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Statistical Physics and Potts Model

MC simulations of systems described by the Gibbs canonical ensemble aim at
calculating estimators of physical observables at a temperature T . In the following
we choose units so that the becomes one, and β = 1/T . Let us consider the
calculation of the expectation value of an observable O. Mathematically all
systems on a computer are discrete, because a finite word length has to be used.
Hence, the expectation value is given by the sum

Ô = Ô(β) = 〈O〉 = Z−1
K∑

k=1

O(k) e−β E(k)
(1)

where Z = Z(β) =
K∑

k=1

e−β E(k)
(2)

is the partition function and the index k = 1, . . . ,K labels all configurations
of the system, and E(k) is the (internal) energy of configuration k. The
configurations are also called microstates. To distinguish the configuration index
from other indices, it is put in parenthesis.
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We introduce generalized Potts models in an external magnetic field on d-
dimensional hypercubic lattices with periodic boundary conditions. Without being
overly complicated, these models are general enough to illustrate the essential
features we are interested in. In addition, various subcases of these models are
by themselves of physical interest. Generalizations of the algorithmic concepts to
other models are straightforward, although technical complications may arise.

We define the energy function of the system by

−β E(k) = −β E
(k)
0 + H M (k) (3)

where

E
(k)
0 = −2

∑
<ij>

Jij(q
(k)
i , q

(k)
j ) δ(q(k)

i , q
(k)
j ) +

2 d N

q
(4)

with δ(qi, qj) =
{

1 for qi = qj

0 for qi 6= qj
and M (k) = 2

N∑
i=1

δ(1, q
(k)
i ) .
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The sum < ij > is over the nearest neighbor lattice sites and q
(k)
i is called the

Potts spin or Potts state of configuration k at site i. For the q-state Potts model

q
(k)
i takes on the values 1, . . . , q. The external magnetic field is chosen to interact

with the state qi = 1 at each site i, but not with the other states qi 6= 1. The
Jij(qi, qj), (qi = 1, . . . , q; qj = 1, . . . , q) functions define the exchange coupling
constants between the states at site i and site j. The energy function describes a
number of physically interesting situations. With

Jij(qi, qj) ≡ J > 0 (conventionally J = 1) (5)

the original model is recovered and q = 2 becomes equivalent to the Ising
ferromagnet, see F.Y. Wu for a detailed review. The Ising case of Edwards-
Anderson spin glasses and quadrupolar Potts glasses are obtained when the
exchange constants are quenched random variables. Other choices of the Jij

include anti-ferromagnets and the fully frustrated Ising model.

For the energy per spin the notations (H = 0 and H 6= 0) are

e0s = E0/N and es = E/N . (6)
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A factor of two is introduced, so that e0s agrees for q = 2 with the conventional
Ising model definition, so that

β = βIsing =
1
2

βPotts . (7)

For the 2d Potts models a number of exact results are known in the infinite volume
limit, mainly due to work by Baxter. The phase transition temperatures are

1
2

βPotts
c = βc =

1
Tc

=
1
2

ln(1 +
√

q), q = 2, 3, . . . . (8)

At βc the average energy per state is

ec
0s = Ec

0/N =
4
q
− 2− 2/

√
q . (9)

The phase transition is second order for q ≤ 4 and first order for q ≥ 5 for which
the exact infinite volume latent heats 4e0s and entropy jumps 4s were also
found by Baxter, while the interface tensions fs were derived later.
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Sampling and Re-weighting

For the Ising model it is straightforward to sample statistically independent
configurations. We simply have to generate N spins, each either up or down
with 50% likelihood. This is called random sampling. The figure depicts a thus
obtained histogram for the 2d Ising model energy per spin
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Figure 1: Energy histograms of 100 000 entries each for the Ising model on an 20 × 20 lattice:

Random Sampling gives statistically independent configurations at β = 0. Histograms at β = 0.2

and β = 0.4 are generated by Markov chain MC. Re-weighting of the β = 0 random configurations

to β = 0.2 is shown to fail (assignments a0301 02 and a0303 02).
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Note that is is very important to distinguish the energy measurements on single
configurations from the expectation value. The expectation value ê0s is a single
number, while e0s fluctuates. From the measurement of many e0s values one finds
estimators of its moments. The mean is is denoted by e0s and fluctuates.

