 N�� � , � ) - � 
 N�� � , .

(3) If

 � ,&9�� 9 � , , then � 8C = � 6&� ? induces an abelian group isomorphism of
 N�� ��"!
 N�� � and � N�� �!"L� N�� � .

3.4.1. The special case , � 

. We first attempt to understand these definitions when , �


. In this case, if I is a point in � =�� ? , then � N�� � is called the parahoric subgroup attached

to I and � N�� � , is called the pro-unipotent radical of � N�� � . Let � be a facet in � and

let I ��� F�� . It follows from the definitions of both the simplicial structure of � and the

Moy-Prasad filtrations that � N�� � � ��� � � , 
 N�� � � 
�� � � , � N�� � , � � � � � , , and 
 N�� � , � 
 � � � , .

Thus, it is enough to understand these filtrations on a facet by facet basis, and it is natural

to label the filtrations using facets rather than points. For
FIH /0= �#? , Figures 3 and 4 describe

the subgroups ��� � � and � � � � , for � a facet in the apartment of � .

Note that as we move to the right, that is, in the positive direction as defined by the

spherical Weyl chamber corresponding to � , the positive root spaces “expand” and the
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PSfrag replacements

5 9 �9@9 7 � � 5 9 B ) 
 9B * 9 9 75 9 �B ) 
 9�9 7 E � 5 9 B ) 
 9� 9 7
I � I � 6 ��*-

FIGURE 3. Parahoric subgroups ��� � � for
FIH /2= �#?

PSfrag replacements

5 �=�9 � 7 � -  / 5 � B ) 
 9B * 9 � 75 � B * 99 � 7 EB- 5 � 9B * 9 � 7
I � I � 6 ��*-

FIGURE 4. The subgroups � � � � , for
FIH /2= �#?

negative root spaces “shrink”. This simple observation will play a significant role in what

is to come.

It is highly recommended that the reader complete the following exercise.

Exercise 3.4.2. Make diagrams similar to those above, but for the filtration lattices 
 � � �
and 
 � � � , . Now, do the same for

FIH � = �#? .
The origin I � is the facet in � defined by the intersection of the hyperplanes

,(� 2 �
for

) F ! . We see from the above examples (and definitions) that � N � � � � E � and� N � � � , � EB- .
More generally, up to conjugation, the facets of

FIH �*= �#? are indexed by

� =	� ? ��� � =��7- � � / ��
�
�
 � ��� ? ��7- ��� / � � �	������� � �
and

��
� � - � � � �  �

the set of ordered partitions of � . We briefly describe how this works. We let � � be

the alcove in � with vertices
�  - � I � � I � 6 $ �� � - �� � �  / �  - � ��*- �  � �  / �

�� / ��
�
�
��  � � ��W�  . To � F � =	� ? we attach the facet �
	 of dimension 	 with vertices - �  M 	 
 2 - P �  M 	 
 2 	 * 2 - P ��
�
�
 �  M 	 
 2 	 * 2 C C C 	�� 2 - P . The parahoric subgroup ���� � � can be de-

scribed as ER- ����	*=�� ? where ��	 is the “standard” parabolic subgroup of � containing� which corresponds to the partition � � =��J- � � / ��
�
�
�� ��� ? . The pro-unipotent radical� �� � � , is then the inverse image in ���� � � of the unipotent radical of the image of ���� � �
in
FIH �*=�� ? �� E � " ER- . Note that if � � H F � =	� ? with � �DH in the usual partial ordering of

ordered partitions, then ��	 ; � K and similarly for the associated parahoric subgroups.
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More generally, note that if � - and �7/ are facets in � =�� ? with � - " �7/ where �J/
denotes the closure of �J/ , then it follows that� � 
 � � , "	� � * � � , " � � * � � " � � 
 � � 

Moreover, as the examples and exercises above show, � � * � � "�� � 
 � � , is a parabolic sub-

group of the connected reductive group � � 
 � � "�� � 
 � � , . The unipotent radical of ��� * � � "�� � 
 � � ,
is � � * � � , "L� � 
 � � , and � � * � � "�� � 
 � � , has Levi component isomorphic to � � * � � "L� � * � � , .

As a tangent, we also observe that if � ����� =�� ? " � �� = ��� =�� ? � E � ? "!� � denotes

the Weyl group, then there exist  �  alcoves in � =�� ? which contain I � in their closure.

This is because these alcoves correspond to the Borel subgroups in
FIH � =�� ? � E � "LEB- �� N � � � "L� N � � � , which contain “ � =�� ? ”.

3.4.2. The Moy-Prasad filtrations for arbitrary , . For arbitrary , , there does not exist such

a nice description of what is happening. We first consider
FIH /2= �4? . In Figure 5 we have

PSfrag replacements

, , � = ��� ) ? =�I+? , � = �3� ) ? =�I+? , � = ) 6 
 ? =�I+?
�



5 9 �9@9 7 5 9�99$9 7

5 9�9� 9 7 5 9 � ) 
� 9 7
5 9 � ) 
� * 9 7

5 ���9 � 7
5 ������ 7 5 � 9�@� 7

5 � 9� * � 7 5 � � ) 
� * � 7

5 �=� *� � 7 5 � �� * � 7 5 � 9��� � 7

I � I � 6 ��*-
FIGURE 5. =4
	� / ? N�� �

identified the apartment of � with the horizontal axis. The vertical axis measures , . Given

a pair =�I � ,.? F � =�� ? � � , we wish to describe the lattice 
 N�� � . Note that the plane has been

divided into convex polygons. The diagonal dotted lines are the graphs of the equations, � �3=�I+? where �YF � . These measure where the root subgroup filtrations “change”. The

horizontal dotted lines are the graphs of the equations , � � where � F � . These measure

where the toral subgroup filtrations “change”. Each of the convex polygons is labeled by

a lattice: if =�I � ,.? belongs to the interior of the convex polygon, then 
 N�� � is the lattice

so identified. For purposes of assigning lattices to every point in the figure, the convex
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polygons are “closed at the top”. We note that 
 N�� � � 
 N�� � , unless the point =�I � ,.? lies on a

dotted line. Finally, note that if we fix , and move to the right, then the positive root space

“expands” while the negative root space “shrinks”.

Fortunately, even though life is not so nice for arbitrary , , there exists a wonderful result

of Moy and Prasad3. Define
� � � � I F(� =�� ?  I is the barycenter of a facet

 


An element of
�

is called an optimal point4.

Lemma 3.4.3 (Moy and Prasad). Suppose � F � =�� ? and , F � . There exist pointsI ��� F � such that 
 N�� � " 
�� � � " 
�� � �
and there exist points I � ��� �*F � such that
 N�� � � , " 
 � � � , " 
 � � � � , 


A similar pair of statements can be made for the Moy-Prasad filtration subgroups.

For example, for
FIH � = �#? , the optimal points, up to the action of � (see below), are the

points �� - 6 �� / 6 �� � ,
��
�/ and � �� � 2 / �� * 2 �� 
� .

Exercise 3.4.4. Describe (up to conjugacy) the optimal points for
FIH � = �#? and their asso-

ciated filtrations 
 N�� � and 
 N�� � , .

4. � -DOMAINS

Recall that the ultimate goal of these notes is to relate certain invariant distributions on� with certain invariant distributions on 
 . Since the distributions in question are invariant,

we will need sets in � and 
 which are invariant. Such a set can never be compact, so the

most we can hope for is to have sets which are invariant, open, and closed. A set with these

properties is called a � -domain.

As we show in this section, it is possible to use the Moy-Prasad filtrations to define� -domains which have very nice properties. In particular, we will define a family of � -

domains which form a “neighborhood basis” of � , the set of nilpotent elements.

By using the Cartan decomposition of � (see [33]), in [18, Lemma 2.4] Howe demon-

strates that, for all integers � , the
FIH �*= �#? -orbit of

� � is contained in
� � 6	� . From, for

example, [13, Lemma 12.2], it is also true that for any compact set 
 " 
 , there exists a

lattice � "G
 such that
�

 "�� 6� . We analyze these statements from the perspective

of Moy-Prasad filtration lattices. After doing this, we look at the situation on the group.

