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Probability Distributions and Sampling

Probability or chance is one of those basic concepts in science which elude a
derivation from more fundamental principles.

A sample space is a set of events, also called measurements or observations,
whose occurrence depends on chance.

Carrying out independent repetitions of the same experiment is called sampling.
The outcome of each experiment provides an event called data point. In N such
experiments we may find the event A to occur with frequency n, 0 ≤ n ≤ N . The
probability assigned to the event A is a number P (A), 0 ≤ P (A) ≤ 1, so that

P (A) = lim
N→∞

n

N
. (1)

This equation is sometimes called the frequency definition of probability.

Let us denote by P (a, b) the probability that xr ∈ [a, b] where xr is a random
variable drawn in the interval (−∞,+∞) with the probability density f(x).
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Then,

P (a, b) =
∫ b

a

f(x) dx. (2)

Knowledge of all probabilities P (a, b) implies

f(x) = lim
y→x−

P (y, x)
x− y

≥ 0 . (3)

The (cumulative) distribution function of the random variable xr is defined as

F (x) = P (xr ≤ x) =
∫ x

−∞
f(x) dx . (4)

A particularly important case is the uniform probability distribution for random
numbers between [0, 1),

u(x) =
{ 1 for 0 ≤ x < 1;

0 elsewhere.
(5)
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The corresponding distribution function is

U(x) =
∫ x

−∞
u(x) dx =

{ 0 for x < 0;
x for 0 ≤ x ≤ 1;
1 for x > 1.

(6)

Remarkably, the uniform distribution allows for the construction of general
probability distributions. Let

y = F (x) =
∫ x

−∞
f(x′) dx′

and assume that inverse x = F−1(y) exist. For yr being a uniformly distributed
random variable in the range [0, 1) it follows that

xr = F−1(yr) (7)

is distributed according to the probability density f(x).
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An example is the Cauchy distribution

fc(x) =
α

π (α2 + x2)
and Fc(x) =

∫ x

−∞
fc(x′) dx′ =

1
2

+
1
π

tan−1
(x

α

)
, α > 0 .

(8)
The Cauchy distributed random variable xr is generated from the uniform yr ∈ [0, 1)
through

xr = α tan(2πyr) . (9)

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

U
ni

fo
rm

 y
r

Cauchy xr

Figure 1: Mapping of the uniform to the Cauchy distribution.
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Random Numbers and Fortran Code

According to Marsaglia and collaborators a list of desirable properties for random
number generators is:

(i) Randomness. The generator should pass stringent tests for randomness.

(ii) Long period.

(iii) Computational efficiency.

(iv) Repeatability. Initial conditions (seed values) completely determine the
resulting sequence of random variables.

(v) Portability. Identical sequences of random variables may be produced on a
wide variety of computers (for given seed values).

(vi) Homogeneity. All subsets of bits of the numbers are random.
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Physicists have added a number of their applications as new tests. In particular
the exact solution of the 2d Ising model is used. Here the random number
generator by Marsaglia and collaborators is provided. It relies on a combination of
two generators:

xn from a lagged Fibonacci series In = In−r − In−s mod224, r = 97, s = 33.

yn from the arithmetic series I − k, I − 2k, I − 3k, . . . , mod [224 − 3].

For most applications this generator is a good compromise. Our Fortran code
which implements Marsaglia random numbers consists of three subroutines:

rmaset.f to set the initial state of the random number generator.

ranmar.f which provides one random number per call.

rmasave.f to save the final state of the generator.
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In addition, rmafun.f is a function version of ranmar.f and calls to these two
routines are freely interchangeable. Related is also the subroutine rmacau.f, which
generates Cauchy random numbers with α = 1.

The subroutine rmaset.f initializes the generator to mutually independent
sequences of random numbers for distinct pairs of

−1801 ≤ iseed1 ≤ 29527 and − 9373 ≤ iseed2 ≤ 20708 . (10)

This property makes the generator quite useful for parallel processing.