The histogram entries at β = 0 can be re-weighted so that they correspond to
other β values. We simply have to multiply the entry corresponding to energy E by
cβ exp(−βE). Similarly histograms corresponding to the Gibbs ensemble at some
value β0 can be re-weighted to other β values.

Care has to be taken to ensure that the involved arguments of the exponential
function do not become too large. This is done in by first calculating the mean
energy and then implementing re-weighting with respect to the difference from the
mean.

Re-weighting has a long history. For FSS investigations of second order phase
transitions its usefulness of the re-weighting has been stressed by Ferrenberg
and Swendsen (accurate determinations of peaks of the specific heat or of
susceptibilities).
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In the figure re-weighting is done from β0 = 0 to β = 0.2. But, by comparison
to the histogram from a Metropolis MC calculation at β = 0.2, the result is seen
to be disastrous. The reason is easily identified: In the range where the β = 0.2
histogram takes on its maximum, the β = 0 histogram has not a single entry, i.e.,
our naive sampling procedure misses the important configurations at β = 0.2.
Re-weighting to new β values works only in a range β0 ±4β, where 4β → 0 in
the infinite volume limit.

Important Configurations

Let us determine the important contributions to the partition function. The
partition function can be re-written as a sum over energies

Z = Z(β) =
∑
E

n(E) e−β E (10)

where the unnormalized spectral density n(E) is defined as the number of
microstates k with energy E (note, on the computer energy values are always
discrete).
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For a fixed value of β the energy probability density

Pβ(E) = cβ n(E) e−βE (11)

is peaked around the average value Ê(β), where cβ is a normalization constant so
that the

∑
E Pβ(E) = 1 holds.

Away from first and second order phase transitions, the width of the energy
distribution is 4E ∼

√
V follows from the fact that, away from phase transition

points, the fluctuations of the N ∼ V lattice spins are essentially uncorrelated, so
that the magnitude of a typical fluctuations is ∼

√
N . From this we find that the

re-weighting range is 4β ∼ 1/
√

V , as the energy is an extensive quantity ∼ V so
that 4βE ∼

√
V can stay within the fluctuation of the system.

Interestingly, the re-weighting range increases at second order phase transitions
point, because critical fluctuations are larger than non-critical fluctuations. Namely,
one has 4E ∼ V x with 1/2 < x < 1 and the requirement 4βE ∼ V x yields
4β ∼ V x−1.
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For first order phase transitions one has a latent heat4V ∼ V , but this does not
mean that the re-weighting range becomes of order one. In essence, the fluctuations
collapse, because the two phases become separated by an interfacial tension. One
is back to fluctuations within either of the two phases, i.e. 4β ∼ 1/

√
V .

The important configurations at temperature T = 1/β are at the energy values
for which the probability density Pβ(E) is large. To sample them efficiently, one
needs a procedure which generates the configurations with their Boltzmann weights

w
(k)
B = e−βE(k)

. (12)

The number of configurations n(E) and the weights combine then so that the
probability to generate a configuration at energy E becomes precisely Pβ(E) as
given by equation (11).
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Importance Sampling and Markov Chain Monte Carlo

For the canonical ensemble Importance sampling generates configurations k
with probability

P
(k)
B = cB w

(k)
B = cB e−βE(k)

(13)

where the constant cB is determined by the normalization condition
∑

k P
(k)
B = 1.

The state vector (P (k)
B ), for which the configurations are the vector indices, is

called Boltzmann state. When configurations are stochastically generated with

probability P
(k)
B , the expectation value becomes the arithmetic average:

Ô = Ô(β) = 〈O〉 = lim
NK→∞

1
NK

NK∑
n=1

O(kn) . (14)

When the sum is truncated at some finite value of NK, we obtain an estimator of
the expectation value

O =
1

NK

NK∑
k=1

O(kn) . (15)
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Normally, we cannot generate configurations k directly with probability (13).
But they may be found as members of the equilibrium distribution of a
dynamic process. In practice Markov chains are used. A Markov process
is a particularly simple dynamic process, which generates configuration kn+1

stochastically from configuration kn, so that no information about previous
configurations kn−1, kn−2, . . . is needed. The elements of the Markov chain
time series are the configurations. Assume that the configuration k is given. Let
the transition probability to create the configuration l in one step from k be given
by W (l)(k) = W [k → l]. In essence, the matrix

W =
(
W (l)(k)

)
(16)

defines the Markov process. Note, that this transition matrix is a very big (never
stored in the computer!), because its labels are the configurations. To achieve
our goal to generate configurations with the desired probabilities, the matrix W is
required to satisfy the following properties:
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(i) Ergodicity:

e−βE(k)
> 0 and e−βE(l)

> 0 imply : (17)

an integer number n > 0 exists so that (Wn)(l)(k) > 0 holds.

