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Multicanonical Ensemble

One of the questions which ought to be addressed before performing a large
scale computer simulation is “What are suitable weight factors for the problem at
hand?” So far we used the Boltzmann weights as this appears natural for simulating
the Gibbs ensemble. However, a broader view of the issue is appropriate.

Conventional simulation calculate canonical expectation values at a fixed
temperature T and can, by re-weighting techniques, only be extrapolated to a
vicinity of this temperature. For multicanonical simulations this is different. A
single simulation allows to obtain equilibrium properties of the Gibbs ensemble
over a range of temperatures. Of particular interest are two situations for which
canonical simulations do not provide the appropriate implementation of importance
sampling:

1. The physically important configurations are rare in the canonical ensemble.

2. A rugged free energy landscape makes the physically important configurations
difficult to reach.
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MC calculation of the interface tension of a first order phase transition provide
an example where canonical MC simulation miss the important configurations.

Let N = Ld be the lattice size. For first order phase transition pseudo-transition
temperatures βc(L) exist so that the energy distributions P (E) = P (E;L) become
double peaked and the maxima at E1

max < E2
max are of equal height Pmax =

P (E1
max) = P (E2

max). In-between the maximum values a minimum is located at
some energy Emin. Configurations at Emin are exponentially suppressed like

Pmin = P (Emin) = cf Lp exp(−fsA) (1)

where fs is the interface tension and A is the minimal area between the phases,
A = 2Ld−1 for an Ld lattice, cf and p are constants (computations of p have been
done in the capillary-wave approximation). The interface tension can be determined
by Binder’s histogram method. One has to calculate the quantities

fs(L) = − 1
A(L)

lnR(L) with R(L) =
Pmin(L)
Pmax(L)

(2)

and to make a finite size scaling (FSS) extrapolation of fs(L) for L →∞.
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For large systems a canonical MC simulation will practically never visit
configurations at energy E = Emin and estimates of the ratio R(L) will be
very inaccurate. The terminology supercritical slowing down was coined to
characterize such an exponential deterioration of simulation results with lattice size.

Multicanonical simulations approach this problem by sampling, in an appropriate
energy range, with an approximation

ŵmu(k) = wmu(E(k)) = e−b(E(k)) E(k)+a(E(k)) (3)

to the weights

ŵ1/n(k) = w1/n(E(k)) =
1

n(E(k))
(4)

where n(E) is the spectral density. The function b(E) defines the inverse
microcanonical temperature and a(E) the dimensionless, microcanonical free
energy. The function b(E) has a relatively smooth dependence on its arguments,
which makes it a useful quantity when dealing with the weight factors.
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Instead of the canonical energy distribution P (E), one samples a new
multicanonical distribution

Pmu(E) = cmu n(E) wmu(E) ≈ cmu . (5)

The desired canonical probability density is obtained by re-weighting

P (E) =
cβ

cmu

Pmu(E)
wmu(E)

e−βE. (6)

This relation is rigorous, because the weights wmu(E) used in the actual simulation
are exactly known. With the approximate relation (5) the average number of
configurations sampled does not longer depend strongly on the energy and accurate
estimates of the ratio R(L) = Pmin/Pmax become possible:

R(L) = Rmu(L)
wmu(Ei

max) exp(−βc Emin)
wmu(Emin) exp(−βc Emax)

, (i = 1, 2) . (7)

The statistical errors are those of the ratio Rmu times the exactly known factor.
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The multicanonical method requires two steps:

1. Obtain a working estimate ŵmu(k) of the weights ŵ1/n(k). Working estimate
means that the approximation to (4) has to be good enough to ensure movement
in the desired energy range, while deviations of Pmu(E) from the constant
behavior (5) are tolerable.

2. Perform a Markov chain MC simulation with the fixed weights ŵmu(k). The
thus generated configurations constitute the multicanonical ensemble. Canonical
expectation values are found by re-weighting to the Gibbs ensemble and standard
jackknife methods allow reliable error estimates.
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How to get the Weights?

To get the weights is at the heart of the method (and a stumbling block for
beginners). Some approaches used are listed in the following:

1. Overlapping constrained (microcanonical) MC simulations. Potential problem:
ergodicity.

2. Finite Size Scaling (FSS) Estimates. Best when it works! Problem: There
may be no FSS theory or the prediction may be so inaccurate that the initial
simulation will not cover the target region.

3. General Purpose Recursions. Problem: Tend to deteriorate with increasing
lattice size (large lattices).
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Multicanonical Recursion (A variant of Berg, J. Stat. Phys. 82 (1996) 323.)

Multicanonical parameterization of the weights:

w(a) = e−S(Ea) = e−b(Ea) Ea+a(Ea) ,

where (for ε smallest stepsize)

b(E) = [S(E + ε)− S(E)] /ε and

a(E − ε) = a(E) + [b(E − ε)− b(E)] E .

