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Quantum Memory as a Challenge
I Scalable Quantum Memory Unit

A scalable with N ' 10, 100, 1000, .. quantum system composed of N
physical qubits which supports a single (encoded) qubit. For achievable
external conditions ( low enough temperature, high vacuum, screening ,...,
etc.) the life-time of encoded qubit observables increases like ∼ eαN .

I The existence of Quantum Memory contradicts

I Bohr Correspondence Principle:

Classical physics and quantum physics give the same answer
when the systems become large.

I For large systems the experimental data are consistent with classical
probabilistic models.

I Are there fundamental obstacles to build Scalable Quantum Memory?
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Physical vs. encoded qubits
I Physical qubit - a natural system described by 2-dim Hilbert space and algebra
M2 of 2× 2 matrices spanned by I, σx, σy, σz.

I Examples: spin 1/2 , "2-level atom", bistable systems, etc.

I Encoded qubit - a subalgebra Q of the algebra A of the total system spanned
by the self-adjoint elements I,X, Y, Z satisfying X2 = Y 2 = Z2 = I,
XY = iZ, etc.(or generated by X,Y ; X2 = Y 2 = I, XY + Y X = 0)

I Examples (A =M2N – N -physical qubits):

I 1) localized physical qubit - X = σx1 ⊗ I[2,N ], Y = σy1 ⊗ I[2,N ]

I 2) 1D-Ising model , HN = −J
∑N
j=1 σ

z
jσ

z
j+1 , bj = σzjσ

z
j+1- bond (N + 1 ≡ 1)

I a) X = σx1 ⊗ σx2 ⊗ · · ·σxN , Y = σy1 ⊗ σx2 ⊗ · · ·σxN

I b) X ′ = XFx, Y ′ = Y Fy , F †x,y = Fx,y , F 2x,y = I, Fx,y- function of bonds.

I Remark: 2b) - most general encoded qubit commuting with bonds.

3 / 10



Noise and Errors
I 1)Macroscopic (engineered) noise and errors - not considered here.

I 2) Microscopic (thermal) noise - fundamental, inescapable

I Collective heat bath

Hint
N =

∑
α=z,x

( N∑
j=1

σαj

)
⊗ Fα

I leads to decoherence-free subsystems.

I Private heat baths

Hint
N =

∑
α=z,x

N∑
j=1

σαj ⊗ Fαj

I generic, ergodic coupling, limt→∞ ρN (t) = ρeqN - thermal equilibrium.
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A generic model of classical memory
I Metastable local minima of free energy separated by free energy barriers ∼ N

with exponentially long life-times are used to encode classical information.

I Examples: Classical Ising models - encoding a single bit (magnetization sign)

I Mean-field Ising (σj = ±1) Hmf
N = − J

2N

∑N
i,j=1 σiσj

I 1D-Ising H1DN = −J
∑N
,j=1 σjσj+1

I Energy difference between
+ + + + + + + + + + + + + and + + +−−−−︸ ︷︷ ︸

k−times

+ + + + + +

∆Emf = Jk +
k2

2N
, ∆E1D = 2J

I Mechanism of bit’s protection against noise. Phase transition for mean-field
but not for 1D.

I Does it work for a qubit ?
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Dynamical approach
I Glauber dynamics for classical Ising models
s = {σk, k = 1, 2, ..., N}– configuration of N spins,
sj –configuration s with σj → −σj

I Markovian Master Equation

d

dt
Ps = γ

N∑
j=1

(
Psj − e−

Ej(s)
kT Ps

)
where Ej(s) = HN (sj)−HN (s) , γ - relaxation rate

I Gibbs state
P eqs = Z−1e−

HN (s)
kT

is invariant and relaxing, detailed balance holds.

I Standard description of classical metastability.
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Quantum Master Equation
I ρ(t) - reduced density matrix of N -qubit system , H|s〉 = Es|s〉
I Transition maps

Sαj (ω) =
∑

Es′−Es=ω
|s′〉〈s′|σαj |s〉〈s|

α = z, x, j = 1, 2, ..., N , {A,B} ≡ AB +BA

d

dt
ρ = −i[H, ρ] + γ

∑
ω0

N∑
j=1

(
Sαj (ω)ρSαj (ω)† − 1

2
{Sαj (ω)†Sαj (ω), ρ}

)

+γ
∑
ω0

N∑
j=1

e−
ω
kT

(
Sαj (ω)†ρSαj (ω)− 1

2
{Sαj (ω)Sαj (ω)†, ρ}

)
I Both Master Eqs. can be derived from Hamiltonian models using weak

coupling limit (Davies, CMP 1974)
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Properties of Davies generators
I Schroedinger picture

d

dt
ρ = −i[H, ρ] + Lρ

1) Relaxation to equilibrium

lim
t→∞

ρ(t) = ρeq = e−
H
kT /Tr

(
e−

H
kT

)
2) Diagonal elements

Ps = 〈s|ρ|s〉

evolve independently according to the classical Master Equation.

I Heisenberg picture
d

dt
A = i[H,A] + Lρ

Tr
(
ρ(t)A(0)

)
= Tr

(
ρ(0)A(t)

)
, t  0.
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I 1) Hamiltonian part i[H, ·] commutes with the dissipative part L.

I Algebra of observables equipped with the scalar product

〈A,B〉eq = Tr
(
ρeqA†B

)
is a Hilbert space Heq

I 2) L is self-adjoint on Heq, i[H, ·] is skew-adjoint
I 3) Spectral decomposition

A(t) =
∑
µ

e(iωµ−λµ)t〈Xµ, A(0)〉eqXµ , λµ > 0

I Spectral properties determine whether the system can serve as a Quantum
Memory.

I Analysis of 1D , 2D and 4D Kitaev models in terms of Davies generators -
R.A. , M Fannes and M. Horodecki.
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Summary

I Existence of scalable Quantum Memory (Quantum Computer as well)
contradicts Bohr Correspondence Principle.

I There is no ultimate proof of existence or nonexistence of Quantum Memory.

I There are interesting candidates for QM (topological degrees of freedom , e.g.
4D Kitaev).

I Technique of Davies generators seems to be a natural mathematical
framework for these problems.
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