Pseudo-Bayes MCMC for the estimation of multipoint linkage likelihoods

Elizabeth Thompson

University of Washington

Research supported in part by NIH grant GM-46255.

Parts of this work are joint with Dr. Andrew George.

Thanks for use of data to Drs. Bird, Schellenberg, Wijsman.

The genetic mapping problem

- •Given: L genetic markers at known locations λ_i in the genome, and known allele frequencies $\mathbf{q_i}$, i = 1, ..., L. $\Lambda_M = {\lambda_i, \mathbf{q_i}}$.
- •Given: a trait, and a presumed trait model, parametrized by β , specifying how trait is determined by underlying genes.
- •Given: data on the trait phenotypes and marker genotypes for some of the members of some number of pedigree structures.
- •Estimate: the location γ of a locus affecting the trait, in some region of the genome.
- Approach: compute a likelihood and hence a location lod score.

What and why the LOCATION LOD score

Parameter
$$\xi = (\beta, \gamma, \Lambda_M)$$
. Data $\mathbf{Y} = (\mathbf{Y}_M, \mathbf{Y}_T)$

$$lod(\gamma) = log_{10} \left(\frac{Pr(Y; \Lambda_M, \beta, \gamma)}{Pr(Y; \Lambda_M, \beta, \gamma = \infty)} \right)$$

Exact computation is infeasible

The Inheritance of genes and genome

Label the two haploid genomes of every founder: Founder genome labels (FGL).

Inheritance of FGL:

$$S_{i,j} = 0 \text{ or } 1$$

as in meiosis i at locus j the maternal or paternal gene (respectively) of the parent is transmitted to the offspring.

Basics of genetics: for statisticians

- Meioses i are independent: $S_{i,\bullet}$ are independent, a priori.
- Mendel's First Law: $Pr(S_{i,j} = 0) = Pr(S_{i,j} = 1) = 1/2$
- Recombination: $\Pr(S_{i,j-1} \neq S_{i,j}) = \rho_{j-1} \ (\forall i \text{ for convenience })$

$$\Pr(S_{\bullet,j} \mid S_{\bullet,j-1}) \ = \ \rho_{j-1}^{R_{j-1}} (1-\rho_{j-1})^{m-R_{j-1}}$$
 where $R_{j-1}=(\#i:S_{i,j}\neq S_{i,j-1})$

• No genetic interference: $\Pr(S_{i,j}|\mathbf{S}_{-(i,j)}) = \Pr(S_{i,j}|S_{i,j-1},S_{i,j+1})$

$$Pr(S) = P(S_{\bullet,1}) \prod_{2}^{L} Pr(S_{\bullet,j} \mid S_{\bullet,j-1})$$

Sampling and computation

The likelihood is

$$L(\xi) = P_{\xi}(\mathbf{Y}) = \sum_{\mathbf{S}} P_{\xi}(\mathbf{S}, \mathbf{Y}) = \sum_{\mathbf{S}} \mathbf{P}_{\xi}(\mathbf{Y} \mid \mathbf{S}) \mathbf{P}_{\xi}(\mathbf{S})$$

$$P_{\xi}(\mathbf{S}, \mathbf{Y}) = \Pr(S_{\bullet,1}) \prod_{j=2}^{L} \Pr(S_{\bullet,j} \mid S_{\bullet,j-1}) \prod_{j=1}^{L} \Pr(Y_{\bullet,j} \mid S_{\bullet,j})$$

On small pedigrees, or for few loci, we can compute Pr(Y)

Then we can compute $Pr(S_{\bullet,j} \mid \mathbf{Y})$, for each j.

On larger pedigrees, we cannot compute, but

we can SAMPLE $S = \{S_{i,j}\}$ from $Pr(S \mid Y)$. (joint S)

Block-Gibbs MCMC Samplers

L-sampler: resample $S_{\bullet,j}$ given

Y and $S_{\bullet,j'}, j \neq j'$

M-sampler: resample

 $\{S_{i,\bullet}; i \in I^*\}$ given \mathbf{Y} and $\{S_{i',\bullet}; i' \not\in I^*\}$

LM-sampler: Heath (1997), Thompson & Heath (1999)

