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0. Introduction.

The purpose of this article is to direct reader’s attention to some recent de-

velopments concerning three Uncertainty Principles: the classical Heisenberg-Weyl

Uncertainty Principle, The Hirschman-Beckner Uncertainty Principle based on the

notion of the entropy, and the Donoho-Stark Uncertainty Principle. We state all

three in the first section with some further explanations and proofs in the following

sections.

1. The main results.

Let S(R) denote the Schwartz space on R, [H1], and let f ∈ S(R) be a real

valued function. Then, by the Cauchy inequality,∫
R

|xf(x)|2 dx ·
∫
R

|f ′(x)|2 dx ≥
(∫

R

xf(x)f ′(x) dx
)2

.

Moreover,∫
R

xf(x)f ′(x) dx =
∫
R

x
1
2
(
f(x)2

)′
dx = x

1
2
f(x)2|∞−∞−

∫
R

1
2
f(x)2 dx = −1

2
‖ f ‖22 .

Thus

(1.1)
∫
R

|xf(x)|2 dx ·
∫
R

|f ′(x)|2 dx ≥ ‖ f ‖
4
2

4
.

If the equality holds in (1.1), then there is a real number a such that

f ′(x) = −2af(x),
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so that

(1.2) f(x) = ±e−ax
2−c,

where c ∈ R. Since ‖ f ‖2< ∞, the number a must be positive. Let us write f as

the inverse Fourier transform of the Fourier transform f̂ of f :

f(x) =
∫
R

e2πixξ f̂(ξ) dξ.

Then

f ′(x) =
∫
R

2πiξ e2πixξ f̂(ξ) dξ

and therefore ∫
R

|f ′(x)|2 dx =
∫
R

|2πiξf̂(ξ)|2 dξ = 4π2

∫
R

|ξf̂(ξ)|2 dξ.

Thus for ‖ f ‖2= 1,

(1.3)
∫
R

|xf(x)|2 dx ·
∫
R

|ξf̂(x)|2 dx ≥ 1
16π2

.

A few more easy steps lead to the following theorem of Herman Weyl, (see [Wi]).

Theorem 1.4, (H. Weyl, 1931). Let f ∈ S(R), with ‖ f ‖2= 1. Set

µ =
∫
R

x|f(x)|2 dx, σ2 =
∫
R

(x− µ)2|f(x)|2 dx,

µ̃ =
∫
R

ξ|f̂(ξ)|2 dξ, σ̃2 =
∫
R

(ξ − µ̃)2|f̂(ξ)|2 dξ.

Then

σ · σ̃ ≥ 1
4π
,

and the equality occurs if and only if

f(x) = e−ax
2−bx−c,

where a > 0, and b, c ∈ C. In other words f is a constant multiple of a translation

f(x)→ f(x+ x0)

and a modulation

f(x)→ eiy0xf(x)
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of a Gaussian

e−ax
2
.

The above theorem states that a function and its Fourier transform cannot both

be arbitrarily concentrated. In computer applications one deals often with finite

cyclic groups, rather than with the real line. In this context there is no obvious or

straightforward generalization of the theorem 1.4, because the quantities involved

(µ, σ, ...) do not seem to make sense. In order to circumvent this difficulty, Donoho

and Stark, [D-S], have introduced a different, elementary, measure of uncertainty,

which we explain below.

Let A = {0, 1, 2, 3, ..., N − 1} be a finite cyclic group of order |A| = N . Let Â

denote the dual group of all the characters (i.e. group homomorphisms â : A →

C
×). It is customary, and sometimes convenient, to identify A with Â be the

formula

â(b) = e
2πi
N ab (a, b ∈ A).

For a function f : A→ C define a Fourier transform of f by

f̂(b̂) =
∑
a∈A

f(a)b̂(−a) (b̂ ∈ Â).

Theorem 1.5, (Donoho-Stark, 1989, [D-S]). For any non-zero function f :

A→ C,

|supp f | · |supp f̂ | ≥ |A|.