(ii) Normalization: ∑
l

W (l)(k) = 1 . (18)

(iii) Balance: ∑
k

W (l)(k) e−βE(k)
= e−βE(l)

. (19)

Balance means: The Boltzmann state (13) is an eigenvector with eigenvalue 1
of the matrix W = (W (l)(k)).

In statistical physics the ensemble notation is frequently used. By definition,
an ensemble is a collection of configurations so that to each configuration k a
probability P (k) is assigned,

∑
k P (k) = 1. The Gibbs or Boltzmann ensemble

EB is defined to be the ensemble with probability distribution (13).
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An equilibrium ensemble Eeq of the Markov process is defined by its probability
distribution Peq satisfying

W Peq = Peq , in components P (l)
eq =

∑
k

W (l)(k)P (k)
eq . (20)

Statement: Under the conditions (i), (ii) and (iii) the Boltzmann ensemble is the
only equilibrium ensemble of the Markov process.

Proof: Let us first define a distance between ensembles. Suppose we have two
ensembles E and E′, each of which is a collection of many configurations. Denote

the probability for configuration k in E by P (k) and in E′ by P ′(k). We define the
distance between E and E′ to be

||E − E′|| =
∑

k

|P (k) − P ′(k)| , (21)

where the sum goes over all configurations. Suppose that E′ resulted from the
application of the transition matrix W to the ensemble E. We can compare the
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distance of E′ from the Boltzmann ensemble with the distance of E from the
Boltzmann ensemble:

||E′ − EB|| =
∑

l

∣∣∣∣∣ ∑
k

W (l)(k) (P (k) − P
(k)
B )

∣∣∣∣∣ (using balance)

≤
∑

l

∑
k

∣∣∣ W (l)(k) (P (k) − P
(k)
B )

∣∣∣ (using the triangle inequality)

=
∑

k

∣∣∣ P (k) − P
(k)
B

∣∣∣ = ||E − EB|| . (22)

The last line is obtained by making use of the normalization
∑

l W
(l)(k) = 1 and of

W (l)(k) ≥ 0.

The algorithm reduces the distance of an ensemble from the equilibrium
Boltzmann ensemble whenever ergodicity holds. First, we note that the
inequality (22) is strict if W (l)(k) never vanishes. This is easily seen to follow

from the normalization condition
∑

k P (k) =
∑

P
(k)
B = 1: Assume, that some
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configuration (k1) exists for which

P (k1) − P
(k1)
B > 0 (23)

holds, it follows that for at least one other configuration (k2) exists for which

P (k2) − P
(k2)
B < 0 . (24)

Consequently, the contributions in
∑

k W (l)(k)(P (k) − P
(k)
B ) flip signs and the

equality of the ≤ sign in equation (22) can be excluded. Here we have used
the (unrealistic) assumption that all matrix elements W (l)(k) are greater than
zero. This restriction is easily removed. Ergodicity implies (Wn)(k1)(k2) > 0 and
(Wn)(k2)(k1) > 0 for some integer n > 0. As (Wn)(l)(k) can be used instead of
W (l)(k), it follows that the distance to the Boltzmann ensemble will be reduced
by applying the Markov process sufficiently often. This concludes the proof of the
statement. Obviously, the approach to the Boltzmann distribution will become slow
if n is large.

There are many ways to construct a Markov process satisfying (i), (ii) and (iii).
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A stronger condition than balance (19) is

(iii’) Detailed balance:

W (l)(k) e−βE(k)
= W (k)(l)e−βE(l)

. (25)

Using the normalization
∑

k W (k)(l) = 1 detailed balance implies balance (iii).