Previous estimators of the lod score

Lange-Sobel (1991)

$$L(\beta, \gamma, \Lambda_{M}) = P_{\beta, \gamma, \Lambda_{M}}(\mathbf{Y}_{\mathbf{M}}, \mathbf{Y}_{\mathbf{T}})$$

$$\propto P_{\beta, \gamma, \Lambda_{M}}(\mathbf{Y}_{\mathbf{T}} \mid \mathbf{Y}_{\mathbf{M}})$$

$$= \sum_{\mathbf{S}_{M}} P_{\beta, \gamma}(\mathbf{Y}_{\mathbf{T}} \mid \mathbf{S}_{\mathbf{M}}) \mathbf{P}_{\Lambda_{\mathbf{M}}}(\mathbf{S}_{\mathbf{M}} \mid \mathbf{Y}_{\mathbf{M}})$$

$$= \mathbf{E}_{\Lambda_{M}}(P_{\beta, \gamma}(\mathbf{Y}_{\mathbf{T}} \mid \mathbf{S}_{\mathbf{M}}) \mid \mathbf{Y}_{\mathbf{M}}).$$

Advantages; sample only S_M and compute over S_T (but for each γ) – a Rao-Blackwellized estimate. Disadvantages: (1) sample only given $\mathbf{Y_M}$, (2)sampling is MCMC.

Sequential imputation

Irwin, Kong et al. (1994)

$$P^{*}(S_{\bullet,j}) = P_{\xi_{0}}(S_{\bullet,j} \mid S^{*(j-1)}, Y^{(j)}) = P_{\xi_{0}}(S_{\bullet,j} \mid S_{\bullet,j-1}^{*}, Y_{\bullet,j})$$

$$w_{j} = P_{\xi_{0}}(Y_{\bullet,j} \mid Y^{(j-1)}, S^{*(j-1)}) = P_{\xi_{0}}(Y_{\bullet,j} \mid S_{\bullet,j-1}^{*})$$

$$P^{*}(S^{*}) = \frac{P_{\xi_{0}}(S^{*}, Y)}{\prod_{j=1}^{L} w_{j}} \text{ so } L(\xi_{0}) = \sum_{S} P_{\xi_{0}}(S, Y) = E_{P^{*}} \left(\prod_{j=1}^{L} w_{j}\right)$$

Adv: i.i.d sampling. Disadv: P^* may be far from $P_{\xi_0}(S|Y)$

Likelihood ratio estimation

Thompson, Guo (1991)

$$\frac{L(\xi)}{L(\xi_0)} = \frac{P_{\xi}(\mathbf{Y})}{P_{\xi_0}(\mathbf{Y})} = \mathsf{E}_{\xi_0} \left(\frac{P_{\xi}(\mathbf{Y}, \mathbf{S})}{P_{\xi_0}(\mathbf{Y}, \mathbf{S})} \mid \mathbf{Y} \right)
\frac{L(\beta, \gamma_1, \Lambda_M)}{L(\beta, \gamma_0, \Lambda_M)} = \mathsf{E}_{\xi_0} \left(\frac{P_{\xi_1}(\mathbf{Y}_T, \mathbf{Y}_M, \mathbf{S}_T, \mathbf{S}_M)}{P_{\xi_0}(\mathbf{Y}_T, \mathbf{Y}_M, \mathbf{S}_T, \mathbf{S}_M)} \mid \mathbf{Y}_T, \mathbf{Y}_M \right)
= \mathsf{E}_{\xi_0} \left(\frac{P_{\gamma_1}(\mathbf{S}_T \mid \mathbf{S}_M)}{P_{\gamma_0}(\mathbf{S}_T \mid \mathbf{S}_M)} \mid \mathbf{Y}_T, \mathbf{Y}_M \right)$$

for two hypothesized trait locus positions γ_1 and γ_0 .

Advantage: Actual estimate is simple: fast and accurate for local LR

Disadvantage: Need good MCMC. Works well only for $\gamma_1 \approx \gamma_0$: combining local LR estimates is hard. We want $L(\gamma)/L(\gamma = \infty)$.

Monte Carlo likelihood/posterior estimates

- Lange-Sobel (1991) : MCMC likelihood estimator MCMC sampling of \mathbf{S}_M given $\mathbf{Y}_{\mathbf{M}}$.
- Irwin, Kong et al. (1994): Sequential imputation likelihood estimator i.i.d. sample: importance sampling.
- Thompson, Guo (1991): local likelihood ratio estimation— MCMC sampling of $(\mathbf{S}_M, S_T \mid \mathbf{Y_M}, \mathbf{Y_T})$
- Heath (1997) and others : Fully Bayesian MCMC approaches—sample $\gamma,\ \beta,\ \mathbf{q_i}$ etc. etc.