The equality occurs if and only if f is a constant multiple of a translation

f(a)→ f(a+ c)

and a modulation

f(a)→ b̂(a)f(a)

of the indicator function of a subgroup of A.

In applications one deals often with multi-dimensional signals, i.e. with functions

defined on a finite product of finite cyclic groups. Hence it is natural to ask for a

generalization of the theorem 1.5 to this more general context. This has been done

by K. Smith.
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Theorem 1.6, (K. Smith, 1990, [Sm]). The above theorem 1.5 holds for any

finite Abelian group A (a finite direct product of finite cyclic groups).

The theorem 1.6 also follows from theorem 1.14 below. In addition, a proof

which uses no more than basic concepts from finite dimensional linear algebra over

complex numbers and the structure of finite abelian groups is available in [M-Ö-P].

Clearly, the cardinality of the support is not the most precise measure of the

concentration of a function. One possible improvement is based on the notion of

entropy.

Definition 1.7, (based on Shannon, 1948, [S]). Let µ be a non-negative mea-

sure on a measure space M . Let φ : M → [0,∞) be a probability density function,

i.e. ∫
M

φ(x) dµ(x) = 1.

The entropy of φ is defined as

H(φ) = −
∫
M

φ(x) log(φ(x)) dµ(x),

where the log stands for the natural logarithm, whenever the integral converges.

In his 1957 paper, [Hi], Hirschman has proven the following theorem and stated

the following conjecture.

Theorem 1.8. Let f ∈ S(R), with ‖ f ‖2= 1. Then

H(|f |2) +H(|f̂ |2) ≥ 0.

Conjecture 1.9. Let f ∈ S(R), with ‖ f ‖2= 1. Then

(a) H(|f |2) +H(|f̂ |2) ≥ log(
e

2
).

(Notice that since e
2 > 1, log( e2 ) > 0.)

(b)
The equality holds in (a) if and only if f is a constant multiple

of a translation and a modulation of a Gaussian e−ax
2
, a > 0.

As an application of his Lp, Lq estimates for the Fourier transform, Beckner

proved part (a) of Hirschman’s conjecture.
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Theorem 1.10, (Beckner, 1975, [B1], [B2]). The part (a) of Hirschman’s Con-

jecture is true.

Theorem 1.11, (Özaydın-Przebinda, 2000, [Ö-P 2]). The part (b) of Hirschman’s

Conjecture is true.

Let A be a finite Abelian group and let α be a Haar measure on A. Thus α

is a positive constant multiple of the counting measure on A. Let α̂ be the dual

Haar measure on the dual group Â, in the sense that for a function f : A→ C, the

Fourier transform and the inverse Fourier transform are given by

(1.12)
f̂(b̂) =

∫
A

f(a)b̂(−a) dα(a),

f(a) =
∫
Â

f̂(b̂)b̂(a) dα̂(b̂).

The following theorem is known. For the idea of a proof, various particular cases

and generalizations see [Hi], [M-U], [M] and [D-C-T].

Theorem 1.13. Let f ∈ L2(A,α), with ‖ f ‖2= 1. Then

H(|f |2) +H(|f̂ |2) ≥ 0.

Theorem 1.14, (Özaydın-Przebinda, 2000, [Ö-P 2]). The equality holds in

the above theorem 1.13 if and only if f is a constant multiple of a translation and

a modulation of the indicator function of a subgroup of A.

Corollary 1.15, (DeBrunner-Özaydın-Przebinda, 2001, [P-D-Ö]). The dis-

cretization of the minimizers for the entropy inequality on R does not give mini-

mizers for the entropy inequality on any finite cyclic group A.

In other words, it is certain that no discretization of a signal defined on the real

line and best concentrated in the time-frequency plane, will lead to a signal defined

on a finite cyclic group which is also best concentrated in the corresponding finite

time-frequency plane.