Table 1: Illustration of a start and a continuations run of the Marsaglia random
number generator using the program mar.f with the default seeds (a0102 02).

RANMAR INITIALIZED. MARSAGLIA CONTINUATION.
idat, xr = 1 0.116391063 idat, xr = 1 0.495856345
idat, xr = 2 0.96484679 idat, xr = 2 0.577386141
idat, xr = 3 0.882970393 idat, xr = 3 0.942340136
idat, xr = 4 0.420486867 idat, xr = 4 0.243162394
extra xr = 0.495856345 extra xr = 0.550126791
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How to run and get the FORTRAN code?

STMC

ForProgAssignments ForLib ForProc Work

a0102_02 a0102_03 ... ... a0103_01 ... ...

Figure 2: The Fortran routines are provided and prepared to run in the a tree structure of folders

depicted in this figure. This tree of directories unfolds from the downloaded file.

To download the Fortran code book visit the website

http : //b berg.home.comcast.net/

and follow the instructions given there.
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The code is provided in the directories ForLib, ForProg and ForProc. ForLib
contains a library of functions and subroutines which is closed in the sense that
no reference to non-standard functions or subroutines outside the library is ever
made. Fortran programs are contained in the folder ForProg and procedures for
interactive use in ForProc.

Assignment: Marsaglia random numbers. Run the program mar.f to
reproduce the results of table 1. Understand how to re-start the random number
generator as well as how to perform different starts when the continuation data
file ranmar.d does not exist. Note: You find mar.f in ForProg/Marsaglia
and it includes subroutines from ForLib. To compile properly, mar.f has to be
located two levels down from a root directory STMC. The solution is found in the
subdirectory Assignments/a0102 02.

The hyperstructure of program dependencies introduced between the levels
of the STMC directory tree should be kept!
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Gaussian Distribution

The Gaussian or normal distribution is of major importance. Its probability
density is

g(x) =
1

σ
√

2π
e−x2/(2σ2) (11)

where σ2 is the variance and σ > 0 the standard deviation. The Gaussian
distribution function G(x) is related to that of variance σ2 = 1 by

G(x) =
∫ x

−∞
g(x′) dx′ =

1√
2π

∫ x/σ

−∞
e−(x′′)2/2 dx′′ =

1
2

+
1
2

erf
(

x

σ
√

2

)
. (12)

In principle we could now generate Gaussian random numbers. However, the
numerical calculation of the inverse error function is slow and makes this an
impractical procedure. Much faster is to express the product probability density of
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two independent Gaussian distributions in polar coordinates

1
2π σ2

e−x2/(2σ2) e−y2/(2σ2) dx dy =
1

2π σ2
e−r2/(2σ2) dφ rdr ,

and to use the relations

xr = rr cos φr and yr = rr sinφr . (13)
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Figure 3: Cumulative distribution functions for a uniform, a Gaussian and a Cauchy distribution

(Assignment a0101 02).
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Confidence Intervals and Heapsort

Let a distribution function F (x) and 0 ≤ q ≤ 1 be given. One defines q-tiles
(also called quantiles or fractiles) xq by means of

F (xq) = q . (14)

The median x1
2

is often the typical value of the random variable xr.

The precise probability content of the confidence intervals

[xq, x1−q] = [−nσ, nσ] for n = 1, 2

of the normal distribution is p = 68.27% for one σ and p = 95.45% for two σ.

The peaked distribution function

Fq(x) =
{

F (x) for F (x) ≤ 1
2,

1− F (x) for F (x) > 1
2.

(15)
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provides a useful way to visualize probability intervals of a distribution.
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Figure 4: Gaussian peaked distribution function and estimates of xq for the 70% (approximately

1 σ) and 95% (approximately 2 σ) confidence intervals.

Sampling provides us with an empirical distribution function and in practice the
problem is to estimate confidence intervals from the empirical data.