Recursion:

bn+1(E) = bn(E) + ĝn
0 (E) [lnHn(E + ε)− lnHn(E)]/ε

ĝn
0 (E) = gn

0 (E) / [gn(E) + ĝn
0 (E)] ,

gn
0 (E) = Hn(E + ε) Hn(E) / [Hn(E + ε) + Hn(E)] ,

gn+1(E) = gn(E) + gn
0 (E), g0(E) = 0 .

ANIMATION: 2d 10-state 80× 80 Potts model (Iterations of 100 sweeps each).
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F. Wang and Landau: Update are performed with estimators g(E) of the
density of states

p(E1 → E2) = min
[
g(E1)
g(E2)

, 1
]

.

Each time an energy level is visited, they update the estimator

g(E) → g(E) f

where, initially, g(E) = 1 and f = f0 = e1. Once the desired energy range is
covered, the factor f is refined:

f1 =
√

f, fn+1 =
√

fn+1

until some small value like f = e−8 = 1.00000001 is reached.

Afterwards the usual, MUCA production runs may be carried out.
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Example Runs (2d Ising and Potts models)

Ising model on a 20× 20 lattice: The multicanonical recursion is run in the range

namin = 400 ≤ iact ≤ 800 = namax . (8)

The recursion is terminated after a number of so called tunneling events. A
tunneling event is defined as an updating process which finds its way from

iact = namin to iact = namax and back . (9)

This notation comes from applications to first order phase transitions. An alternative
notation for tunneling event is random walk cycle. For most applications 10
tunneling events lead to acceptable weights.

For an example run of the Ising model we find the requested 10 tunneling events
after 787 recursions and 64,138 sweeps (assignment a0501 01, see assignment
a0501 02 for the 2d 10-state Potts model).
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Performance

If the multicanonical weighting would remove all relevant free energy barriers,
the behavior of the updating process would become that of a free random
walk. Therefore, the theoretically optimal performance for the second part of the
multicanonical simulation is

τtun ∼ V 2 . (10)

Recent work about first order transitions by Neuhaus and Hager shows that that
the multicanonical procedure removes only the leading free energy barrier, while at
least one subleading barrier causes still a residual supercritical slowing done. Up
to certain medium sized lattices the behavior V 2+ε gives a rather good effective
description. For large lattices supercritical slowing down of the form

τtun ∼ exp
(
+const Ld−1

)
(11)

dominates again. The slowing down of the weight recursion with the volume size is
expected to be even (slightly) worse than that of the second part of the simulation.
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Re-Weighting to the Canonical Ensemble

Let us assume that we have performed a multicanonical simulation which covers
the action histograms needed for a temperature range

βmin ≤ β =
1
T

≤ βmax . (12)

Given the multicanonical time series, where i = 1, . . . , n labels the generated
configurations. The formula

O =
∑n

i=1O(i) exp
[
−β E(i) + b(E(i)) E(i) − a(E(i))

]∑n
i=1 exp

[
−β E(i) + b(E(i)) E(i) − a(E(i))

] . (13)

replaces the multicanonical weighting of the simulation by the Boltzmann factor.
The denominator differs from the partition function Z by a constant factor which
drops out.
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For discrete systems it is sufficient to keep histograms when only functions of
the energy are calculated. For an operator O(i) = f(E(i)) equation (13) simplifies
to

f =
∑

E f(E) hmu(E) exp [−β E + b(E) E − a(E)]∑
E hmu(E) exp [−β E + b(E) E − a(E)]

(14)

where hmu(E) is the histogram sampled during the multicanonical production run
and the sums are over all energy values for which hmu(E) has entries.

The computer implementation of these equations requires care. The differences
between the largest and the smallest numbers encountered in the exponents can
be really large. We can avoid large numbers by dealing only with logarithms of
sums and partial sums. For C = A + B with A > 0 and B > 0 we can calculate
lnC = ln(A + B) from the values lnA and lnB, without ever storing either A or
B or C:

lnC = ln
[
max(A,B)

(
1 +

min(A,B)
max(A,B)

)]
(15)

= max (ln A, lnB) + ln{1 + exp [min(lnA, lnB)−max(lnA, lnB)]}
= max (ln A, lnB) + ln{1 + exp [−| lnA− lnB|]} .
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Energy and Specific Heat Calculation

We are now ready to produce multicanonical data for the energy per spin (with
jackknife errors) of the 2d Ising model on a 20 × 20 lattice and compared them
with the exact results of Ferdinand and Fisher (assignment a0501 03):
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The same numerical data allow to calculate the specific heat defined by