In a mathematically natural search for the most general theorem, which would

generalize all the cases considered above, we arrive at the notion of a locally compact
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Abelian group, (see [H-R], [J-W]). The integration and the notion of the Fourier

transform are both well established for such groups.

Let A be a locally compact Abelian group. As was explained to the author by

Michael Cowling, a result of Ahern and Jeweet [A-J], together with [H-R, 9.8], imply

that A is isomorphic to the direct product of a finite number of copies of R and an

Abelian locally compact group B, which contains an open compact subgroup:

(1.16) A = R
n ×B.

Let Â be the Pontryagin dual of A. Then Â = Rn × B̂, where B̂ also contains

an open compact subgroup. Let α be a Haar measure on A and let α̂ be the

Haar measure on Â, dual to α, so that the Fourier transform and the inverse

Fourier transform are given by the following formulas (1.12). Let U(L2(A,α)) be

the group of unitary (norm preserving) operators on the Hilbert space L2(A,α), and

let G ⊆ U(L2(A,α)) be the group generated by all the translations, all modulations

and by the multiplications by complex numbers of absolute value 1. This is the

Heisenberg group attached to the Abelian group A.

Theorem 1.17, (Özaydın-Przebinda, 2000, [Ö-P 2]). For any function f ∈

L2(A,α), with ‖ f ‖2= 1, such that

(*) ‖ f ‖1<∞ and ‖ f̂ ‖1<∞,

the following inequality holds

(a) H(|f |2) +H(|f̂ |2) ≥ n log(
e

2
).

The set of functions for which equality occurs in (a) coincides with the union of

orbits

(b) G · f,

where f = g ⊗ h, g is a Gaussian on Rn, and h an appropriate constant multiple

of the indicator function of a (open-compact) subgroup of B.
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2. The support inequality for a finite Abelian group.

In this section A stands for a finite Abelian group and α for the Haar measure

given by α(a) = 1√
|A|

, a ∈ A. Denote the translations and modulations by

(2.1)
Tc : f(a)→ f(a+ c),

Mb̂ : f(a)→ b̂(a)f(a).

Notice that

(2.2) TbMb̂TcMĉ = zMb̂ĉTb+c (b, c ∈ A, b̂, ĉ ∈ Â),

where z is a complex number of absolute value 1. Indeed, The action of the operator

on the left hand side on a function f(a) may be represented as

f(a) →
Mĉ

ĉ(a)f(a)→
Tc
ĉ(a+ c)f(a+ c) →

Mb̂

b̂(a)ĉ(a+ c)f(a+ c)

→
Tb
b̂(a+ b)ĉ(a+ b+ c)f(a+ b+ c) = (b̂(b)ĉ(b+ c))(b̂(a)ĉ(a))f(a+ (b+ c)).

In particular the Heisenberg group attached to A may written as

(2.3) G = {zMb̂Tc; b̂ ∈ Â, c ∈ A}.

It is esthetically pleasing, and convenient for applications, to know that an or-

thonormal basis of a space of functions may be indexed by a group. This is the case

for an orthonormal wavelet basis for functions defined on the real line, [D], [Ö-P 1].

The lemma below states that such bases may be chosen from among our minimiz-

ers on a finite Abelian group. In contrast, the translations and/or modulations of

Gaussians defined on the reals, will not be orthogonal.

Lemma 2.4, (see [D-S], [P-D-Ö] for the cyclic case). Let B be a subgroup of

A and let IB denote the indicator function of B. Let β ∈ C be such tat ‖ βIB ‖2=

1. Then, up to constant multiples of absolute value 1, the orbit G · βIB is an

orthonormal basis of the Hilbert space L2(A,α).

Proof. For c ∈ A and ĉ ∈ Â we have

MĉTcβIB(a) = ĉ(a)βIB(a+ c) = ĉ(a)βIB−c(a).
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Hence, in order to parameterize the orbit, we may choose the ĉ modulo B⊥(= {â ∈

Â; â|B = 1}), and the c modulo B. Thus the cardinality of the orbit, modulo the

multiplications by complex numbers of absolute value 1, is equal to

|Â/B⊥| · |A/B| = |B| · |A/B| = |A| = dimL2(A,α).