Assume we generate n random number x1, ..., xn according to a probability
distribution F (x). The n random numbers constitute then a sample.
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We may re-arrange the xi in increasing order. Denoting the smallest value by
xπ1, the next smallest by xπ2, etc., we arrive at

xπ1 ≤ xπ2 ≤ . . . ≤ xπn (16)

where π1, . . . , πn is a permutation of 1, . . . , n. Each of the xπi
is then called

an order statistic. An estimator for the distribution function F (x) is then the
empirical distribution function

F (x) =
i

n
for xπi

≤ x < xπi+1
, i = 0, 1, . . . , n− 1, n (17)

with the definitions xπ0 = −∞ and xπn+1 = +∞.

To calculate F (x) and the corresponding peaked distribution function, one
needs an efficient way to sort n data values in ascending (or descending) order.
This is provided by the heapsort, which relies on two steps: First the data are
arranged in a heap, then the heap is sorted.
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A heap is a partial ordering so that the number at the top is larger or equal
than the two numbers in the second row, provided at least three numbers xi exist.
Each number of the second row has under it two smaller or equal numbers in the
third row and so on, until all numbers xi, . . . , xn are exhausted. Example:

Table 2: The heap, generated from Marsaglia’s first ten random numbers.

.9648
.6892 .9423

.5501 .4959 .5774 .8830
.2432 .4205 .1164

Finally, the heap is sorted. The computer time needed to succeed with the
sorting process grows only like n log2 n because there are log2 n levels in the heap,
see Knuth for a detailed discussion of sorting algorithms.
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Example:
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Figure 5: Cumulative and peaked distribution functions for Marsaglia’s first 100 uniform random

numbers (assignment a0106 02).
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The Central Limit Theorem and Binning

How is the sum of two independent random variables

yr = xr
1 + xr

2 . (18)

distributed? We denote the probability density of yr by g(y). The corresponding
cumulative distribution function is given by

G(y) =
∫

x1+x2≤y

f1(x1) f2(x2) dx1 dx2 ==
∫ +∞

−∞
f1(x) F2(y − x) dx

where F2(x) is the distribution function of the random variable xr
2. We take the

derivative and obtain the probability density of yr

g(y) =
dG(y)

dy
=

∫ +∞

−∞
f1(x) f2(y − x) dx . (19)
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The probability density of a sum of two independent random variables is the
convolution of the probability densities of these random variables.

Example: Sums of uniform random numbers, corresponding to the sums of an
uniformly distributed random variable xr ∈ (0, 1]:

(a) Let yr = xr + xr, then

g2(y) =

{
y for 0 ≤ y ≤ 1,
2− y for 1 ≤ y ≤ 2,
0 elsewhere.

(20)

(b) Let y r = xr + xr + xr, then

g3(y) =


y2/2 for 0 ≤ y ≤ 1,
(−2y2 + 6y − 3)/2 for 1 ≤ y ≤ 2,
(y − 3)2/2 for 2 ≤ y ≤ 3,
0 elsewhere.

(21)
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The convolution (19) takes on a simple form in Fourier space. In statistics
the Fourier transformation of the probability density is known as characteristic
function, defined as the expectation value of eitxr

:

φ(t) = 〈eitxr
〉 =

∫ +∞

−∞
eitx f(x) dx . (22)

The characteristic function is particularly useful for investigating sums of random
variables, yr = xr

1 + xr
2:

φy(t) = 〈e(itxr
1+itxr

2)〉 =
∫ +∞

−∞

∫ +∞

−∞
eitx eity f1(x1) f2(x2) dx1 dx2 = φx1(t) φx2(t) .

(23)
The characteristic function of a sum of random variables is the product of
their characteristic functions. The result generalizes immediately to N random
variables

yr = xr
1 + . . . + xr

N . (24)
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The characteristic function of yr is

φy(t) =
N∏

i=1

φxi
(t) (25)

and the probability density of yr is the Fourier back-transformation of this
characteristic function

g(y) =
1
2π

∫ +∞

−∞
dt e−ity φy(t) . (26)

The probability density of the sample mean is obtained as follows: The
arithmetic mean of yr is x r = yr/N . We denote the probability density of yr

by gN(y) and the probability density of the arithmetic mean by ĝN(x). They are
related by

ĝN(x) = N gN(Nx) . (27)
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This follows by substituting y = Nx into gN(y) dy:

1 =
∫ +∞

−∞
gN(y) dy =

∫ +∞

−∞
gN(Nx) 2dx =

∫ +∞

−∞
ĝN(x) dx .