4.1. Some comments on the Bruhat-Tits building of � . Before we can continue, we

must recall some facts about � , the reduced Bruhat-Tits building of � . To each maximal

split torus � � in � we can attach an apartment � =�� ��? exactly as we did above. The building

of � can then be thought of as the “gluing” together of all these various apartments. In

Figure 6 we present a picture of � for
FIH /0= �#? . An apartment in � is the image of any

3You will not find the result stated exactly as follows, but it is easy to derive this formulation.
4Beware, � plays many roles in these notes. However, there is no possibility of confusion.
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FIGURE 6. A picture of the building of
FIH /0= �#?

continuous injective map from � which maps integers to vertices.

Just as any two maximal split tori in � are conjugate, there is a natural action of �
on �3= � ? with respect to which any apartment can be carried into any other. Moreover, a

version of the two body problem can be solved: given any two points in the building, there

is an apartment which contains both of them. Combining these two facts we have: for any

two points I ��� in � , there exists a �QF<� such that �@I � � � F � =�� ? . (Here �@I denotes the

image of I under the action of � on � = � ? .) Finally, the action of � on � is semisimple;

that is, for � F � , either there is a point in � which � fixes, or there is a line (i.e., a

one-dimensional subspace of some apartment) on which � acts by nontrivial translation.

Suppose I F � and , F � . We define the Moy-Prasad filtration lattices 
 N�� � and 
 N�� � ,
as follows. Choose � F�� so that �@I F(� =�� ? .
 N�� � � � � ) - �J
  N�� ��� � and 
 N�� � , � � � ) - �J
  N�� � , � � 

One can check that these definitions make sense. For , � 


we define the subgroups � N�� �
and � N�� � , in a similar fashion.

Finally, we note that � is endowed with a nontrivial invariant metric, denoted � � � � .
Moreover, with respect to � � � � , � has nonpositive sectional curvature.

4.2. � -domains for the Lie algebra. We begin with a generalization of the result of

Howe discussed above; the proof of this result (from [1]) nicely illustrates the benefit of

working with the Moy-Prasad filtration lattices.

Lemma 4.2.1. Let I � � F � , and let , F � . Then 
 N�� � " 
 � � � 6 � .

Proof. Since 
 N�� � " 
 � � � 6 � if and only if 
  N�� � " 
  � � � 6 � for � F@� , we may assume

that I and
�

are elements of � .

Choose � F $ � =�� ? � � such that I � � 6�� (working modulo
$ � = + = � ? ? � � ). Let� � be a Borel subgroup determined by � . That is, � � has a Levi decomposition � � � � � �

such that for all roots
) F ! 2� � , the set of roots which are positive with respect to

� � , we

have � ) � � � � 

.
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Let �� � � � �� � denote the parabolic opposite � � � � � and let 
 � �� �46 	�6 � � denote

the associated Lie algebras. We have


 N�� � � 	 � � �
� & ����� & MON�P ��� � 
 &� 	 � � �
� & �������& ��
���
 , � � and

& MON�P ��� � 
 & � �
� & �������& ��
 , � � and

& MON�P ��� � 
 &� 	 � � =4
 N�� � � �� � ? � =4
 N�� � � � � ?" 
�� � � 6 � � " 
 � � � 6 � 
��

In fact, a kind of converse to the above lemma is true. Namely, if � F 
 belongs to
 N�� ��6� for all I F � , then there is a point
� F � such that � F@
 � � � . This result along

with the above lemma give us the following theorem.

Theorem 4.2.2. 
N �	� 
 N�� � ��


N ��� =4
 N�� � 6 � ? 

In order to simplify our notation, we define 
 � ��� � N ��� 
 N�� � . From its definition, 
 � is

open and invariant. From the above theorem we have that 
 � is closed. Consequently, 
 �
is a � -domain.

We now consider some examples. The set 
 � is usually referred to as the set of compact

or integral elements of 
 . The set 
 � , is usually called the set of topologically nilpotent

elements in 
 ; it consists of those � F@
 such that powers of � tend to zero in the � -adic

topology. These � -domains have very natural interpretations; namely,


 � � � � F 
  H*= ( � ? ��, for all eigenvalues
( � of �  


(If � is a finite extension of � , then there exists a unique extension of H to � .) For
FIH �*= �4?

and � F�
 , the value of H*= ( � ? must lie in the set
� �4"�� E� F �  .

Of course, just as we have Moy-Prasad lattices of the form 
 N�� � , , we also can define
 � , ���� N ��� 
 N�� � , . These � -domains satisfy the obvious analogues of the results dis-

cussed above. From the previous paragraph, we have that 
 � A� 
 � , implies that , � �#" �
for some � F � .

Exercise 4.2.3. Define the subspace � � of � �� =4
#? by

� � ��� �
N �	� �'=4
4"!
 N�� ��?

where the sum is interpreted as follows. A function � belongs to � � if and only if � can be

written as a finite sum � � $ � � � with � � F � � =4
#"!
 N / � ��? for some I � F � . We can define

� � , in a similar way. Show that the Fourier transform gives us bijective maps from � � ,
to � �� =4
 ) ��? and from � � to � �� =4
 M�) � P , ? .
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4.3. � -domains in � . We now turn our attention to the group-side of things. Unlike the

Lie algebra, an element of the group can only belong to a Moy-Prasad filtration subgroup

if it first belongs to a parahoric. It turns out that the interesting part of the story here rests

in proving the equality


N ��� � N�� � � 


N ��� � N�� � � �
where

�
denotes the set of unipotent elements in � . Once this result is known to be true,

it is very easy to establish the equality� � ��

N �	� � N�� ��� �

where , � 

and �
� �  N �	� � N�� � . As above, it follows immediately that � � is a � -

domain.

We show how to prove the equality when , � 

.

Lemma 4.3.1. � � � 

N ��� � N � � 


Proof. We first show that the right-hand side is a subset of the left-hand side. We will

argue by contradiction. Suppose that � F�� N �	� � N�� � � � does not belong to � � .
Since the action of � on � is semisimple, we either have that there is a point I in �

which � fixes or a line 	 in an apartment ��� of � on which � acts by nontrivial translation.

In the first case, we can write � � � ��� with �RF@� N�� � and � F � . Since � is unipotent,

it must live in ��� � � for some
� F � . But, from a result of Eugene Kushnirsky this implies

that � F@� N�� � [10, Lemma 4.5.1].

In the latter case, there exists a facet � � in � � such that � � � 	 is open in 	 . For allI ��� F � � we have ��� � � � � N�� � . By hypothesis, there exist elements �RF=� N�� � and � F �
such that � � � � . Since � is unipotent, there exists � F� which is fixed by � . We have

that for all
� F � � � 	
� � � � =�� � � ? � � � � � =�� � � � ? � � � � � =�� � � � � ? � � � � � =�� � � � ? 


Thus, we have , for
� ��� � F � � � 	 a picture something like that described in Figure 7.

However, since � has nonpositive sectional curvature, the line segment from I to �
must be shorter than the line segments from

�
and � � to � . Similarly, the segments from� � to � must be shorter than the segments from I and �@I to � . Consequently, we have

� � � � =�I � � ? � � � � � =3� � � � ? � � � � � =�I � � ? �
a contradiction.

We now show that the left-hand side is a subset of the right-hand side.

We need to show that for I ��� F � , we have � N " � ����� . As in the proof for the

Lie algebra, we may assume that I and
�

both belong to � . Let � � � � � � be a Borel

subgroup of � so that the (spherical) chamber in � determined by
� � is invariant under

translation by the vector = � � I+? .
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PSfrag replacements

I �

�@I� �
	

�

FIGURE 7

Let �� � be the unipotent radical of the parabolic opposite � � � � � . From [3] we can

write � � � ��� �� �#� � �#��� . It follows that we can write� N�� � � � �N � �� �N � � �N ��� �
where

� �N � � � � � N�� � and �� �N � �� � � � N�� � . Because of the way in which
� � was chosen,

we have
� �N " ��� � � . Thus, if �RF<� N , then there exist �7- � � / F � N , � F � N , and

# F�� �
such that � � �7-J� � � � / � #� =	�7-J� � ��� ) -- ? �5= � �7-J� � / � # ?F � � � � 
��

4.4. A neighborhood basis for the nilpotent cone. We remark that

� � 

�

 �

and
� � 


�
�
� 


It follows that the � -domains we have defined provide us with a neighborhood basis of

the nilpotent cone (resp., unipotent variety) consisting of open, invariant, closed neighbor-

hoods.