Let d ∈ A and let d̂ ∈ Â. Then,∫
A

MĉTcβIB(a) ·Md̂TdβIB(a) dα(a) = |β|2
∫
A

ĉ(a)d̂(a)IB−c(a)IB−d(a) dα(a).

For this quantity to be non-zero, we must have B − c = B − d. Then it is equal to

|β|2
∫
B−c

ĉ(a)d̂(a) dα(a) = |β|2
∫
B

ĉ(a+ c)d̂(a+ c) dα(a)

=|β|2
∫
B

ĉ(a)d̂(a)−1 dα(a) · ĉ(c)d̂(c)−1,

which is non-zero if and only if ĉd̂−1 ∈ B⊥. Then, modulo multiplication by the

constant ĉ(c)d̂(c)−1, the result is

|β|2
∫
B

dα(a) ‖ βIB ‖22= 1.

�

Corollary 2.5, (see [P-D-Ö] for the cyclic case). In terms of 2.4, the orbit

G · βIB consists of functions such that

(a) H(|f |2) = H(|f̂ |2)

or equivalently, such that

(b) |supp f | = |supp f̂ |,

if and only if

(c) |B| =
√
|A|.

Proof. Since the entropy and the cardinality of the support for f and for f̂ are

invariant under the action of the Heisenberg groupG, it suffices to consider f = βIB .

Then, by a straightforward computation,

f̂ = α(B)βIB⊥ .
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Hence, |supp f̂ | = |B⊥| = |A|/|B|, and since |supp f | = |B|, the equivalence of (b)

and (c) follows.

Furthermore

H(|βIB |2) = −
∫
A

|β|2IB(a)2 log(|β|2IB(a)2) dα(a) = −|β|2log(|β|2)α(B),

and similarly,

H(|βα(B)IB⊥ |2) = −|β|2|α(B)|2log(|β|2|α(B)|2) α̂(B⊥).

Thus (a) is equivalent to

log(|β|2) = log(|β|2|α(B)|2)α(B)α̂(B⊥).

Since, by a simple computation,

α(B)α̂(B⊥) = 1,

we see that (a) is equivalent to α(B)2 = 1. But, by our assumption on α, α(B) =

|B|/
√
|A|, so (a) is equivalent to (c). �

For reader’s convenience we reproduce here a lemma which is the key to the

proof of theorem 1.5, leaving the complete proof of the theorem as an exercise.

(See [P-D-Ö] for an exposition.)

Lemma 2.6, [D-S]. Let f : A → C be a non-zero function. Then under the

identification Â = A, â(b) = e
2πi
|A| ab, the function f̂ cannot have more than |supp f |-

consecutive zeros.

Proof. Let supp f = {a1, a2, a3, ..., am}. Let ω = e−
2πi
|A| . Then

f̂(0)
f̂(1)
.
.
.

f̂(m− 1)

 =


1 1 . . 1
ωa1 ωa2 . . ωam

. . . . .

. . . . .

. . . . .
ωa1(m−1) ωa2(m−1) . . ωam(m−1)

 ·

f̂(a1)
f̂(a2)
.
.
.

f̂(am)

 .
By Vandermonde, the above matrix is invertible. Thus the vector on the left hand

side is non-zero. Since a translation of f̂ is equivalent to a modulation of f , which

does not change the support of f , the lemma follows. �

In the remainder of this section we provide an elementary proof of the part of

theorem 1.6, which describes the minimizers for the support inequality (which we

assume), if A is a finite direct product of groups of order 2: A = (Z/2Z)N . (See

theorem 2.14 below.) This proof is a simplified version of the argumant developped

in [M-Ö-P].
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Lemma 2.7. Let B and C be subgroups of A, such that

A = B ⊕ C.

For a function f : A→ C let

fc(b) = f(b+ c) (b ∈ B, c ∈ C).