Example:
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Figure 6: Probability densities for the arithmetic means of two and three uniformly distributed

random variables, ĝ2(x) and ĝ3(x), respectively.
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This suggests that sampling leads to convergence of the mean by reducing its
variance. We use the characteristic function to understand the general behavior.
The characteristic function of a sum of independent random variables is the product
of their individual characteristic functions

φy(t) = [φx(t)]N . (28)

The characteristic function for the corresponding arithmetic average is

φx(t) =
∫ +∞

−∞
dx eitx ĝN(x) =

∫ +∞

−∞
Ndx eitx gN(Nx)

=
∫ +∞

−∞
dy exp

(
i

t

N
y

)
gN(y) .

Hence,

φx(t) = φy

(
t

N

)
=

[
φx

(
t

N

)]N

. (29)
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Example: The normal distribution.

The characteristic function is obtained by Gaussian integration

φ(t) = exp
(
−1

2
σ2t2

)
. (30)

Defining yr = xr + xr we have

φy(t) = [φ(t)]2 = exp
(
−1

2
2σ2t2

)
. (31)

This is the characteristic function of a Gaussian with variance 2σ2. We obtain
the characteristic function of the arithmetic average x r = yr/2 by the substitution
t → t/2:

φx(t) = exp
(
−1

2
σ2

2
t2

)
. (32)

The variance is reduced by a factor of two.
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The Central Limit Theorem

To simplify the equations we restrict ourselves to x̂ = 0. Let us consider a
probability density f(x) and assume that its moment exists, implying that the
characteristic function is a least two times differentiable, so that

φx(t) = 1 − σ2
x

2
t2 + O(t3) . (33)

The leading term reflects the the normalization of the probability density and the
first moment is φ′(0) = x̂ = 0. The characteristic function of the mean becomes

φx(t) =
[
1 − σ2

x

2N2
t2 + O

(
t3

N3

)]N

= exp
[
−1

2
σ2

x

N
t2

]
+ O

(
t3

N2

)
.

The probability density of the arithmetic mean x r converges towards the
Gaussian probability density with variance

σ2(x r) =
σ2(xr)

N
. (34)
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A Counter example: The Cauchy distribution provides an instructive, case
for which the central limit theorem does not work. This is expected as its second
moment does not exist. Nevertheless, the characteristic function of the Cauchy
distribution exists. For simplicity we take α = 1 and get

φ(t) =
∫ +∞

−∞
dx

eitx

π (1 + x2)
= exp(−|t|) . (35)

The integration involves the residue theorem. Using equation (29) for the
characteristic function of the mean of N random variables, we find

φx(t) =
[
exp

(
−|t|

N

)]n

= exp(−|t|) . (36)

The surprisingly simple result is that the probability distribution for the mean values
of N independent Cauchy random variables agrees with the probability distribution
of a single Cauchy random variable. Estimates of the Cauchy mean cannot be
obtained by sampling. Indeed, the mean does not exist.
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Binning

The notion of introduced here should not be confused with histogramming!
Binning means here that we group NDAT data into NBINS bins, where each binned
data point is the arithmetic average of

NBIN = [NDAT/NBINS] (Fortran integer division.)

original data points. Preferably NDAT is a multiple of NBINS. The purpose of the
binning procedure is twofold:

1. When the the central limit theorem applies, the binned data will become
practically Gaussian, as soon as NBIN becomes large enough. This allows to
apply Gaussian error analysis methods even when the original are not Gaussian.