At this point we have succeeded to replace the canonical ensemble average by
a time average over an artificial dynamics. Calculating then averages over large
times, like one does in real experiments, is equivalent to calculating averages of
the ensemble. One distinguishes dynamical universality classes. The Metropolis
and heat bath algorithms discussed in the following fall into the class of so called
Glauber dynamics, which imitates the thermal fluctuations of nature to some
extent. In a frequently used classification this is called model A. Cluster algorithms
discussed constitute another universality class. Some recent attention has focused
on dynamical universality classes of non-equilibrium systems.
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The Metropolis Algorithm

Detailed balance still does not uniquely fix the transition probabilities W (l)(k).
The Metropolis algorithm is a popular choice can be used whenever one knows
how to calculate the energy of a configuration. Given a configuration k, the
Metropolis algorithm proposes a configuration l with probability

f(l, k) normalized to
∑

l

f(l, k) = 1 . (26)

We derive a symmetry condition which ensures detailed balance.

The new configuration l is accepted with probability

w(l)(k) = min

[
1,

P
(l)
B

P
(k)
B

]
=

{
1 for E(l) < E(k)

e−β(E(l)−E(k)) for E(l) > E(k).
(27)

If the new configuration is rejected, the old configuration has to be counted again.
A beginners mistake is to count configurations only after accepted changes.
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The acceptance rate is defined as the ratio of accepted changes over proposed
moves. With this convention we do not count a move as accepted when it proposes
the at hand configuration.

The Metropolis procedure gives rise to the transition probabilities

W (l)(k) = f(l, k) w(l)(k) for l 6= k (28)

and W (k)(k) = f(k, k) +
∑
l 6=k

f(l, k) (1− w(l)(k)) . (29)

Therefore, the ratio
(
W (l)(k)/W (k)(l)

)
satisfies detailed balance (25) if

f(l, k) = f(k, l) holds . (30)

Otherwise the probability density f(l, k) is unconstrained. So there is an amazing
flexibility in the choice of the transition probabilities W (l)(k). One can even use
acceptance probabilities distinct from those of equation (27) and the proposal
probabilities are then not necessarily symmetric anymore (e.g. Hastings). Also, the
algorithm generalizes immediately to arbitrary weights.
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The O(3) σ Model and the Heat Bath Algorithm

We give an example of a model with a continuous energy function. The 2d
version of the model is of interest to field theorists because of its analogies with the
four-dimensional Yang-Mills theory. In statistical physics the d-dimensional model
is known as the Heisenberg ferromagnet. Expectation values are calculated with
respect to the partition function

Z =
∫ ∏

i

dsi e−βE({si}) . (31)

The spins ~si =

 si,1

si,2

si,3

 are normalized to (~si)2 = 1 (32)

and the measure dsi is defined by
∫

dsi =
1
4π

∫ +1

−1

d cos(θi)
∫ 2π

0

dφi , (33)

where the polar (θi) and azimuth (φi) angles define the spin si on the unit sphere.
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The energy is

E =
∑
<ij>

(1− ~si~sj) , (34)

where the sum goes over the nearest neighbor sites of the lattice. We would like to
update a single spin ~s. The sum of its 2d neighbors is

~S = ~s1 + ~s2 + . . . + ~s2d−1 + ~s2d .

Hence, the contribution of spin ~s to the action is 2d− ~s~S. We propose a new spin
~s
′
with the measure (33) by drawing two uniformly distributed random numbers

φr ∈ [0, π) for the azimuth angle and

cos(θr) = xr ∈ [−1,+1) for the cosine of the polar angle.
This defines the probability function f(~s

′
, ~s) of the Metropolis process, which

accepts the proposed spin ~s
′
with probability

w(~s → ~s
′
) =

{
1 for ~S~s

′
> ~S~s,

e−β(~S~s−~S~s
′
) for ~S~s

′
< ~S~s.
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If sites are chosen with the uniform probability distribution 1/N per site, where
N is the total number of spins, it is obvious that the procedure fulfills detailed
balance. It is noteworthy that the procedure remains valid when the spins are chosen
in the systematic order 1, . . . , N , then 1, . . . , N again, and so on. Balance (19)
still holds, whereas detailed balance (25) is violated (exercise).

The heath bath algorithm

Repeating the Metropolis algorithm again and again for the same spin ~s leads
to the equilibrium distribution of this spin, which reads

P (~s
′
; ~S) = const eβ~S~s ′ with

∫
P (~s

′
; ~S) ds′ = 1 .