Suppose

|supp f | · |supp f̂ | = |A| and fc 6= 0 for all c ∈ C.

Then

(a) |supp fc| · |supp f̂c| = |B| (c ∈ C),

(b) |supp fc| =
1
|C|
|supp f | (c ∈ C),

(c) |supp f̂c| = |supp f̂ | (c ∈ C),

(d) supp f̂c = P (supp f̂) (c ∈ C),

where P : Â = B̂ ⊕ Ĉ 3 b̂+ ĉ→ b̂ ∈ B̂.

Proof. Clearly,

(2.8) supp f =
⋃
c∈C

((supp fc) + c).

Hence,

(2.9) |supp f | =
∑
c∈C
|supp fc|.

By the Fourier inversion formula on C we have

(2.10) f̂c(b̂) =
1√
|C|

∑
ĉ∈Ĉ

f̂(b̂+ ĉ)ĉ(c) (b̂ ∈ B̂, c ∈ C).

Hence,

(2.11) supp f̂c ⊆ P (supp f̂) (c ∈ C),
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and therefore

(2.12) |supp f̂c| ≤ |supp f̂ | (c ∈ C).

Suppose c ∈ C is such that

|C| · |supp fc| < |supp f |.

Then, by (2.12),

|C| · |supp fc| · |supp f̂c| < |supp f | · |supp f̂ | = |A|.

Hence,

|supp fc| · |supp f̂c| < |B|,

which contradicts the fact that fc 6= 0. (Here we use the assumption that we have

the support inequality for the finite cyclic groups of the form (Z/2Z)N .) Thus

(2.13) |C| · |supp fc| ≥ |supp f | (c ∈ C).

Clearly, (2.9) and (2.13) imply (b). Further (b) and (2.12) imply that for all c ∈ C,

|supp fc| · |supp f̂c| =
1
|C|
|supp f | · |supp f̂c| ≤

1
|C|
|supp f | · |supp f̂ | = |A|/|C| = |B|.

Thus (a) follows. Part (c) follows from (a) and (b). Part (d) follows from (2.11)

and (c). �

Theorem 2.14. Let A = (Z/2Z)N . Suppose f : A→ C is a minimizer, i.e.

|supp f | · |supp f̂ | = |A|.

Then, up to a constant multiple, a modulation and a translation, f is the indicator

function of a subgroup of A.

Proof. We proceed via the induction on N . It is easy to check that the statement

holds for N = 2.

Let f : A → C be a minimizer. Suppose there is a proper subgroup B ⊆ A,

such that supp f ⊆ B. Then there is a subgroup C ⊆ A such that A = B ⊕ C. (In

order to have some standard linear algebra at the disposal, it might be easier here
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to view A a vector space of dimension N over the field Z/2Z of two elements.) In

these terms

f = (f |B)⊗ δ,

where δ is the Dirac delta at zero on C. Hence

f̂ = (f |B )̂⊗ δ̂,

where δ̂ is a constant multiple of the function IC . We see from the above two

equations that f |B is a minimizer on B. Thus, by the inductive assumption f |B ,

and hence f has the desired form.

Suppose there is a proper subgroup B ⊆ A and an element c ∈ A such that

supp f ⊆ B + c. Let g(a) = f(a + c), a ∈ A. Then g is a minimizer on A and

supp g ⊆ B. Hence, by the previous argument, g and hence f has the desired form.

Let A = B ⊕ C as in (2.7), with |C| = 2. By the previous two cases we may

assume that

fc 6= 0 (c ∈ C).

By (2.7.a), each fc is a minimizer on B. Therefore, by the inductive assumption,

for each c ∈ C, supp f̂c is a coset of a subgroup of B̂. By (2.7.d) these cossets do

not depend on c ∈ C. Thus there is a subgroup D ⊆ B̂ and an element b̂ ∈ B̂ such

that

sup f̂c = D + b̂0 (c ∈ C).