2. When data are generated by a Markov process subsequent events are correlated.
For binned data these correlations are reduced and can in practical applications be
neglected, once NBIN is sufficiently large when compared to the autocorrelation
time,
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Example:
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Figure 7: Comparison of a histogram of 500 binned data with the normal distribution√
(120/π) exp[−120 (x − 1/2)2]. Each binned data point is the average of 20 uniformly

distributed random numbers. Assignment a0108 02.
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Gaussian Error Analysis for Large and Small Samples

The central limit theorem underlines the importance of the normal distribution.
Assuming we have a large enough sample, the arithmetic mean of a suitable
expectation value becomes normally distributed and the calculation of the confidence
intervals is reduced to studying the normal distribution. It has become the
convention to use the standard deviation of the sample mean

σ = σ(x r) with x r =
N∑

i=1

xr
i (37)

to indicate its confidence intervals [x̂ − nσ, x̂ + nσ] (the dependence of σ on N
is suppressed). For a Gaussian distribution equation (12) yields the probability
content p of the confidence intervals (37) to be

p = p(n) = G(nσ)−G(−nσ) =
1√
2π

∫ +n

−n

dx e−
1
2x2

= erf
(

n√
2

)
. (38)
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Table 3: Probability content p of Gaussian confidence intervals [x̂ − nσ, x̂ + nσ],
n = 1, . . . , 6, and q = (1− p)/2. Assignment a0201 01.

n 1 2 3 4 5
p .68 .95 1.0 1.0 1.0
q .16 .23E-01 .13E-02 .32E-04 .29E-06

In practice the roles of x and x̂ are interchanged: One would like to know
the likelihood that the unknown exact expectation value x̂ will be in a certain
confidence interval around the measured sample mean. The relationship

x ∈ [x̂− nσ, x̂ + nσ] ⇐⇒ x̂ ∈ [x− nσ, x + nσ] (39)

solves the problem. Conventionally, these estimates are quoted as

x̂ = x±4x (40)

where the error bar 4x is often an estimator of the exact standard deviation.
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An obvious estimator for the variance σ2
x is

(s′ rx )2 =
1
N

N∑
i=1

(xr
i − x r)2 (41)

where the prime indicates that we shall not be happy with it, because we encounter
a bias. An estimator is said to be biased when its expectation value does not agree
with the exact result. In our case

〈(s′ rx )2〉 6= σ2
x . (42)

An estimator whose expectation value agrees with the true expectation value is
called unbiased. For the variance it is rather straightforward to construct an
unbiased estimator (sr

x)x. The bias of the definition (41) comes from replacing the
exact mean x̂ by its estimator x r. The latter is a random variable, whereas the
former is just a number.

33



Some algebra shows that the desired unbiased estimator of the variance is
given by

(sr
x)2 =

N

N − 1
(s′ rx )2 =

1
N − 1

N∑
i=1

(xr
i − x r)2 . (43)

Correspondingly, the unbiased estimator of the variance of the sample mean is

(sr
x)2 =

1
N(N − 1)

N∑
i=1

(xr
i − x r)2 . (44)

Gaussian difference test:

In practice one is often faced with the problem to compare two different empirical
estimates of some mean. How large must D = x− y be in order to indicate a real
difference? The quotient

dr =
Dr

σD
(45)
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is normally distributed with expectation zero and variance one, so that

P = P (|dr| ≤ d) = G0(d)−G0(−d) = 1− 2 G0(−d) = erf
(

d√
2

)
. (46)

The likelihood that the observed difference |x− y| is due to chance is defined
to be

Q = 1− P = 2 G0(−d) = 1− erf
(

d√
2

)
. (47)

If the assumption is correct, then Q is a uniformly distributed random variable in
the range [0, 1). Examples are:

Table 4: Gaussian difference tests (assignment a0201 06).

x1 ± σx1 1.0± 0.1 1.0± 0.1 1.0± 0.1 1.0± 0.05 1.000± 0.025
x2 ± σx2 1.2± 0.2 1.2± 0.1 1.2± 0.0 1.2± 0.00 1.200± 0.025

Q 0.37 0.16 0.046 0.000063 0.15× 10−7
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Gosset’s Student Distribution

We ask the question: What happens with the Gaussian confidence limits when
we replace the variance σ2

x by its estimator s2
x in statements like

|x− x̂|
σx

< 1.96 with 95% probability.