5. NILPOTENT ORBITAL INTEGRALS AS DISTRIBUTIONS

A distribution on 
 is any element of the linear dual of � �� =4
#? . The aim of this section

is to convince ourselves that integrating against a nilpotent orbit defines a distribution on
 . We follow the argument of Ranga-Rao [29].
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5.1. Orbital integrals. Fix an element
� F<
 . Let

��� � � � ��� � � � � ) -  � F&� 
de-

note the � -orbit of
�

. We identify the orbit of
�

with the homogeneous space � "�� � = � ? .
Thus, the tangent space to the orbit of

�
at the point

�
is identified with 
4"�� � = � ? .

We define an alternating bilinear form � � � � on 
 by ��� � � � � ��� = � � � � � � ��? for
� � � F�
 . Fix an element � F$
 . A calculation shows that ��� � � � � 


for all � F�
 if and

only if � F�� � = � ? . Since we have a similar statement when we switch the roles of � and� , it follows that � � � � induces a nondegenerate alternating form on 
4"�� � = � ? . Thus, the

dimension of the orbit is even, say
� X

.

Similarly, for each  � � � � � ) - F � � , we have a nondegenerate alternating symmet-

ric form on � ;���� � = �	� ? . Consequently, there exists a nondegenerate, invariant two-form


 for
�
�

and from this we can form a nonzero, left-invariant volume form 
�� 
�'�	� ��� 

(
X

times) on
�	�

. Let �B- � � / ��
�
�
 � � / V be coordinates for 
#"�� � = � ? . For each
� 9

� 9 � X
, fix a one-form +� � and associated measure  +� �  normalized so that for all� F � �� =4
4"�� � = � ? ? , we have � =�� ? � � = � � ? , where the Fourier transform is taken

with respect to the measure � / V� � -  �� �  . There exists a locally convergent power series� =��B- � �'/ ��
�
�
�� � / V ? so that (locally)


 � � =��B- � � / ��
�
�
 � / V ? +�B-���+�'/��Q�	� ������ / V 


Define

 
  � �  � =��B- � � / ��
�
�
�� �'/ V ?	 / V�� �7-  �� �  

Thus, we have an invariant measure on

���
.

Exercise 5.1.1. Check that this definition is invariant of the various choices we have made.

5.2. A framing of the problem. If
�

is a semisimple element of 
 , then
���

is closed in
 . Consequently, if �QF4� �� =4
#? , then the restriction of � to
���

is an element of � �� = �	� ? .
So it makes sense to define the distribution

��� � � �� =4
#? C�� by setting

�	� = �+? ��� � �  ���� M � P � =  � ?��� � 

for � F�� �� =4
4? . Here L� � denotes the invariant measure on � "�� � = � ? defined above.

What if
�

is not semisimple? In particular, what if
�

is nilpotent? In this case, we need

to do some work to show that for arbitrary �QF�� �� =4
4? the integral� �  �� � M � P � =  � ? L� �
makes sense.

5.3. The basic notation associated to nilpotent orbital integrals. We begin by recalling

the familiar parameterization of nilpotent orbits in 
 . We then discuss various properties of

nilpotent orbits which will be important in the sequel.

From basic linear algebra we know that the nilpotent orbits in 
 can be parameterized

by
� =	� ? , the set of ordered partitions of � . To � F � =	� ? we associate the nilpotent

element � 	DF	� � 
 N � � � having Jordan canonical form corresponding to � . That is, if
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� � =��7- � � / ��
�
�
�� � � ? , then in the � th block of size � � � � � we put the matrix with ones on

the superdiagonal and zeroes elsewhere. For example, for � � = ������� � ? F � =��.? we have

� 	 �
������
�


 � 
 
 

 
 
 
 

 
 
 � 

 
 
 
 

 
 
 
 


�������
�




Note that the nilpotent orbits in 
 N � � � "!
 N � � � , �� � �*=�� ? are also indexed by
� =	� ? and the

map taking � 	 to the image of � 	 in � �*=�� ? gives a bijective correspondence between� = 
 ? , the set of nilpotent orbits in 
 , and the set of nilpotent orbits in � �*=�� ? .
We let

� 	 denote the � -orbit of � 	 . Note that if � � �+� in the usual partial order on� =	� ? , then
� 	 " �� 	 � .

Exercise 5.3.1. Show that if
�

is a nilpotent orbit such that
� � =�� 	 6 
 N � � � , ? A��� , then� 	 is contained in the � -adic closure of

�
. Moreover,

� 	 � =�� 	 6 
 N � � � , ? � � 3 ��	 
 , � 	
for all non-negative , .

Note that if � F � , and
# F � S , then

# � F � and in fact,
# � and � are

FIH �*= �4?
conjugate. (In general, it follows from Jacobson-Morosov that

# / � and � are conjugate,

but in
FIH � we can do better.) So, � and each nilpotent orbit are closed with respect to

scaling.

We can associate a parabolic subgroup �'=�� ? of � to � as follows: For all positive

integers
0
, the matrix � "	 acts on � � � � , and we define � " �� � � =�� "	 ?/"�� . Define�'=�� ? � � �BF@�Y ����� " "�� " for all positive

0 
. Then � 	 lies in the nilradical � =�� ? of the

Lie algebra of �'=�� ? , and the �'=�� ? -orbit of � 	 is dense in � =�� ? and equal to
� =�� ? � � =�� ? .

We need most of the basic facts about ��� /2= �4? -triples. For a good reference, see [4]. We

can complete � 	 to an ��� /2= �4? -triple = � 	 ��, 	 � � 	�? . Explicitly, the � th block of
, 	 is given

by the element � � ;�� = =�� � � � ? � =�� � � 	 ? ��
�
�
�� = �5� � � ? ? and the � th part of
� 	 is given by certain

entries on the super-subdiagonal. We let � 	 F $ � = � ? denote the associated one-parameter

subgroup, that is, the � th block of � 	+= # ? looks like � � ;���= # M 	 / ) - P � # M 	 / ) � P ��
�
�
�� # M - ) 	 / P ? . For

� F � , we define 
 =	�E? � � � F 
  � M���P � � # � �  


We have 
 � $ � 
 =	� ? . For
0 F �

, define 
�=E� 0 ? � � $ � � " 
 =	� ? . We let ��	 denote

the parabolic subalgebra 
 =E� 
 ? and let � 	 � 
 = 
 ? while the nilradical of � 	 is denoted

by � 	 (
� 
�=E� � ? ). We let � 	 denote the corresponding parabolic subgroup with Levi

decomposition � 	 � 	 . The � 	 -orbit of � 	 is equal to �  � 	 6 
 =E� 	 ? and �  � 	 is an

open and dense subset of 
�= � ? . Finally, it is true that � � =�� 	�? "�� 	 .

5.4. A sketch of the proof that nilpotent orbital integrals define distributions. Fix

� F � =	� ? . Let �QF�� �� =4
4? .
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The Iwasawa decomposition (see [33]) tells us that we can write � � � N � � � � 	 . Fix a

Haar measure 4� on E and a left Haar measure  � � on � 	 so that

� � � =3��?��� � ���
 �� � � � 3 ��	 � �*= � � ? 4�

for all � F
� �� = � ? , the space of complex-valued, compactly supported, locally constant

functions on � . Because it will be important, we recall that for all � � � X � � � F � 	 �
� 	 � 	 we have ���= � � � � ) -� ? ���� � � � = X �  � @? �� ) - �� � .

Define ��QF�� �� =4
4? by �� =�� ? ����� � 3 ��	 � � = � � ? 4� . Let us assume for the moment that

(*)
� �  �� � M �  P �� = ( � ? �� � �

converges. (Here �� � � is the quotient measure.) In this case, we have

=��!? � �	�  ���� M �  P �	
 � = � ( � ? @� �� � � � � �  ���� M �  P � =  � 	�? �� � �
and so we can define the invariant distribution

� 	 by

� 	+= �+? � � �  ���� M �  P � =  � 	W? L� � 

for � F�� �� =4
4? .