Replacing f by an appropriate translation of f we may assume that each f̂c is a

constant on its support. Thus there is a function h : C → C such that

f̂c = ID+b̂0
⊗ h(c) (c ∈ C).

Therefore

(2.15) f̂ = ID+b̂0
⊗ ĥ.

We see from (2.15) that h is a minimizer for C. But

f = ÎD+b̂0
⊗ h

and our assumption (fc 6= 0 for all c ∈ C) implies that supp h = C. Hence,

|supp ĥ| = 1. Thus supp ĥ = {ĉ0}, for some ĉ0 ∈ Ĉ. Therefore, by (2.15),

supp f̂ = (D + b̂0) + ĉ0 = D + (b̂0 + ĉ0).

Thus supp f̂ is a coset of a proper subgroup of Â. Since f̂ is a minimizer, our

previous argument implies that f̂ , and hence f , has the desired property. �
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3. A few words on the notion of the entropy. In this section we recall a

few basic facts, which indicate that the notion of the entropy is quite natural and

useful. For more details we refer the reader to [C-T] and [S].

Let X be a discrete random variable with the probability distribution function

p(x) = P (X = x). Set

(3.1) H(X) = H(p) = −
∑
x

p(x)log2(p(x)).

Example 3.2 Suppose X has a uniform distribution over 23 = 8 outcomes. Then

H(X) = −
8∑

x=1

1
8
log2(

1
8

) = 3.

This agrees with the number of bits needed to describe X in binary:

c(0) = 000, c(1) = 001, c(2) = 010, c(3) = 011, c(4) = 100,

c(5) = 101, c(6) = 110, c(7) = 111.

Example 3.3 Consider a horse race, with eight horses taking part. Suppose

the probability of winning the race is distributed as follows:

p(0) = 1/2, p(1) = 1/4, p(2) = 1/8, p(3) = 1/16, p(4) = p(5) = p(6) = p(7) = 1/64.

Then H(X) = 2. We may encode the horses in binary as follows:

c(0) = 0, c(1) = 10, c(2) = 110, c(3) = 1110, c(4) = 111100,

c(5) = 111101, c(6) = 111110, c(7) = 111111.

Let l(c(x)) be the length of the code word c(x). Then

l(c(0)) = 1, l(c(1)) = 2, l(c(2)) = 3, l(c(3)) = 4, l(c(5)) = ... = l(c(7)) = 6.

Hence, the expected value of l(c(X)) is

E(l(c(X)) = 1 · 1
2

+ 2 · 1
4

+ 3 · 1
8

+ 4 · 1
16

+ 6 · 1
64

= 2.

Thus

H(X) = E(l(c(X)).

This last equality is not a coincidence, as we shall explain below. For details see

[C-T].
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A source code for a discrete random variable X is a mapping c from the range

of X to

{0, 1} ∪ {0, 1}2 ∪ {0, 1}3 ∪ ... .

If a codeword c(x) belongs to {0, 1}k, let l(c(x)) = k denote the length of c(x). The

code is called instantenous if no codeword is a prefix to any other code word. For

such codes one can recognize the separate words c(x1), c(x2), ... by looking at the

string c(x1)c(x2).... For instance in our second example, the string 010110111111

is made of the codewords 0, 10, 110, 111111.

Theorem 3.4, [S], (see also [C-T]). For an instantenous code c we have,

E(l(c(X)) ≥ H(X).

Moreover, there is an instantenous code c such that

E(l(c(X)) < H(X) + 1.

A theorem of Shannon, which we quote below, gives a characterization of the

entropy as a measure of uncertainty of the outcome of an experiment.

Let P = {p1, p2, p3, ..., pn} be a finite probability sequence, i.e. pj ≥ 0,
∑
j pj =

1.