Problems of a fully Bayesian approach

A Bayesian approach (e.g. Loki:Heath), puts priors on (β, γ) and samples from $\pi_{\Lambda_M}(\beta, \gamma, \mathbf{S} \mid \mathbf{Y})$.

Four problems (from a likelihood perspective):

- (i) β is mixed up in the estimate. lod score should not be based on integrated likelihood. (Note β typically multidimensional.)
- \bullet (ii) γ is continuous (typically binned), but likelihood is pointwise function of γ
- (iii) sampling low-prob areas is hard (e.g. unlinked?!)
- (iv) Moving between equal probability areas can be hard (e.g. unlinked?!)

From Bayes back to lods

- (i) First we fix $\theta = (\Lambda_M, \beta)$. $(\xi = (\theta, \gamma))$
- ullet (ii) For single parameter γ

$$\pi_{\theta}(\gamma|\mathbf{Y}) \propto P_{\theta}(\mathbf{Y};\gamma) \pi(\gamma)$$
 so $\mathbf{L}(\gamma) \propto \pi_{\theta}(\gamma|\mathbf{Y})/\pi(\gamma)$

- (iii) discretize γ to get $L(\gamma)$ at discrete points
- \bullet (iv) ALSO $\pi(\gamma)$ is arbitrary choose it to improve estimate it is a pseudo-prior
- (v) Choose it so that the posterior is approximately uniform

How to sample γ and ${\bf S}$ from posterior

- ullet For (\mathbf{S}_M, S_T) , use LM-sampler (block Gibbs) as before
- For γ use M-H proposal γ^* based only on S_M (not S_T) Update S_T given (γ^*, S_M) for new γ^* : joint update of (γ, S_T) .
- Sequential imputation start-up and restarts.
- Preliminary run provides $\pi(\gamma)$ such that posterior \approx uniform.
- And we use Rao-Blackwellized estimators.

Rao-Blackwellized Estimators from pseudo-Bayes

Suppose we have realizations $(\gamma^{(n)}, \mathbf{S}^{(n)})$ from the posterior given $\mathbf{Y} = (\mathbf{Y_M}, \mathbf{Y_T})$.

Crude estimator :
$$\widehat{L(\gamma)}_1 = N^{-1} \sum_{\tau=1}^N I(\gamma^{(\tau)} = \gamma) / \pi(\gamma)$$

Better estimator :
$$\widehat{L(\gamma)}_2 = N^{-1} \sum_{\tau=1}^N h(\mathbf{S}_M^{(\tau)}, \gamma)$$

where

$$h(\mathbf{S}_M, \gamma) = E_{\pi_{\theta}} \left(\frac{I(\gamma)}{\pi(\gamma)} \middle| \mathbf{S}_M, \mathbf{Y} \right)$$

Crude estimator is function of realized $\gamma^{(\tau)}$. RB-estimator is function of realized \mathbf{S}_M .

Now compute this!

$$h(\mathbf{S}_{M}, \gamma) = E_{\pi_{\theta}} \left(\frac{I(\gamma)}{\pi(\gamma)} \middle| \mathbf{S}_{M}, \mathbf{Y} \right) = \frac{P_{\theta}(\gamma, |\mathbf{S}_{M}, \mathbf{Y}_{M}, Y_{T})}{\pi(\gamma)}$$

$$= \frac{P_{\theta}(Y_{T} |\mathbf{S}_{M}, \mathbf{Y}_{M}, \gamma) P_{\theta}(\mathbf{S}_{M}, \mathbf{Y}_{M}) \pi(\gamma)}{\pi(\gamma) \sum_{\gamma^{*}} P_{\theta}(Y_{T} |\mathbf{S}_{M}, \mathbf{Y}_{M}, \gamma^{*}) P_{\theta}(\mathbf{S}_{M}, \mathbf{Y}_{M}) \pi(\gamma^{*})}$$

$$= \frac{P_{\theta}(Y_{T} |\mathbf{S}_{M}, \gamma)}{\sum_{\gamma^{*}} P_{\theta}(Y_{T} |\mathbf{S}_{M}, \gamma^{*}) \pi(\gamma^{*})}$$

At given S_M compute for each γ .