We now sketch the proof of why (*) makes sense. Let  + be a Haar measure on 
 =E� � ? .
We’d like to define a function � � on 
 =E� � ? so that

=��0? � ���
 �  2 � M � � P �� = + ?  � � = + ?	� + 


For � � �YX � � � as above, we have  = � � + � ) -� ? � �� � � � = X �  � M ��/ P ? �� ) -  + . Consequently, it

is sufficient to produce a nonzero function � � with the property � � = ( � + ? � � � � = � �  � M - P ? .
The map � 8C : � 8C ��� = � � � ?-= induces an isomorphism of 
 = � ? with 
 = � � ?�� . Just

as at the beginning of this section, for
+ F 
 = � ? , we can define an alternating bilinear

form � � � # on 
 = � � ? . When
+ � � 	 , the form is also nondegenerate. Consequently,

both 
�= � ? and 
 = � � ? are even dimensional (of dimension
� � � ). Let  # be the matrix which

represents � � � # with respect to some fixed basis of 
 = � � ? . From [22, Theorem 6.4] there

is a polynomial (Pfaffian) �� of degree � � on 
�= � ? so that � � � =  # ? � =��� = + ? ? / . Moreover,

since � � � =  M�� # P ? � � � � = X ) -  � M�) - P ? / � � � � =  # ? , the polynomial �� transforms in the

manner we desire. For
+ F$
 =E� � ? , set � � = + ? � ���= + /	? where

+ / denotes the image of Z

under the projection map from 
 =E� � ? to 
 = � ? .
Example 5.4.1. For the partition = 	���� ? F � =��2? , we have that the dimension of 
�= � � ? is

four. The space 
�= � ? is spanned by the Chevalley basis elements � ��
 * , � � * � and � ����� . If+ � I � � 
 * 6 � � � * � 6 �L� ����� , then � � = + ? � I � .
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5.5. An important calculation. For
0
	



we calculate
� 	+=�� � 	 6 � " ��? .

Proposition 5.5.1.
� 	+=�� � 	 6 � " ��? � � M�M - ) / " P C ��� � M��  P  / P

Proof. Suppose that ��	 0 is very large. Let
� �	 ���


 . � 	 � � � � 	 E� F�E'�  . It follows

from Exercise 5.3.1 that

� 	+=�� � 	 6 � " ��? � � E " � E'��� � 
 ' =�� 	�? �#� � 	*=�� � �	 ��? 

Now, by definition, we have

� 	+=�� � �	 ��? � :��	;����� ��0= � �	 ?� :��	;�� � ��� 
 � C � ��� * � C C C � ��� * � � : = � � 6 � � =�� 	�? ? "�� � =�� 	�?-=� � � - ) � 6 � � =�� 	�? � � � 6
� � =�� 	�? � ) -  /
� � �	� 2 
 ) . 5 =�� 	�? � �	� . =�� 	�? � -  /� � M - ) � P � � � � -  / 


On the other hand,

� E " � E&��� � 
 ' =�� 	#? � � � E " � E'� �� � 
 ' =�� 	#? � �

 . =�� 	�? � 


After putting the two pieces together and doing a bit of calculation, we arrive at

� 	+=�� � 	 6 � " ��? � � �
� � =�� 	�? � �
� ' =�� 	�? �� � � � � " � � � � � � � - � -  /� �	� � =�� 	�? � �	�

 =�� 	�? � -  / 


The proposition follows immediately.
�

5.6. Nilpotent orbital integrals are homogeneous. Suppose
# F � S . For �GF&� �� =4
4?

we define the dilation � � F�� �� =4
4? of � by
#

via � � =�� ? � � = # � ? . For � F � =	� ? we have

� 	+= � � ? � � �  �� � M �  P � =  = # � 	�? ? L� � 

Consequently, since nilpotent orbits are closed with respect to scaling and the invariant

measure on a nilpotent orbit is unique up to a constant,
� 	+= � � ? and

� 	+= �+? must differ by

a constant. A calculation shows that

� 	*= � � ? �  #  �� � 2��  5* � 	*= ��? 

For example, from Proposition 5.5.1 we have

(2)
� 	*=�� � M�) / " 2 - P � 	 6 � - ) " ��? � � 
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6. THE FOURIER TRANSFORMS OF INVARIANT DISTRIBUTIONS

6.1. Basics. A distribution on 
 is any element of the linear dual of � �� =4
4? (no topological

restrictions). We denote the subspace of invariant distributions on 
 by
� =4
4? 5.

Suppose �UF � =4
#? . We define the Fourier transform � F � =4
4? of � by

� = ��? ��� � = �+?
for � F�� �� =4
4? .

It is a remarkable fact that � is represented by a locally integrable function; that is, there

is a function � F�� -loc =4
4? such that for all � F�� �� =4
#? ,
� = ��? � � � � =�� ? � � =�� ? +� 


Unfortunately, describing this function is beyond our abilities in all but the simplest situa-

tions.

Example 6.1.1. Consider the trivial nilpotent orbital integral
� M - � - � � � � - P F � =4
#? . For � F� �� =4
#? we have

� M - � - � � � � � - P = ��? � � = 
 ? � � � � =�� ? � ' = ��� = 
 �J� ? ? �� � � � � =�� ? ��
and we also have

� M - � - � � � � � - P = ��? � � � � =�� ? � � M - � - � � � � � - P =�� ? �� 


We therefore conclude that � M - � - � � � � � - P � �
.

We let 
 r.s.s. denote the set of regular semisimple elements in 
 ; this is a dense open sub-

set of 
 . In our situation, 
 r.s.s. consists of those elements of 
 having distinct eigenvalues.

The main idea of this section is to present a very elegant description of � =�� ? when� F � =4
4? and � F 
 r.s.s.. (From this description, it will follow that � is represented

by a locally constant function on 
 r.s.s..) The existence (of a form) of this expression was

conjectured by Paul Sally, Jr. and proved by Reid Huntsinger [21]. The proof follows an

argument of Harish-Chandra [13].

Originally, Huntsinger and Sally were only interested in studying the behavior of the

Fourier transform of a nilpotent orbital integral. We shall temporarily restrict our attention

5According to Howe, he chose the letter � because � (for invariant) was already taken, and � follows the

letter � in the alphabet.
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to this situation. Suppose � F � =	� ? . For �QF�� �� =4
#? we have��� � =�� ? � � 	+=�� ? �� � � 	*= ��? � � 	+= �+?
� � �  �� � M �  P � =  � 	�? L� �� � �  �� � M �  P � � � =�� ? � ' :���� =  � 	 �J� ? = �� L� �
� ������� � =�� ? � �  �� � M �  P ' : ��� =  � 	 ��� ?-= �� � �� 


So, if we could justify the equality in quotation marks, we’d have

� 	+=�� ? ��� �  �� � M �  P ' : ��� =  � 	��J� ?-= L� �� � 	 : � 8C ' = ��� = � ��� ? ?-= 

This is nearly correct; we now describe what is true.

Theorem 6.1.2 (Reid Huntsinger). Let E be any compact open subgroup of � and let @�
denote the normalized Haar measure on E . For all � F�
 r.s.s. we have

� 	*=�� ? � � 	 : � 8C ��
 ' = ��� = � � � � ? ?�4��= 

Remark 6.1.3. For reasons which will become clear later, we remark that the function � 	
is canonical. On the face of things, it depends on two choices: the additive character

'
and the choice of a measure on

� 	 . However, our choice of the measure on
� 	 was not

arbitrary; it depended on
'

. As one can verify, this dependence makes � 	 canonical.

Remark 6.1.4. In our situation, since every nilpotent orbit is Richardson, there is a very

nice description, due to Howe, of the function � 	 . Namely, � 	 can be related to the

character of the representation obtained by inducing the trivial representation on �'=�� ? up

to � .

6.2. A more general statement. More generally, following a suggestion of Bob Kottwtiz,

Reid Huntsinger proved the following statement.

Theorem 6.2.1 (Reid Huntsinger). Fix , F � . If � F � =4
 ��? , then � is represented on
 r.s.s. by � 8C � = � � ? 

Here, for

� F	
 , � �&= � ? ��� � 
 : ' = ��� = � � � � ? ?-= 4� . (As before, E is a compact open

subgroup, and 4� is the normalized Haar measure on E .)