One would prefer to choose ~s
′
directly with the probability

W (~s → ~s
′
) = P (~s

′
; ~S) = const eβ ~s

′
~S ,

as ~s
′
is then immediately Boltzmann distributed with respect to its neighbor spins.

The algorithm, which creates this distribution, is called the heat bath algorithm.
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Implementation of this algorithm becomes feasible when the energy function is
sufficiently simple to allow for an explicit calculation of the probability P (~s

′
; ~S).

This is an easy task for the O(3) σ-model. Let

α = angle(~s
′
, ~S), x = cos(α) and S = β|~S| .

For S = 0 a new spin ~s
′
is simply obtained by random sampling. We assume in the

following S > 0. The Boltzmann weight becomes exp(xS) and the normalization
constant follows from ∫ +1

−1

dx exS =
2
S

sinh(S) .

Therefore, the desired probability is

P (~s
′
; ~S) =

S

2 sinh(S)
exS =: f(x)

and the method of the first lecture can be used to generate events with the
probability density f(x).
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With

y = F (x) =
∫ x

−1

dx′ f(x′) =
∫ x

−1

dx′
S

2 sinh(S)
ex′S =

exp(+xS)− exp(−S)
2 sinh(S)

a uniformly distributed random number yr ∈ [0, 1) translates into

xr = cos αr =
1
S

ln [ exp(+S)− yr exp(+S) + yr exp(−S)] . (35)

Finally, one has to give ~s
′
a direction in the plane orthogonal to S. This is done by

choosing a random angle βr uniformly distributed in the range 0 ≤ βr < 2π. Then,
xr = cos αr and βr completely determine ~s

′
with respect to ~S. Before storing ~s

′

in the computer memory, we have to calculate coordinates of ~s
′
with respect to a

Cartesian coordinate system, which is globally used for all spins of the lattice. This
is achieved by a linear transformation. We define

cos θ =
S3

S
, sin θ =

√
1− cos2 θ, cos φ =

S1

S sin θ
and sinφ =

S2

S sin θ
.
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Unit vectors of a coordinate frame K ′, with ẑ in the direction of Ŝ and ŷ in the
x− y plane, are then defined by

ẑ′ =

 sin θ cos φ
sin θ sinφ

cos θ

 , x̂′ =

 cos θ cos φ
cos θ sinφ
− sin θ

 and ŷ′ =

− sinφ
cos φ

0

 .

Expanding ~s
′
in these units vectors, we have

~s
′
= sinαr cos βr x̂

′
+ sinαr sinβr ŷ + cos αr ẑ

′

=

 sinαr cos βr cos θ cos φ− sinαr sinβr sinφ + cos αr sin θ cos φ
sinαr cos βr cos θ sinφ + sinαr cos βr cos φ + cos αr sin θ sinφ

− sinαr cos βr sin θ + cos αr cosθ

 (36)

and the three numbers of the column vector (36) are stored in the computer.
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Potts Model Heat bath code

The heat bath algorithm chooses a state qi directly with the local Boltzmann
distribution defined by its nearest neighbors. The state qi can take on one of the
values 1, . . . , q and, with all other states set, determines a value of the energy
function (3). We denote this energy by E(qi) and the Boltzmann probabilities are

PB(qi) = const e−β E(qi) (37)

where the constant is determined by the normalization condition

q∑
qi=1

PB(qi) = 1 . (38)

In equation (37) we can define E(qi) to be just the contribution of the interaction of
qi with its nearest neighbors to the total energy and absorb the other contribution
into the overall constant. The E(qi) values depend only on how the nearest
neighbors of the spin qi partition into the values 1, . . . , q. For low values of q and
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the dimension d the most efficient implementation of the heatbath algorithm is to
tabulate all possibilities. However, here we prefer to give a generic code which
works for arbitrary values of q and d.

For this we calculate the cumulative distribution function of the heat bath
probabilities

PHB(qi) =
qi∑

q′i=1

PB(q′i) . (39)

The normalization condition (38) implies PHB(q) = 1. Comparison of these
cumulative probabilities with a uniform random number xr yields the heat bath
update qi → q′i. Note that in the heat bath procedure the original value qin

i does
not influence the selection of qnew

i .
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Start and equilibration

Under repeated application of one of our updating procedures the probability
of states will approach the Boltzmann distribution. However, initially we have to
start with a microstate which may be far off the Boltzmann distribution. Far off
means, that the Boltzmann probability (at temperature T ) for a typical state of
the initially generated distribution can be very, very small. Suppression factors like
10−10000 are well possible. Although the weight of states decreases with 1/n where
n is the steps of the Markov process, one should exclude the initial states from the
equilibrium statistics. In practice this means we should allow for a certain number
of sweeps nequi to equilibrate the system.