Compare this to the Lange estimate!

- —similar integration over S_T given realized \mathbf{S}_M .
- —different in that sampling is of (S_M, γ) given (Y_M, Y_T) at given β .

Early-onset Alzheimer's diesease in the VG group

- Relatively late onset
 - many unobserved pedigree members
 - younger members uninformative
- Not all VG EOAD pedigrees segregate PS2 on Chr 1.
- There are affected individuals not carrying PS2.
- There are unaffected individuals carrying PS2
 - including older individuals.
- Many characteristics of a complex trait.

Pedigree data summary

Family data				Α[Marker data		
Pedigree	Size	Gen	Aff	Unaff	Unobs	Onset	No.obsvd
НВ	50	6	13	28	9	60.6	27
HD	41	5	14	17	10	52.2	14
R	53	4	17	30	6	50.8	31
KS	53	5	11	36	6	65.5	27
WFL	21	3	6	14	1	63.8	15
W	6	2	4	2	0	59.8	4

Acknowledge: Drs. Bird, Schellenberg, & Wijsman.

Marker data summary

		Map	Number of
Index	Marker	Position (cM)	Alleles
1	D1S306	0.00	12
2	D1S249	5.48	15
3	D1S245	12.64	10
4	D1S237	17.64	13
5	D1S229	22.56	8
6*	D1S479	27.17	11
7	D1S446	36.95	13
8	D1S235	39.47	9
9	D1S180	52.34	11
10	D1S102	60.51	6

Example pedigree: approximate

Gender, trait, and marker info are altered for confidentiality.

Does it work 1?- lod score estimates

Does it work 2?— Run-time comparisons

MS-L				MS-T			
Pedi-	Bayes		VSSE		Bayes		VSSE
gree	length	time	time		length	time	time
KS	10:20	12.8	292.9		8:20	15.0	1156.8
R	1.5:3	2.7	62.0		3:7	4.9	41.0
W	0.2:0.4	0.1	0.1		0.2:0.5	0.1	0.1
WFL	2:4	0.8	0.6		2:5	1.0	0.3

Ped-	MS-A			
gree	length	time		
KS	50:100	90.5		
R	35:70	56.5		
W	1:2	0.4		
WFL	3:5	1.9		

3-marker exact comp. by VITESSE CPU times in minutes run-lengths in 1000 MCMC scans; (preliminary:final)

Does it work 3? - mixing

Plot of realized γ over random block of 5000 scans: 0=unlinked. Actually, this plot is from earlier analyses on same pedigrees.

Do we need 10 markers?

Linked cases: Localization is better. lod scores are higher.

Unlinked case: Rejection of linkage is possible.

Run-time comparisons: complex pedigrees

Marker	HB pedigree			HD pedigree		
pair	Bayes		FSTLNK	Bay	Bayes	
	length	time	time	length	time	time
MP-L1	20:40	31.2	257.8	8:18	6.7	201.6
MP-L2	8:16	12.1	174.2	20:40	18.5	75.7
MP-T1	60:180	96.4	362.1	300:600	172.3	158.5
MP-T2	30:90	63.9	859.6	50:100	47.9	122.3

Exact computations: only 2 markers, only by FASTLINK

MCMC estimates: more challenging, but still ok

Complex pedigrees remain a challenge

HD is OK, but for HB which runs are correct?

- If at S and propose an S^{\dagger} , Metropolis-Hastings ratio is based on $P(S,Y)/P(S^{\dagger},Y)$.
- This suggests weight to be given to a run restricted to some part of a space of S should be based on average P(S, Y).
- This is not so easy, but we can easily estimate mean $\log P(S, Y)$: Estimate of ECDLL = $\exp(\log P(S, Y) \mid Y)$.
- In example, ECLLD is 2 units higher for HB runs with higher max lod and in the correct position.

That is, the part of the space is 100 times more probable.

CONCLUSION

- Sampling of inheritance patterns given genetic data remains a challenging MCMC problem for multiple markers, missing data, extended pedigrees ...
- Likelihood and lod score estimators can be based on realized inheritance, but need good estimators as well as good samplers
- With both, real-time MCMC estimation of lod scores is both feasible and practical, and even when exact computation is feasible MCMC can be quicker.
- lod scores based on multiple markers provide additional information on gene localization: improved estimation is important for localizing the genes of complex traits.