Quantum Memories as Open Systems

Singapore, August 2008

Robert Alicki

University of Gdansk

1/10



Quantum Memory as a Challenge

>

Scalable Quantum Memory Unit

A scalable with N ~ 10, 100, 1000, .. quantum system composed of N
physical qubits which supports a single (encoded) qubit. For achievable
external conditions ( low enough temperature, high vacuum, screening ,...,
etc.) the life-time of encoded qubit observables increases like ~ eV,

The existence of Quantum Memory contradicts

Bohr Correspondence Principle:

Classical physics and quantum physics give the same answer
when the systems become large.

For large systems the experimental data are consistent with classical
probabilistic models.

Are there fundamental obstacles to build Scalable Quantum Memory?
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Physical vs. encoded qubits

>

Physical qubit - a natural system described by 2-dim Hilbert space and algebra
M of 2 x 2 matrices spanned by I,0%,0Y, 0.

» Examples: spin 1/2 , "2-level atom", bistable systems, etc.

Encoded qubit - a subalgebra Q of the algebra A of the total system spanned
by the self-adjoint elements I, X,Y, Z satisfying X2 =Y2=22=1,
XY =1iZ, etc.

Examples (A = My~ — N-physical qubits):

> 1) localized physical qubit - X = of ® I3 N}, Y = 0 ® I;2

2) 1D-Ising model , Hy = fJZ?]:l 0051, bj =007 4-bond (N+1=1)

A)X=0"Q0o¥® 0%, Y=0'Qoi® 0%

z,y

» b) X'=XF,, Y =YF,, F;[U =F,,,F?, =1, F,, function of bonds.

Remark: 2b) - most general encoded qubit commuting with bonds.
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Noise and Errors

v

1)Macroscopic (engineered) noise and errors - not considered here.

v

2) Microscopic (thermal) noise - fundamental, inescapable

v

Collective heat bath

N
oyt =3 (Y oo) e Fe

a=z,x j=1

v

leads to decoherence-free subsystems.

Private heat baths

v

'Lnt ZZO_ ®Fa

a=z,r j=1

> generic, ergodic coupling, lim;_o pn (t) = pY - thermal equilibrium.
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A generic model of classical memory

>

Metastable local minima of free energy separated by free energy barriers ~ N
with exponentially long life-times are used to encode classical information.

Examples: Classical Ising models - encoding a single bit (magnetization sign)

Mean-field Ising (o; = £1) Hﬁf =% le:l 0i0;

1D-Ising  HYP =-J Y"1 0j0541

Energy difference between
b T e
——

k—times

2
AE™ = Jk + 2kTv . AE'D —2j

Mechanism of bit's protection against noise. Phase transition for mean-field

but not for 1D.

Does it work for a qubit ?
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Dynamical approach

» Glauber dynamics for classical Ising models
s ={ox,k =1,2,..., N}~ configuration of N spins,
s7 —configuration s with 0; — —0;

» Markovian Master Equation

Ej(s)

d N
%Ps :VE(PQJ =@ PS)

where E;(s) = Hy(s?) — Hn(s) , 7y - relaxation rate
> Gibbs state

Hp(s)

P =7 le~ %7

is invariant and relaxing, detailed balance holds.

» Standard description of classical metastability.
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Quantum Master Equation
> p(t) - reduced density matrix of N-qubit system , H|s) = E|s)

» Transition maps

Sfw) = D 1) ofls)sl

Esle‘;:w
a=zuzx,j=1,2,...,.N,

N

L p=—ilH, gl +7 Y D2 (57085 — 3{S5) 85(w), )
w20 j=1

J

‘WZZ T (S5 (w) 1S5 (W) — *{5“( )55 ()", p})

w20 j=1

» Both Master Egs. can be derived from Hamiltonian models using weak
coupling limit (Davies, CMP 1974)
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Properties of Davies generators

» Schroedinger picture

d
Zp=—iH
P =~ P+ Lp

1) Relaxation to equilibrium

lim p(t) = p® = e*%/Tr(e*%)

t—o0

2) Diagonal elements
Ps = (s|pls)

evolve independently according to the classical Master Equation.

» Heisenberg picture

d
S A=iH A+ L
o ilH, Al + Lp

Tr(p(t)A(0)) = Tr(p(0)A(t)) , t > 0.
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1) Hamiltonian part i[H, -] commutes with the dissipative part L.

» Algebra of observables equipped with the scalar product

(A,B)eq = Tr(pquTB)

is a Hilbert space H®?

> 2) L is self-adjoint on H?, i[H, -] is skew-adjoint

3) Spectral decomposition

At) =) el X, A(0))eq Xy, Ay >0
i

Spectral properties determine whether the system can serve as a Quantum
Memory.

Analysis of 1D , 2D and 4D Kitaev models in terms of Davies generators -
R.A., M Fannes and M. Horodecki.
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Summary

» Existence of scalable Quantum Memory (Quantum Computer as well)
contradicts Bohr Correspondence Principle.

» There is no ultimate proof of existence or nonexistence of Quantum Memory.

» There are interesting candidates for QM (topological degrees of freedom , e.g.
4D Kitaev).

» Technique of Davies generators seems to be a natural mathematical
framework for these problems.
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