Theorem 3.5, (Shannon, 1948, [S]). Suppose H is a function defined on finite

probability sequences such that

(a) H(p1, p2, p3, ..., pn) is continuous,

(b) H(
1
n
,

1
n
,

1
n
, ...,

1
n

) is monotonically increasing as a function of n,

(c)

If Qj = {qj1 , qj2 , qj3 , ...}, j = 1, 2, 3, ..., n, are probability sequences,

then H(
n⋃
j=1

pjQj) = H(P ) +
n∑
j=1

pjH(Qj).

Then, up to a constant multiple,

H(P ) = −
n∑
j=1

pj log(pj).
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Suppose M is a finite set and µ is a positive multiple of the counting measure

on M . For a function f : M → C and for 1 ≤ p < ∞ we have the Lp norm of f

defined by

‖ f ‖p=
(∫

M

|f(x)|p dµ(x)
)1/p

.

There is a simple and explicit connection between the entropy (see 1.7) and the Lp

norms, expressed in the lemma below, which may be verified by a straightforward

computation (left to the reader). See [Wi] for more explanation.

Lemma 3.6. Let p = p(t) = 1
t , 0 < t ≤ 1. Then for any function f : M → C,

(a)
d

dt
log(‖ f ‖p) = −

∫
M

|f(x)|p

‖ f ‖pp
log(
|f(x)|p

‖ f ‖pp
) dµ(x).

In particular, for f with ‖ f ‖1= 1,

(b)
d

dt
log(‖ f ‖p)|p=1 = H(|f |),

and for f with ‖ f ‖2= 1,

(b)
d

dt
log(‖ f ‖p)|p=2 = H(|f |2),

4. The entropy inequality for a finite Abelian group. In this section we

give a proof of theorem 1.14 for a finite Abelian group A. For the general case we

refer the reader to [Ö-P 2].

The proof is based on the following four basic theorems.

Hölder’s Inequality, [H2].∫
M

|φ(x)ψ(x)| dx ≤‖ φ ‖p‖ ψ ‖q,
1
p

+
1
q

= 1.

Plancherel’s Formula, [H-R].

‖ f̂ ‖2=‖ f ‖2 .

Riesz-Thorin-Young Inequality, [Z, Chapter 9, (1.11)].

‖ f̂ ‖1/(1−t)≤‖ f ‖1/t (
1
2
≤ t ≤ 1).
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Hopf’s Maximum Principle, [H2, Theorem 3.1.6’]. Let D ⊆ C be an open unit

disc, and let u : D → R be a harmonic function which extends to a continuous

function on the closure D of D, u : D → R. Suppose z is a point on the boundary

of D such that u(z) ≥ u(z′) for all z′ ∈ D, and the directional derivative of u at z

along the radius which ends at z, is zero. Then

u(z) = u(z′) (z′ ∈ D).

Let f : A→ C be a minimizer. Consider the following function

(4.1) F (z) =
∫
Â

(|f |2z f
|f |

)̂(â) |f̂(â)|2z f̂(â)

|f̂(â)|
dα̂(â) (z ∈ C, 1

2
≤ Re(z) ≤ 1),

where f
|f | = 0 outside the support of f , and similarly for f̂

|f̂ |
. A straightforward

application of Hölder’s inequality and the Riesz-Thorin Theorem shows that for
1
2 ≤ x ≤ 1, y ∈ R, p = 1

x and q defined by the equation 1
p + 1

q = 1 (with q = ∞ if

p = 1), we have

(4.2)

|F (x+ iy)| ≤‖ (|f |2x+i2y f

|f |
)̂ ‖q · ‖ |f̂ |2x+i2y ‖p≤‖ |f |2x+i2y ‖p · ‖ |f̂ |2x+i2y ‖p

=‖ f ‖2 · ‖ f̂ ‖2= 1.

The function F is analytic in the open strip (4.1) and continuous in the closed strip.

A straightforward calculation shows that

F ′(z) =
∫
Â

(|f |2z f
|f |
log(|f |2))̂(â) |f̂(â)|2z f̂(â)

|f̂(â)|
dα̂(â)

+
∫
Â

(|f |2z f
|f |

)̂(â) |f̂(â)|2z f̂(â)

|f̂(â)|
log(|f̂(â)|2) dα̂(â).