At the heart of the proof of this theorem lies the statement that the map from 
 r.s.s. to� � =4
#? sending � to � � � � ��� � � � � 
 � � is locally constant. Since the verification of this

statement requires some fairly detailed analysis, we shall skip the proof. This statement

immediately implies that the function � 8C � = � � � �!? � � = � � ? from 
 r.s.s. to � is locally

constant.
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Suppose �QF�� �� =4
 r.s.s. ? . We need to show

� = �+? � � � � =�� ? �J� = � � ? +� 


From the previous paragraph, there exists a finite collection
� 
 �  V� � - of compact open

disjoint subsets of 
 r.s.s. such that both � 8C � = � � ? and � 8C � =�� ? are locally constant

on 
 � and the support of � is contained in
� 
 � . Using Fubini’s theorem and the invariance

of � , we then have6

� � � =�� ? ��� = � � ? �� � V�
� � - :/��;���� ��= 
 � ? ��� =�� � ? ��� = � � / ?� � : V� � �7- :��	;������ = 
 � ? ��� =�� � ? � � � / =� � : � 8C � � � =�� ? � � ��= � ? �� =

� � : � 8C � � � =�� ? � 
 ' = ��� = � � � � ? ? 4� +� =
� � : � 8C � 
 � = � � ? @��=� � = �+? 


7. CHARACTERS

In this section we define the character of an admissible representation and discuss some

properties of characters.

7.1. Admissible representations. Fix an admissible representation =�� � � ? of � . Recall,

from Gordan Savin’s lectures [33], that =�� � � ? is a representation for which

(1) for all  F � there exists a compact open subgroup E such that

 F �

 ��� �  F �Y��1= �#?  �  for all � F�E 

and

(2) for all compact open subgroups E of � we have � � :�� �


� T

.

The second condition is equivalent to saying that for all compact open subgroups E of �
and all irreducible representations � of E , the multiplicity of � in � is finite.

Example 7.1.1. Suppose �� is a cuspidal representation of
FIH �*=�� ? �� E � "LEB- . Inflate

�� to a representation of E � and extend this inflation to a representation � of
+ = � ?1�+E �

where
+ = � ? denotes the center of � . The representation =���� � ���#? obtained by (compact)

induction of � from
+ = � ? �!E � up to � is an (irreducible) admissible representation.

6This part of the proof supports David Vogan’s adage: “The � -adics: if you can add, you can integrate.”
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Example 7.1.2. Suppose
X 	



and �� is a character of � "!� V . Inflate �� to a character

�

of � . Since the unipotent radical
�

of � is normal in � , we may extend
�

to a character

of � . The representation =���� � ��� ? obtained by (compact) parabolic induction of
�

from �
to � is an admissible representation of � .

7.2. The character distribution. We define the character distribution,
���

, associated to

the representation =�� � � ? as follows.

For �QF�� �� = � ? , we define �1= �+? F���� � = � ? by

� = ��?  � � � � =3��? � �1=3��?  ��
for  F � . Since � is compactly supported and locally constant and =�� � � ? is admissible,

this integral is really just a finite sum. In fact, if E is a compact open subgroup of � such

that � = �4- ���2/�? � � =3��? for all �4- � �2/ F�E and � F@� , then we have

�1= �+?  � � =�� E������ � � E���?  � �1=�� E���?�� = ��?�� =�� E���?  

(Here � denotes the usual convolution operation.) Thus, � = ��? is a map from � to �



. If( 
 � � :���;����� 4=�E ? ) - � �1=�� E���? , then

( 

is the projection operator from � to �



, and we

have � � �


� = � � ( 
 ? � 


Consequently, since � � : � = �


? � T

, it follows that � = ��? is a finite-rank operator. We

can therefore define the character distribution
��� � � �� = � ? C��

by sending � to ��� =�� = ��? ? .
Just as the Fourier transform of an invariant distribution on 
 is represented on 
 r.s.s.

by a function in � � =4
 r.s.s. ? , so too is the character distribution [15]. We abuse notation

and denote this function by
�	� F � � = � r.s.s ? . ( � r.s.s denotes the open, dense subset of �

consisting of regular semisimple elements, that is, those elements of � whose eigenvalues

are distinct.) We call this function the character of � .

Remark 7.2.1. Fix 3 F � r.s.s and � 	



large enough so that 3 E � " � r.s.s. Define�	� � :���;����� 4=�E&�W? ) - � � 3 E&��� . We then have

�	� = ���W? � � � �	�*=3��? � ��� =3��?��� � :/��;����� 4=�E&�W? ) - � 
 . ��� = 3*�#?�4� 

Since the function

�
�
is locally constant on � r.s.s, the right-hand side becomes

�
� = 3*? for

all � sufficiently large. Thus, “in the limit” the function
���

looks like a character.

7.3. A calculation. Fix
0 � �

.

Suppose that �� is an irreducible representation of E " "LE / " . Since E " "LE / " is abelian, ��
is a character. Let � denote the corresponding character of E " ; we regard � as an element

of � �� = � ? in the obvious way.

Let � � � 
 ' � denote the restriction of � to E " . Suppose that� � � 
 ' � � �
����


' X = � ? �
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where
X = � ? denotes the multiplicity of � in � � � 
 ' � . We have

�	� = � ? � ��� � � � =3��? � �1=3��? ��
� ��� ��
 ' � =3��? � �1=3��? ��� ��� ��
 '

�
� ��


'
� =3��? � X = � ? �1=3��? L�

� ��� ��
 '
�

�� ���


'  


* '
� =3��? � X = � ? �1=3��?���

�YX = � ) - � � ? �	:��	;����� @=�E " ? 

In other words, the character picks out the multiplicity of � ) - in � � � 
 ' � (up to a constant).

7.4. Depth. The depth of a representation was introduced in the fundamental papers of

Allen Moy and Gopal Prasad [28, 27]. Essentially, the depth of a representation is a rational

number which measures the first occurrence of fixed vectors with respect to all filtration

subgroups of � that arise naturally from Bruhat-Tits theory.

Recall from
�
3.4.2 that

�
denotes the set of optimal points. Up to conjugation, the set

of optimal points is finite, and so the subset
� ,�F � 1
 N�� � A� 
 N�� � , for some I F � 

is

discrete (and in fact, is a subset of � ). For an admissible representation =�� � � ? , we define
� =�� ? , the depth of =�� � � ? , by

� =�� ? ��� : � � � , FR� � �  there is an IQF � such that � � 3 	 
 , A� 
� 

Proposition 7.4.1. � =�� ? is the unique rational number satisfying the following statement.

If =�I � ,.? F � � ��� � with � � 3 	 
 , A� ��
�
, then , � � =�� ? .

Proof. Suppose =�I � ,.? F � � ��� � with � � 3 	 
 , A� ��
�
. From the group version of

Lemma 3.4.3 there exists
� F �

such that � N�� � , ; � � � � , . Consequently,
��
� A�� � 3 	 
 , " � ��� 	 
 , .

�

All the various things you would want to be true about the depth of a representation are

true. For example, If � is an irreducible representation of a parabolic subgroup of � , and

� is an irreducible subquotient of the induced representation, then � =�� ? � � = � ? .
Example 7.4.2. Any representation with Iwahori (that is, � � ) fixed vectors has depth zero.

Example 7.4.3. The representation =���� � ����? defined in Example 7.1.1 does not have Iwa-

hori fixed vectors, but it does have depth zero.

Example 7.4.4. The representation =��� � ���W? defined in Example 7.1.2 has depth = X � � ? .
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7.5. Elementary Kirillov theory. Fix an irreducible representation =�� � � ? .
For nilpotent real groups, Kirillov [24] established that the representations were param-

eterized by coadjoint orbits in the linear dual of the Lie algebra. In our context, the term

Kirillov theory is used to describe the connection between representations of compact open

subgroups occurring in � and coadjoint orbits in the linear dual of 
 . Via our nondegener-

ate trace form, we have identified 
 with its dual. The type of result discussed below was

first studied, I believe, by Howe [17].

Fix , � � F � � � and I � � F � .

The map � 8C =3� � � ? induces an isomorphism of the abelian groups � N�� � , "�� N���M / � P ,
and 
 N�� � , "�
 N�� M / � P , . Moreover, every character of 
 N�� � , "!
 N���M / � P , is of the form �� 8C' = ��� =�� � � ? for some �� F�
 N�� ) / ��"!
 N�� ) � . (That is, the Pontrjagin dual of � N�� � , "�� N�� M / � P , ��
 N�� � , "!
 N���M / � P , is isomorphic to 
 N���) / ��"!
 N���) � .)