For sampling from a Gaussian distribution the answer was given by Gosset, who
published his article 1908 under the pseudonym Student in Biometrika. He showed
that the distribution of the random variable

tr =
x r − x̂

sr
x

(48)

is given by the probability density

f(t) =
1

(N − 1) B(1/2, (N − 1)/2)

(
1 +

t2

N − 1

)−N
2

. (49)

36



Here B(x, y) is the beta function. The fall-off is a power law |t|−f for |t| → ∞,
instead of the exponential fall-off of the normal distribution. Confidence probabilities
of the Student distribution are:

N \ S 1.0000 2.0000 3.0000 4.0000 5.0000
2 .50000 .70483 .79517 .84404 .87433
3 .57735 .81650 .90453 .94281 .96225
4 .60900 .86067 .94233 .97199 .98461
8 .64938 .91438 .98006 .99481 .99843
16 .66683 .93605 .99103 .99884 .99984
32 .67495 .94567 .99471 .99963 .99998
64 .67886 .95018 .99614 .99983 1.0000

INFINITY: .68269 .95450 .99730 .99994 1.0000

For N ≤ 4 we find substantial deviations from the Gaussian confidence levels.
Up to two standard deviations reasonable approximations of Gaussian confidence
limits are obtained for N ≥ 16 data. If desired, the Student distribution function
can always be used to calculate the exact confidence limits. When the central limit
theorem applies, we can bin a large set of non-Gaussian data into 16 almost
Gaussian data and reduce the error analysis to Gaussian methods.
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Student difference test

This test is a generalization of the Gaussian difference test. It takes into account
that only a finite number of events are sampled. As before it is assumed that the
events are drawn from a normal distribution. Let the following data be given

x calculated from M events, i .e., σ2
x = σ2

x/M (50)

y calculated from N events, i .e., σ2
y = σ2

y/N (51)

and an unbiased estimators of the variances

s2
x = s2

x/M =
∑M

i=1(xi − x)2

M (M − 1)
and s2

y = s2
y/N =

∑N
j=1(yj − y)2

N (N − 1)
. (52)

Under the additional assumption σ2
x = σ2

y the discussion which leads to the
Student distribution applies and the probability

P (|x− y| > d) (53)
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is determined by the Student distribution function in the same way as the probability
of the Gaussian difference test is determined by the normal distribution.

Examples for the Student difference test for x1 = 1.00± 0.05 from M data and
x2 = 1.20± 0.05 from N data (assignment a0203 03):

M 512 32 16 16 4 3 2
N 512 32 16 4 4 3 2
Q 0.0048 0.0063 0.0083 0.072 0.030 0.047 0.11

The Gaussian difference test gives Q = 0.0047. For M = N = 512 the Student
Q value is practically identical with the Gaussian result, for M = N = 16 it has
almost doubled. Likelihoods above a 5% cut-off, are only obtained for M = N = 2
(11%) and M = 16, N = 4 (7%). The latter result looks a bit surprising, because
its Q value is smaller than for M = N = 4. The explanation is that for M = 16,
N = 4 data one would expect the N = 4 error bar to be two times larger than the
M = 16 error bar, whereas the estimated error bars are identical.

This leads to the problem: Assume data are sampled from the same normal
distribution, when are two measured error bars consistent and when not?
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χ2 Distribution, Error of the Error Bar, Variance Ratio Test

The distribution of the random variable

(χr)2 =
N∑

i=1

(yr
i )

2 , (54)

where each yr
i is normally distributed, defines the χ2 distribution with N degrees

of freedom. The study of the variance (sr
x)2 of a Gaussian sample can be reduced

to the χ2-distribution with f = N − 1 degrees of freedom

(χr
f)2 =

(N − 1) (sr
x)2

σ2
x

=
N∑

i=1

(xr
i − x r)2

σ2
x

. (55)