C =
d Ê

d T
= β2

(
〈E2〉 − 〈E〉2

)
. (16)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1

C
/N

β

Specific heat per spin

15



The energy histogram of the multicanonical simulation together its canonically
re-weighted descendants at β = 0, β = 0.2 and β = 0.4 (assignment a0501 04):
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The normalization of the multicanonical histogram is adjusted so that it fits
into the same figure with the three re-weighted histograms.
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Similar data for the 2d 10-state Potts model, action variable actm data (assignment
a0501 05):
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The canonically re-weighted histogram at β = 0.71 together with the
multicanonical histogram using suitable normalizations (the ordinate is on a
logarithmic scale):
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The multicanonical method allows to estimate the interface tension of the
transition by following the minimum to maximum ratio over many orders of
magnitude (Berg and Neuhaus 1992):
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Figure 1: Interface tension fit (Berg and Neuhaus 1992).
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Free Energy and Entropy Calculation

At β = 0 the Potts partition function is Z = qN . Therefore, multicanonical
simulations allow for proper normalization of the partition function, if β = 0 is
included in the temperature range. The properly normalized partition function
allows to calculate the Helmholtz free energy

F = −β−1 ln(Z) (17)

and the entropy

S =
F − E

T
= β (F − E) (18)

of the canonical ensemble. Here E is the expectation value of the internal energy
and the last equal sign holds because of our choice of units for the temperature.
For the 2d Ising model as well as for the 2d 10-state Potts model, we show in the
next figure multicanonical estimates of the free energy density per site

f = F/N . (19)
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Figure 2: Free energies from multicanonical simulations of the Ising and 10-state
Potts models on an 20 × 20 lattice (assignments a0501 03 and a0501 05). The
full lines are the exact results of Ferdinand and Fischer for the Ising model and the
asymptotic behavior fas = 2 d

q − 2 d− β−1 ln(q)
N for the 10-state Potts model.
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Entropy density s = S/N :
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Figure 3: Entropies from multicanonical simulations of the Ising and 10-state Potts
models on an 20× 20 lattice (assignments a0501 03 and a0501 05). The full line
is the exact result of Ferdinand and Fischer for the Ising model.
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For the 2d Ising model one may also compare directly with the number of
states. Up to medium sized lattices this integer can be calculated to all digits by
analytical methods (Beale). However, MC results are only sensitive to the first few
(not more than six) digits and, therefore, one finds no real advantages over using
other physical quantities.

Time series analysis

Typically, one prefers in continuous systems time series data over keeping
histograms, because one avoids then dealing with the discretization errors. Even in
discrete systems time series data are of importance, as one often wants to measure
more physical quantities than just the energy. Then the RAM storage requirements
may require to use a time series instead of histograms. To illustrate this point, we
use the Potts magnetization, which we already encountered when we tested the
Potts model heat bath algorithm.

In assignments a0501 08 and a0501 09 we create the same statistics on 20×20
lattices as before, including time series measurements for the energy and also for the
Potts magnetization. For energy based observables the analysis of the histogram
and the time series data give consistent results.
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For zero magnetic field, H = 0, the expectation value of the Potts magnetization
on a finite lattice is is simply

Mq0 = 〈 δqi,q0 〉 =
1
q

, (20)

independently of the temperature. For the multicanonical simulation it is quite
obvious that even at low temperatures each Potts state is visited with probability
1/q. In contrast to this, the expectation value of the magnetization squared

M2
q0 = q

〈(
1
N

N∑
i=1

δqi,q0

)2〉
(21)

is a non-trivial quantity. At β = 0 its N → ∞ value is M2
q0 = q (1/q)2 = 1/q,

whereas it approaches 1 for β → ∞. For q = 2 and q = 10 the next figure shows
our numerical results and we see that the crossover of M2

q0 from 1/q to 1 happens
in the neighborhood of the critical temperature. A FSS analysis would reveal that,
a singularity develops at βc, which is in the derivative of M2

q0 for the second order
phase transitions (q ≤ 4) and in M2

q0 itself for the first order transitions (q ≥ 5).
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Figure 4: The Potts magnetization per lattice site squared for the q = 2 and q = 10
Potts models on an 20× 20 lattice (assignments a0501 08 and a0501 09).
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Summary

• We considered Statistics, Markov Chain Monte Carlo simulations, the Statistical
Analysis of Markov chain data and, finally, Multicanonical Sampling.

• It is a strength of computer simulations that one can generate artificial (not
realized by nature) ensembles, which enhance the probabilities of rare events on
may be interested in, or speed up the dynamics.

• Nowadays Generalized Ensembles (umbrella, multicanonical, 1/k, ...) have
found many applications. Besides for first order phase transitions in particular
for Complex Systems such as biomolecules, where they accelerate the dynamics.
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