Fix a character �� of � N�� � , "L� N�� M / � P , and a character �� of � � � � , "�� � � M / �EP , Let � �'6
 N�� ) � F�
 N���) / ��"!
 N���) � represent �� and ��� 6�
 � ��) � F�
�� � ) / � "!
�� � )�� represent �� .

Proposition 7.5.1. If � and � both occur in � , then there exists a � F�� such that =���� 6K
�� � ) � ? � =�� � 6�
 N�� ) ��? A��� 

Proof. Let � �
" � (resp. ��� " � ) denote a one-dimensional subspace of � on which� � � � 3 	 
 , � (resp. � � � � � 	 � , � ) acts by � (resp. � ). Since =�� � � ? is irreducible, there exists

a � F@� such that the image of �1=3��? � � under the projection of � onto ��� is nonzero. This

implies that for all �RF@� N�� � , �  � � � � , , we have

�J= � ? � � =3� ) - ����? 

Thus, for all

, F 
 N�� � , �  
 � � � , , we have' = ��� =�� � � , ? ? � ' = ��� =  ���3� , ? ? 

This implies that for all

, F<
 N�� � , �  
 � � � , , we have ��� = =�� �
�  ���.?7� , ? F � . Conse-

quently, =�� �
�  ���.? F =4
 N�� � , �  
 � � � , ?-� � 
 N���) �+6  
�� � )�� . The proposition follows.

�

7.6. Understanding the distribution � � � ���� M � � 24. 5 , P �	� . Let =�� � � ? be an irreducible ad-

missible representation.

From our discussion of depth, we know that we can find an IQF � such that � � 3 	 � 24. 5 , A���
�
. Thus, the trivial representation of � N�� 		M � P , occurs in � ; the associated coset in 
 is
 N�� )
		M � P .

Now fix �
	 � =�� ? , � F � , and �� F �� � � � "�� � � � , such that the character � of � � � � occurs

in � . Let ��� 6�
 � ��M�) �EP , F�
 � � M�)�� P "!
 � � M�)��EP , be the coset corresponding to �� .

From our discussion of Kirillov theory, there exists a � F@� such that  
 N�� )
		M � P � =����+6
 � � M�)�� P , ? A��� 
 However, from Lemma 4.2.1, we have 
 N�� )
		M � P " 
 � � )
		M � P 6 � " 
 � ��M�) �EP , 6 � 


Consequently, we can assume that �� is nilpotent!

We now use this fact to say something about the distribution � � � � �� M � � 24. 5 , P ��� . For a

function �8F � �� =4
 		M � P , ? , we define
�� F � �� = � 	�M � P , ? by

�� =3��? � � =3� � � ? . We define
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the distribution
�	� �

�
on 
 by

�	� �
� = �+? � ��� = �� 	�M � P ? where � 	�M � P � � ��� 
 		M � P , � . We let ���

denote the Fourier transform of
�	� �

�
.

From Exercise 4.2.3, we know that the Fourier transform of an element of � )
		M � P
belongs to � �� =4
 		M � P , ? . Suppose I F � and � 	 � =�� ? . If � F �'=4
 N���) � "!
 N���)�		M � P ? ,
then we have ��� = �+? � ��� = � �+? . It follows from our discussion above and a few lines of

calculation that

��� = �+? A� 

implies ������� = ��? � =4
 N�� M�) �EP , 6 � ?3A��� 


This last statement is equivalent to the statement

(3) ��� = ��? A� 

implies ������� = ��? � 
 M�) �EP , A��� 


7.7. The Harish-Chandra–Howe local character expansion. Considerations similar to

those above led Roger Howe to make his finiteness conjectures [19] (which we will dis-

cuss later) and establish the following remarkable connection between the character of an

irreducible representation of � and the Fourier transforms of nilpotent orbital integrals.

Theorem 7.7.1 (Harish-Chandra–Howe local character expansion). If � is an irreducible

admissible representation of � , then there exist constants � 	*=�� ? indexed by � F � =	� ? such

that

(4)
�	� = � 6K� ? � �

	���� M � P � 	+=�� ? � � 	*=�� ?
for all � F�
 r.s.s. sufficiently near zero.

Remark 7.7.2. Howe [16] proved this result without any restrictions on the characteristic of� . Later, under the assumption that the characteristic of � is zero, Harish-Chandra [13] gen-

eralized the proof to all connected reductive groups. The above theorem and its analogues

(local expansions about any semisimple point) play a crucial role in Harish-Chandra’s

proof that characters are locally integrable on � (not just on � r.s.s). (The question of

integrability is still open for arbitrary groups in positive characteristic. From work of

Rodier [30] and Lemaire [25], it is known to be true for
FIH �*= �#? when � has positive

characteristic.)

One of the difficulties with this theorem is that it provides no indication of where equa-

tion (4) ought to hold. The conjecture of Hales, Moy, and Prasad [28] is a precise statement

about this issue:

Statement 7.7.3. Equation (4) ought to be valid on 
 r.s.s
		M � P , .

For integral-depth representations this was proved by Waldspurger [35]. With some

restrictions on � , it was proved for arbitrary depth representations in [9].
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8. AN INTRODUCTION TO HOWE’S CONJECTURES AND HOMOGENEITY

In his paper, Two conjectures about reductive � -adic groups, Howe proposed two re-

markable finiteness conjectures that now bear his name. Howe’s conjecture for the Lie

algebra looks like:

� � : � � � � � � M �  �� P � = 
 ? � T 


Here 
 " 
 is any compactly generated, invariant, and closed subset of 
 ,
� = 
 ? denotes

the space of invariant distributions supported on 
 , and � is any lattice in 
 . For � F � = 
 ? ,� � � � � M �  �� P �
denotes the restriction of � to � � =4
4"�� ? . Howe’s conjecture for the group looks very simi-

lar:

� � : � � � � � � M �  
 P � = 
 ? � T 


Here E is a compact open subgroup of � , and 
 is a closed, compactly generated, invariant

subset of � , and
� = 
 ? denotes the space of invariant distributions which are supported on


 .

Of course, although we still refer to these statements as Howe’s conjectures, both are

known to be true. Howe’s conjecture for the Lie algebra was proved in the 1970s by

Howe [16] and later by Harish-Chandra [13] for general groups (but only in the charac-

teristic zero setting). Waldspurger [37] has also given a proof. Howe’s conjecture for the

group was proved in the 1980s by Clozel [6, 7] in the characteristic zero setting. In the

1990s, a characteristic free proof of Howe’s conjecture for the group was given by Bar-

basch and Moy in their beautiful paper [2].

8.1. Homogeneity. Beginning with Waldspurger’s paper [36], much energy has been spent

trying to produce optimal versions of Howe’s conjectures. By optimal, we mean that we’d

like to choose 
 and � in such a way so that we can not only describe the dimension of� � � � � M �  �� P � = 
 ? , but we can also find a good basis for this space in terms of distributions

with which we are very familiar, namely, nilpotent orbital integrals.

These optimal versions of Howe’s conjectures are referred to as homogeneity results.

This is an appropriate name, because, according to Webster’s Ninth New Collegiate Dic-

tionary, the word homogeneity means

“the state of having identical distribution functions or values”.

We restrict our attention to the Lie algebra. Fix , F � . The role of 
 in Howe’s

conjecture will be played by the � -domain 
 � , . Guided by Harish-Chandra’s philosophy

and Theorem 7.7.1, it appears that we want something like the following: For all � F
� =4
 � , ? and for all �QF�� �� =4
 M�) � P ?� = �+? � �

	 � � M � P � 	+=�� ? � � 	+= �+? 

This last displayed equation is equivalent to requiring� = ��? � �

	 � � M � P � 	+=�� ? � � 	+= �+? 
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From Exercise 4.2.3 we have � F � � , . So, the role of � �� =4
4"�� ? will be played by � � , .

Putting it all together, we arrive at the homogeneity statement� � ��� 
 , � =4
 � , ? � � � ��� 
 , � = � ? 

The fact that 
 � , " 
 N�� � , 6 � for all I F � gives some feeling as to why this homo-

geneity statement ought to be true.

8.2. From Howe’s conjectures to the Harish-Chandra–Howe local character expan-
sion. The homogeneity result discussed in the previous section is actually not strong

enough to prove Theorem 7.7.1. As in [16, 13, 9, 35] we need something a bit stronger,

but, unfortunately, more complicated.