Hence, by the Plancherel formula,

(4.3) F ′(
1
2

) = −H(|f |2)−H(|f̂ |2).

Since f is a minimizer, the right hand side of the equation (4.3) is zero. In particular

ReF (z) is a real valued harmonic function, on the interior of the disc of radius 1
4

centered at z = 3
4 , which achieves the maximum at z = 1

2 and has derivative equal to
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zero at this point. Hence the Hopf’s Maximum Principle implies that ReF (z) = 1

on the disc. Hence, F (z) = 1 on the disc. In particular,

(4.4) 1 = F (1) =
∫
Â

(|f |f )̂(â)|f̂(â)|f(â) dα̂(â).

The formula (4.4) may be rewritten as

(4.5) 1 =
∫
Â

∫
A

|f(a)|2|f̂(â)|2â(−a)
f(a)
|f(a)|

f̂(â)

|f̂(â)|
dα(a) dα̂(â).

Since,

1 =
∫
Â

∫
A

|f(a)|2|f̂(â)|2 dα(a) dα̂(â)

the equation (4.5) implies that

(4.6) 1 = â(−a)
f(a)
|f(a)|

f̂(â)

|f̂(â)|
(a ∈ supp f, â ∈ supp f̂).

Hence,

â(−a) =
f(a)
|f(a)|

f̂(â)

|f̂(â)|

Thus for â ∈ supp f̂

f̂(â) =
∫
A

f(a)â(−a) dα(a) =
∫
A

f(a)
f(a)
|f(a)|

dα(a)
f̂(â)

|f̂(â)|
=‖ f ‖1

f̂(â)

|f̂(â)|
.

Therefore

(4.7) |f̂(â)| =‖ f ‖1 (â ∈ supp f̂),

and similarly

(4.8) |f(a)| =‖ f̂ ‖1 (a ∈ supp f).

The statement (4.7) implies that the function |f̂ | is constant on its support. Since

‖ f̂ ‖2= 1, the constant is equal to α̂(supp f̂)−1/2. Hence,

H(|f̂ |2) = log(α̂(supp f̂)).

Similarly

H(|f |2) = log(α(supp f)).
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Since f is a minimizer,

log(α(supp f) · α̂(supp f̂)) = 2
(
H(|f |2) +H(|f̂ |2)

)
= 0.

Therefore

(4.9) α(supp f) · α̂(supp f̂) = 1.

We may assume that 0 ∈ supp f̂ and 0 ∈ supp f . Then (4.7) implies∣∣∣∣∫
A

f(a) dα(a)
∣∣∣∣ =

∫
A

|f(a)| dα(a).

Therefore there is λ ∈ C such that f = λ|f |. Hence (4.7) may be rewritten as

(4.10)
∣∣∣∣∫
A

λ|f(a)|â(−a) dα(a)
∣∣∣∣ =

∫
A

|f(a)| dα(a) (â ∈ supp f̂).

Therefore

(4.11) supp f̂ ⊆ (−supp f)⊥,

where for a subset S ⊆ A, S⊥ = {â ∈ Â; â|S = 1}. Similarly (4.8) implies

(4.12) supp f ⊆ (supp f̂)⊥.

By dualizing (4.11) and (4.12) we deduce

(4.13)
− supp f ⊆ (−supp f)⊥⊥ ⊆ (supp f̂)⊥, and

supp f̂ ⊆ (supp f̂)⊥⊥ ⊆ (supp f)⊥

But, as is well known and easy to check,

(4.14) α̂((supp f̂)⊥) · α((supp f̂)⊥⊥) = 1.

By combining (4.9), (4.13) and (4.14) we see that the inclusions (4.13) are equalities.

In particular supp f is a subgroup of A and f is invariant under the translations by

this subgroup. Thus f is a constant multiple of the indicator function of a subgroup

of A, as claimed.
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