Degenerate Principal Series Representations of $\mathrm{U}(p,q)$ Soo Teck Lee

Abstract

This is joint work with Hung-Yean Loke. Let p>q and let $G=\mathrm{U}(p,q)$. Let P=LN be the maximal parabolic subgroup of G with Levi subgroup $L\cong\mathrm{GL}_q(\mathbf{C})\times\mathrm{U}(p-q)$. For $s\in\mathbf{C}$ and $\sigma\in\mathbf{Z}$, let $\chi_{s,\sigma}:\mathrm{GL}_q(\mathbf{C})\longrightarrow\mathbf{C}^\times$ be given by

$$\chi_{s,\sigma}(a) = |\det a|^s \left(rac{\det a}{|\det a|}
ight)^\sigma.$$

Let τ_{p-q}^{μ} be the irreducible representation of $\mathrm{U}(p-q)$ with highest weight μ . Let $\pi_{s,\sigma,\mu}$ be the representation of P which is trivial on N and

$$\pi_{s,\sigma,\mu}|_L = \chi_{s,\sigma} \otimes \tau_{p-q}^{\mu},$$

and consider the induced representation $\operatorname{Ind}_P^G \pi_{s,\sigma,\mu}$. Let $I_{p,q}(s,\sigma,\mu)$ be the Harish-Chandra module of $\operatorname{Ind}_P^G \pi_{s,\sigma,\mu}$. Except in the cases q=p-1 and $q=1,\ I_{p,q}(s,\sigma,\mu)$ is not K-multiplicity free. Here $K=\operatorname{U}(p)\times\operatorname{U}(q)$ is the maximal compact subgroup of G.

In this talk, we shall describe the methods used to determine the reducibility of $I_{p,q}$ and the composition structure of $I_{p,q}$ when it is reducible.