For IQF � and � 9�, , define
�� N�� � � � , � � � �UF � =4
#?* for �QF4�&=4
 N�� � "!
 N�� � , ? , if ������� = �+? � =4
 � , ? � �

, then � = ��? � 
� 

Note that

� =4
 � , ?�" �� N�� � � � , .

Remark 8.2.1. Although this definition seems a bit unnatural, it arises naturally from our

understanding of � � � � �� M � � 24. 5 , P ��� . In fact, from Equation (3), we have that ��� F �� N�� � � � ,
if
� , 	 � =�� ? .
The following is the stronger homogeneity statement that needs to be proved in order to

recover Statement 7.7.3: � � ��� 
 , �� � , � � � ��� 
 , � = � ?
where

�� � , ��� 

N ���



� � �

�� N�� � � � , 

9. PROVING HOMOGENEITY RESULTS

We recall that for , F � we have
 � , � N �	� 
 N�� � , � 
N �	� =4
 N�� � , 6 � ?
and

� � , � �
N ��� � � =4
4"!
 N�� � , ? � �� �� =4
 ) ��? 


We want to show

(5) � � ��� 
 , � =4
 � , ? � � � ��� 
 , � = � ? 

We decided that knowing this, or, in truth, a stronger (but more complicated) statement

would tell us that the Harish-Chandra–Howe local character expansion was valid on 
 r.s.s
		M � P , .

As we discussed before, 
 � � 
 � , unless , � �� for some �8F �
. Consequently, we

only need to verify Equation 5 for , F � ��  .

Moreover, by taking advantage of the fact that nilpotent orbital integrals are homoge-

neous, we can further restrict our attention to , of the form �� with

 9Y� � � . Indeed, pick
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X 6 ,'F
� 
 ��� ? . For � F � =4
#? and

# F � S , define � � by � � = ��? � � = � � ? .
Note that �QF � � , if and only if � B ) � F � M V 2 � P ,
and � F � =4
 � , ? if and only if � B � F � =4
 M V 2 � P , ? 

Consequently, if we know� � ��� 2 
 , � 5 , � =4
 M � 2 V P , ? � � � ��� 2 
 , � 5 , � = � ?
then for � F � =4
 � , ? and �QF � � , we have� = �+? � � B � = � B ) � ?� �

� 	+=�� B � ? � � 	+= � B ) � ?� �
� 	+=�� B � ? ��� � , � � � 2��  5* � � 	+= �+? �

and so we may assume , F = 
 ��� � .
For the remainder of this section we discuss how to prove Equation (5). We first prove it

for
FIH -�= �#? , we next prove it for

FIH /2= �4? , and finally we discuss a way to go about giving

a general proof.

9.1. A proof for
FIH -�= �#? . From the reasoning above, we need to show� � � � � M �  � P � =-�*? � � � � � � M �  � P � = � ? 


The right-hand side is one-dimensional and spanned by the distribution � 8C � = 
 ? for�QF�� � = �#"+� ? . Moreover, the right-hand side is a vector subspace of the left-hand side.

Since
FIH -�= �4? is abelian, all distributions are invariant. Note that

� = �*? consists of linear

maps from � �� = �#? to � which are supported on � . If � F�� � = �4" � ? , then we can write� � �
���� �  � � �� � � � 6 � �

where the � �� are complex numbers which are almost always zero. For �UF � = �*? , we have� = ��? � � = � �� � � � ��? � � =�� � ��? ��� = 
 ? 

Consequently, the left-hand side is also one-dimensional and so the equality is estab-

lished.

9.2. A proof for
FIH /2= �4? . This is where things begin to become interesting. Thanks to the

remarks at the beginning of this section, we only need to verify two statements:

(6) � � ��� � , � =4
 � , ? � � � ��� � , � = � ?
and

(7) � � ��� 2 
 � *�5 , � =4
 M -  / P , ? � � � ��� 2 
 � *�5 , � = � ? 

We begin by considering the first statement, Equation (6). We note that � � , may be

thought of as an invariant version of � � =4
4" � - ? , but, for our purposes, this is not a good way

to think about the space � � , .



LECTURES ON HARMONIC ANALYSIS FOR REDUCTIVE ( -ADIC GROUPS 31

9.2.1. Descent and recovery. Fix � F � =4
 � , ? . We wish to show that � � ��� � , � is com-

pletely determined by � � � � M � �  � 
 P 2 � M�� �  � 
 � * P � .

Fix �QF � � , . We will demonstrate that � = ��? is completely determined by � � � � M � �  � 
 P 2 � M �  � 
 � * P � .

We write � � $ � � � with � � F � � =4
4"!
 N / � � , ? for some I � F � . Since � is linear, without

loss of generality we may assume that �QF�� � =4
4"!
 N�� � , ? for some I F � . We can write

� � �
���� �  � 3 	 � , �

�� � � � 6K
 N�� � , �
with the � �� complex constants which are almost always zero. Again, since � is linear,

without loss of generality we may assume that � � � � 6�
 N�� � , � .
Now, � = ��? � 


if the support of � does not intersect 
 � , . Consequently, since 
 � , "
 N�� � , 6 � , we must have =�� 6K
 N�� � , ? � � A��� 

So, without loss of generality, � F � .

Up to conjugacy, we have two choices for 
 N�� � , ; it is either
� - or � -  / . In what follows,

the reader is encouraged to consult Figure 8 to get a more geometric understanding of what

is happening.

We first deal with the
� - case. Since I � is the only point I where 
 N�� � , � � - , we

may suppose that � F � � =4
 N � � ) V � 
 N � � M�) V P , ? for some
X 	



. In other words,� F � � = � ) V � � - ) V ? . Since we are free to conjugate by � N � � � � E � , we may assume

that � � 5 � B ) ���� � 7
with �YF � S . For any point

�
in the chamber � � (that is, a point between I � and I � in

Figure (8)), we have that � is “closer” to the origin with respect to the
�

filtration than it is

in the I filtration. For example, � F@
 � � ��M -  / ) V P , where
� � is the barycenter of � � . The

problem is: at the point
�

we require local constancy not with respect to 
 N � � � , but with

respect to 
 � � � , � � -  / . In order to recover the proper type of local constancy, we take

advantage of the invariance of � . We write� =�� � 6 � - ��? � �

� / � �
�� � ! �  ! � , =��

� � 6 � - ��?
� �

� / � �
�� � �. � 9  � =�� � 6 5 � � M � ) . P� � 7 6 � --��?

� �

� / ��� =�� � 6 � -  / ��? 

We have succeeded in writing � = ��? in terms of � evaluated at a function � � F � � , which

is supported closer to the origin with respect to some other point in the building.

We now examine the � -  / case. In this case, we are looking at the coset � 6	
 � � � ,
where � F � and

�
is any point in � � . Free to conjugate by ��� � � � � � , we may assume

that � is either 5 � B ) ���� � 7
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with
X 	



and � F�� S . In the former case, we can write� =�� � 6K
 � � � , ��? � �

�� � �  � * � =�� � 6 5 � �� � 7 6�
 N 
 � � , ��?
where I - � ��� ��� M B ) 
 � - P I � is the other vertex of �� � . We have
 N 
 � � , � 5 � 9� * � 7 


From Figure 8 it is clear that we have expressed � evaluated at � � 6 
 � � � , � in terms of� evaluated at �W� where �W� F � � , has support closer to the origin with respect to the I -
filtration than � � 6K
 � � � , � had with respect to the

�
filtration.

Exercise 9.2.1. Do the analogous analysis for the latter case.

To summarize, the point of descent and recovery is as follows. We begin with a simple

function �QF��'= =4
 N�� � � 
 N�� � , ? "�
 N�� � , ? for some IQF � . From this function, we find a point� F � and a function �W� F��'=4
 � � � , "�
 � � � , ? so that � = ��? � � = ����? . After a finite number of

steps, we will have shown that � = �+? is completely determined by � � � � M � �  � 
 P 2 � M � �  � 
 � * P � .

9.2.2. Counting. We now know the following facts:

(1) Thanks to Harish-Chandra [13], the dimension of the complex vector space � � � � � , � = � ?
is equal to the cardinality of

� =	� ? , which, in this case, is 2.

(2) From
�
4.4, we have

� = � ?�" � =4
 � , ? and so � � ��� � , � = � ?�" � � ��� � , � =4
 � , ? .
(3) From the previous section, we know that

� � : � � � ��� � , � =4
 � , ? � � � : � � � � � M � �  � 
 P 2 � M�� �  � 
 � * P � =4
 � , ? 