Many ways to generate start configurations exist. Two natural and easy to
implement choices are:

1. Generate a random configuration corresponding to β = 0. This defines a
random or disordered start of a MC simulation.

2. Generate a configuration for which all Potts spins take on the same q-value.
This is called an ordered start of a MC simulation.
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Examples of initial time series:
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Figure 2: Left: Two Metropolis time series of 200 sweeps each for a 2d Ising model on a 80× 80

lattice at β = 0.4 are shown. Ordered and disordered starts are used. The exact mean value

ê0s = −1.10608 is also indicated (assignment a0302 01). Right: q = 10 Potts model time series

of 200 sweeps on an 80× 80 lattice at β = 0.62. Measurements of the action variable after every

sweep are plotted for ordered and disordered starts (assignment a03003 05).
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Consistency Checks

For the 2d Ising model we can test against the exact finite lattice results of
Ferdinand and Fisher. We simulate an 202 lattice at β = 0.4.

Now we use a statistics of 10 000 sweeps for reaching equilibrium and assume
that this is an overkill. A more careful analysis is the subject of the next lecture.

The statistics for measurement is chosen 32 times larger: 64 bins of 5 000 sweeps
each. The number 64 is taken, because according to the student distribution the
approximation to the Gaussian approximation is then already excellent, while the
binsize of 5 000 (� 200) is argued to be large enough to neglect correlations
between the bins. With this statistics we find (assignment a0303 06)

e0s = −1.1172 (14) (Metropolis) versus ês = −1.117834 (exact) . (40)

Performing the Gaussian difference test gives a perfectly admissible value

Q = 0.66 .
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For the 2d 10-state Potts model at β = 0.62 we test our Metropolis versus our
heat bath code on a small 20× 20 lattice. For the heat bath updating we use the
same statistics as previously for the 2d Ising model.

For the Metropolis updating we increase these numbers by a factor of four to
40 000 sweeps for reaching equilibrium and 64 × 20 000 sweeps for measurements.
This increase is done, because we expect the performance of Metropolis updating for
the 10-state model to be far worse than for the 2-state model: At low temperature
the likelihood to propose the most probable (aligned) Potts spin is 1/2 for the
2-state model, but only 1/10 for the 10-state model and β = 0.62 is sufficiently
close to the ordered phase, so that this effect is expected to be of relevance. The
results of our simulations are (assignment a0303 10)

actm = 0.321772 (75) (Metropolis) versus actm = 0.321661 (70) (heat bath)

and Q = 0.28 for the Gaussian difference test. Another perfectly admissible value.
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3d 3-state Potts model

To illustrate features of a first order phase transition for the 3d 3-state Potts
model on an 243 lattice. We use the 1-hit Metropolis algorithm and simulate at
β = 0.275229525, perform 20 000 sweeps for reaching equilibrium, then 64×10 000
sweeps with measurements. From the latter statistics we show the action variable
histogram and its error bars (assignment a0303 10):
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The histogram exhibits a double peak structure which is typically obtained
when systems with first order transitions are simulated on finite lattices in the
neighborhood of so called pseudo-transition temperatures. These are finite
lattice temperature definitions, which converge with increasing system size towards
the infinite volume transition temperature. Equal heights of the maxima of the
two peaks is a popular definition of a pseudo-transition temperature for first order
phase transitions. Our β value needs to be re-weighted to a slightly higher value
to arrange for equal heights (assignment a0303 10).
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Self-Averaging Illustration for the O(3) model

We compare the peaked distribution function of the mean action per link
for different lattice sizes. The property of self-averaging is observed: The
larger the lattice, the smaller the confidence range. The other way round, the
peaked distribution function is very well suited to exhibit observables for which
self-averaging does not work, as for instance encountered in spin glass simulations.
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Figure 3: O(3) σ-model at β = 1.1 (assignments a0304 06 and a0304 08).
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