The probability density of χ2 per degree of freedom (pdf) is

fN(χ2) = Nf(Nχ2) =
a e−aχ2 (

aχ2
)a−1

Γ(a)
where a =

N

2
. (56)
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For N = 1, 2, . . . , 20 this probability density is plotted in the figure and we can
see the central limit theorem at work. Picking the curves at χ2/N = 1, increasing
fN(χ2) values correspond to increasing N = 1, 2, . . . , 20. Assignment a0202 03.
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The Error of the Error Bar

For normally distributed data the number of data alone determines the errors
of error bars, because the χ2 distribution is exactly known. One does not have to
rely on estimators! Confidence intervals for variance estimates s2

x = 1 from NDAT
data (assignment a0204 01):

q q q 1-q 1-q

NDAT=2**K .025 .150 .500 .850 .975

2 1 .199 .483 2.198 27.960 1018.255
4 2 .321 .564 1.268 3.760 13.902
8 3 .437 .651 1.103 2.084 4.142
16 4 .546 .728 1.046 1.579 2.395
32 5 .643 .792 1.022 1.349 1.768

1024 10 .919 .956 1.001 1.048 1.093
16384 14 .979 .989 1.000 1.012 1.022
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Variance ratio test (F -test)

We assume that two sets of normal data are given together with estimates
of their variances σ2

x1
and σ2

x2
:

(
s2

x1
, N1

)
and

(
s2

x2
, N2

)
. We would like to test

whether the ratio F =
s2
x1

s2
x2

differs from F = 1 in a statistically significant way. The

probability f1
f2

F < w, where fi = Ni − 1, i = 1, 2, is know to be

H(w) = 1−BI

(
1

w + 1
,
1
2

f2,
1
2

f1

)
. (57)

Examples (assignment a0505 02):

4x1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
N1 16 16 64 1024 2048 32 1024 16
4x2 1.0 1.0 1.0 1.05 1.05 2.0 2.0 2.0
N2 16 8 16 1024 2048 8 256 16
Q 1.0 0.36 0.005 0.12 0.027 0.90 0.98 0.01

This test allows us later to compare the efficiency of MC algorithms.
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The Jackknife Approach

Jackknife estimators allow to correct for the bias and the error of the bias.
The method was introduced in the 1950s in papers by Quenouille and Tukey. The
jackknife method is recommended as the standard for error bar calculations. In
unbiased situations the jackknife and the usual error bars agree. Otherwise the
jackknife estimates are improvements, so that one cannot loose.

The unbiased estimator of the expectation value x̂ is

x =
1
N

N∑
i=1

xi

Normally bias problems occur when one estimates a non-linear function of x̂:

f̂ = f(x̂) . (58)

Typically, the bias is of order 1/N :

bias (f) = f̂ − 〈f〉 =
a1

N
+

a2

N2
+ O(

1
N3

) . (59)
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Unfortunately, we lost the ability to estimate the variance σ2(f) = σ2(f)/N via
the standard equation

s2(f) =
1
N

s2(f) =
1

N (N − 1)

N∑
i=1

(fi − f)2 , (60)

because fi = f(xi) is not a valid estimator of f̂ . Also it is in non-trivial applications
almost always a bad idea to to use standard error propagation formulas with the
aim to deduce 4f from 4x. Jackknife methods are not only easier to implement,
but also more precise and far more robust.

The error bar problem for the estimator f is conveniently overcome by using

jackknife estimators f
J
, fJ

i , defined by

f
J

=
1
N

N∑
i=1

fJ
i with fJ

i = f(xJ
i ) and xJ

i =
1

N − 1

∑
k 6=i

xk . (61)
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The estimator for the variance σ2(f
J
) is

s2
J(f

J
) =

N − 1
N

N∑
i=1

(fJ
i − f

J
)2 . (62)

Straightforward algebra shows that in the unbiased case the estimator of the
jackknife variance (62) reduces to the normal variance (60).

Notably only of order N (not N2) operations are needed to construct the
jackknife averages xJ

i , i = 1, . . . , N from the original data.
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