Consequently, we need only show that

� � : � � � � � M � �  � 
 P 2 � M�� � P  � 
 � * P � =4
 � , ? 9 ��


Since 
 � , " 
 N�� � , 6 � for any IQF � , we have that for � F � =4
 � , ? , � � � � M � �  � 
 P 2 � M�� � P  � 
 � * P �
is completely determined by

� =�� 5 � -� � 7 6 � --��? � � =�� � - ��? � and � =�� � -  / ��? 

Since � =�� � -  / ��? � = � � � ? ��� =�� 5 � -� � 7 6 � --��? 6K� =�� � - ��? �
we are done.

Exercise 9.2.2. Using the above proof as a template, prove Equation (7).

9.3. The general approach. In general, the proof is very much like that produced above,

only more complicated.
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9.3.1. Descent and recovery. Suppose � F � =4
 � , ? . The main point is to show that� � ��� 
 , � � 

if and only if � � ��� 

 , � � 


where

� �� , ��� �
N �	� �'=4
 N�� ��"�
 N�� � , ? 


That is, we can find a very small space of functions from which we can choose a dual basis

for � � ��� 
 , � =4
 � , ? .
Suppose � F � � , . As before, without loss of generality we may assume that � �

� � 6	
 N�� � , � for some � F � and some I F � . Under some hypotheses, we can use��� /2=�� ? -theory to find a direction in the building in which to move so that, for some
� F �

in that direction, the support of � is nearer the origin with respect to
�

than it was with

respect to I . Moreover, if necessary, we can use the basics of ����/2=�� ? -representation theory

and the invariance of � to “beef-up” the coset 
 N�� � , so that we arrive at a function � � F� � =4
4"!
 � � � , ? with the properties:

(1) � = ����? � � = ��? and

(2) the support of �W� is “closer” to the origin with respect to
�

than the support of �
with respect to I .

Remark 9.3.1. Invoking � � /0=�� ? -theory requires some restrictions. The theory only works

well if the highest weights for the representations one wishes to consider are less than= � � 	 ? where � is the characteristic of � .
9.3.2. Counting. This is the real key. In the end, you need some type of correspondence

between “suitable” elements of � �� , and
� = 
 ? , the set of nilpotent orbits in 
 .

When , is zero, the situation is easy to understand. As discussed before, the conjugacy

classes of facets in � are in one-to-one correspondence with the elements of
� =	� ? . Simi-

larly, the nilpotent orbits are in one-to-one correspondence with the elements of
� =	� ? . For

�UF � =	� ? , let � 	 be the facet described in
�
3.4.1. The image of � 	 in 
 �� � � "!
 �  � � , is

distinguished nilpotent (that is, it does not lie in a proper Levi subalgebra of 
 �� � � "!
 �� � � , ).

We let � � 	 6�
 �� � � , � F � �� , denote the characteristic function of the coset � 	 6K
 �� � � , .

This is the correspondence between “suitable” elements of � �� , and
� = 
 ? alluded to above.

Indeed, for � F � =4
 � , ? , the restriction of � to � �� , is zero if and only if� =�� � 	 6K
 �� � � , ��?
is zero for all � F � =	� ? .

When , A� 

, life is much more complicated; but something beautiful is true. We refer

the reader to [10].

10. A FEW COMMENTS ON THE � 	+=�� ? S
Let =�� � � ? denote an irreducible representation of � . We recall that for all regular

semisimple � in some neighborhood of zero we have the Harish-Chandra–Howe local
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character expansion:
�	� = � 6K� ? � �

	 � � M � P � 	+=�� ? � � 	+=�� ? 

In his paper [16], Howe proves that for irreducible supercuspidal representations (that

is, those representations that do not occur as subrepresentations of parabolically induced

representations) the coefficients occurring in the Harish-Chandra–Howe local character

expansion are all integers. In fact, given a bit of additional information, the same proof

shows that this is true for all smooth irreducible representations. We first recall what we

know about the � 	*=�� ? s, and we then prove this result of Howe.

10.1. The coefficient � M - � - � � � � � - P =�� ? . Suppose that =�� � � ? is a discrete series representation

(that is, the matrix coefficients of =�� � � ? are square-integrable mod the center of � ). In

this case, Rogawski [32] extended a result of Harish-Chandra [13] to show that

� M - � - � � � � � - P =�� ? � � � � =�� ?= � � ? � � � ��� = � � ? 

Here � � � =�� ? denotes the formal degree of � ,

� � is the Steinberg representation (see, for

example, [5]), and 	 denotes the semisimple rank of � .

On the other hand, if =�� � � ? is a tempered representation (that is, it occurs in the

Plancherel formula) which is not in the discrete series, then, using results of Kazhdan [23],

Huntsinger [20] showed that � M - � - � � � � � - P =�� ? � 

(see also the paper of Schneider and Stuh-

ler [34]).

10.2. The leading coefficient. According to Mœglin and Waldspurger [26], the set

� � F � =	� ?  � 	+=�� ? A� 
�
has a unique maximal element; call it � � . Moreover, according to Mœglin and Wald-

spurger [26] and Rodier [31], the coefficient � 	 . =�� ? is an integer which is equal to the

dimension of the degenerate Whittaker model corresponding to � � .

Example 10.2.1. Suppose � � =	� ?&F � =	� ? . Recall that � M � P is regular nilpotent. Let
�� be the Borel subgroup consisting of lower triangular matrices in � . Let �� denote the

unipotent radical of �� ; that is, the subgroup of �� formed by the set of lower triangular

matrices with ones on the diagonal. Define the character
�

of �� by �� 8C ' = ��� =�� M � P �2= �� �� ? ? . For an irreducible smooth representation =�� � � ? of � , let � = � ? denote the subspace of� generated by the set

� : � = �� ? � � = �� ?-=    F � and �� F ��  


Define � M � P � � "�� = � ? . Then according to the results quoted above, we have � M � P =�� ? �
� � : � = � M � P ? � � � : � %(' : � = � ��� � � � �� � ? .
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10.3. The remaining coefficients. Not much is known about the remaining coefficients.

Following an argument of Roger Howe [16], we show that they are all integers.

We begin by making Remark 6.1.4 precise. If � � F � =	� ? , then

� 	 � =�� ? � ���
� �
�
� 2  � 5 - = � 6K� ?

for all � F�
 � , . Here
� � �
�� M 	 ��P � is the representation of � obtained by inducing the trivial

representation of �'=��*� ? up to � .

Suppose
0
	


, � F � =	� ? , and � 	 is the character of E " represented by the coset� M - ) / " P � 	 6 � M - ) " P F � - ) / " " � - ) " . From

�
7.3 we have

(8)
�	� = � 	�? � :��	;����� 4=�E " ? � X = � ) -	 �

� ?
and

(9)
� �
� �
�
� 2  � 5 - = � 	W? � :���;����� 4=�E " ? � X = � ) -	 � � � �

�� M 	 ��P � ? 

From the discussion above, Exercise 5.3.1, and Equation (2) we have� 	 � = � 	�? � � 	 � = � 	 � ? � :��	;������ = � " ? � � 	 � =�� � � M - ) / " P ��� 	 6 � M - ) " P ��?

�
���� ��� :��	;������ =

� " ? � X = �+) -	 ��� � �
�� M 	 ��P � ? if � ���+� �:��	;������ = � " ? if � � �+� , and


otherwise.

Thus, if
0

is sufficiently large, thenX = � ) -	 �
� ? � �

	 � 	 � � 	 � =�� ? �
X = � ) -	 ��� � �

�� M 	 ��P � ? 

We now proceed by induction. From Rodier [31] we have that � M � P is always an integer.

Suppose � F � =	� ? . By induction, if �*� 	�� , then � 	 � =�� ? F � . We have

� 	*=�� ? � X = � ) -	 � � � �
�� M 	 P � ? �YX = � ) -	 �

� ? � �
	 � � 	 � 	 � =�� ? � X = � ) -	 � � � �

�� M 	 � P � ? F � 

Since

X = �+) -	 ��� � �
�� M 	 P � ? � � 	*=�� � � M - ) / " P ��� 	 6 � M - ) " P ��? � �

, we are done.
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positive, Duke Math. J. 52 (1985), no. 3, pp. 771–792.
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