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0. Prerequisites 

We will assume that readers are running R 1.8.1 under Windows and that you have limma 1.3.9 
installed. 

We also assume that you have the data files associated with this tutorial in the directory c:\R on 
your computer. The data files can be obtained as zip files from 
http://bioinf.wehi.edu.au/Singapore2004. 

First Steps 

Start R on your computer and change the working directory to c:\R (use the menus File > Change 
dir ...). Load the limma library: 

> library(limma) 
> help.start() 

Follow the links Packages > limma. Have a look at the User's Guide and the introductory help 
topics. 

1. A Single Array 

We will start off by looking at a single array of Genepix data. The zip file associated with this 
experiment is firstarray.zip. This contains three files which should be unpacked into your 
working directory, assumed to be c:\R. 

First read the data into your R session: 

RG <- read.maimages("firstarray.gpr",source="genepix",wt.fun=wtflags(0)) 

Have a look at the data: 

RG 
plotMA(RG) 



The identities of the genes are contained in the Genepix Allocation List (GAL) file: 

RG$genes <- readGAL("human10_5k.gal") 
RG$genes[1:30,] 

We can make the plot more fancy by highlighting various sorts of control spots: 

spottypes <- readSpotTypes() 
spottypes 
RG$genes$Status <- controlStatus(spottypes, RG) 
plotMA(RG) 

Now let's try the same plot but without background correction: 

RGnb <- backgroundCorrect(RG, method="none") 
plotMA(RGnb) 

We have to figure out how many spots there are on the array and how many pins (print head tips) 
were used to print it: 

RG$printer <- getLayout(RG$genes) 
RG$printer 

Have a look at spatial variation of background on the plot: 

imageplot(RG$Rb, RG$printer, low="white", high="red") 
imageplot(RG$Gb, RG$printer, low="white", high="green") 

Print-tip loess normalization: 

MA <- normalizeWithinArrays(RG) 
plotMA(MA) 

Not very satisfactory! Try instead 

RGnb$printer <- RG$printer 
MA <- normalizeWithinArrays(RGnb) 
plotMA(MA) 

2. One-Sample Experiments 

Swirl Zebrafish Data 

The zip file associated with this experiment is swirl.zip. This file should be unpacked into your 
working directory, assumed to be c:\R. The data consists of a GAL file fish.gal and four SPOT 
output files. 

Background. The experiment was carried out using zebrafish as a model organism to study the 
early development in vertebrates. Swirl is a point mutant in the BMP2 gene that affects the 
dorsal/ventral body axis. The main goal of the Swirl experiment is to identify genes with altered 
expression in the Swirl mutant compared to wild-type zebrafish. 



The hybridizations. Two sets of dye-swap experiments were performed making a total of four 
replicate hybridizations. Each of the arrays compares RNA from swirl fish with RNA from 
normal ("wild type") fish. The experimenters have prepared a tab-delimited targets file called 
"SwirlSamples.txt" which describes the four hybridizations: 

targets <- readTargets("SwirlSample.txt") 
targets 

You'll see that slide numbers 81, 82, 93 and 94 were used to make the arrays. On slides 81 and 
93, swirl RNA was labelled with green (Cy3) dye and wild type RNA was labelled with red 
(Cy5) dye. On slides 82 and 94, the labelling was the other way around.  

Each of the four hybridized arrays was scanned on an Axon scanner to produce a TIFF image, 
which was then processed using the image analysis software SPOT. The data from the arrays are 
stored in the four output files listed under FileName. Now we read the intensity data into an 
RGList object in R. The default for SPOT output is that Rmean and Gmean are used as foreground 
intensities and morphR and morphG are used as background intensities: 

RG <- read.maimages(targets$FileName, source="spot") 
RG 

The data object you have read in behaves like a complex sort of matrix. You can subset it or treat 
it like a matrix in lots of ways. Try 

dim(RG) 
nrow(RG) 
RG[1,] 
RG[,c(1,3)] 
cbind(RG[,1],RG[,3]) 

The arrays. The microarrays used in this experiment were printed with 8448 probes (spots), 
including 768 control spots. The array printer uses a print head with a 4x4 arrangement of print-
tips and so the microarrays are partitioned into a 4x4 grid of tip groups. Each grid consists of 
22x24 spots that were printed with a single print-tip. The gene name associated with each spot is 
recorded in a GenePix array list (GAL) file: 

RG$genes <- readGAL("fish.gal") 
RG$genes[1:30,] 

The 4x4x22x24 print layout also needs to be set. The easiest way to do this is to infer it from the 
GAL file: 

RG$printer <- getLayout(RG$genes) 

Normalization. Print-tip loess normalization. Now we plot the individual MA-plots for each of 
the print-tip groups on this array, together with the loess curves which will be used for 
normalization: 

plotPrintTipLoess(RG) 
MA <- normalizeWithinArrays(RG) 
plotPrintTipLoess(MA) 



We have normalized the M-values with each array. A further question is whether normalization is 
required between the arrays. The following plot shows overall boxplots of the M-values for the 
four arrays. 

boxplot(MA$M~col(MA$M),names=colnames(MA$M)) 

There is some evidence that the different arrays have different spreads of M-values, so we will 
scale normalize between the arrays. 

MA <- normalizeBetweenArrays(MA) 
boxplot(MA$M~col(MA$M),names=colnames(MA$M)) 

Linear model. Now estimate the average M-value for each gene. We do this by fitting a simple 
linear model for each gene. The negative numbers in the design matrix indicate the dye-swaps. 

design <- c(-1,1,-1,1) 
fit <- lmFit(MA, design) 
fit 

In the above fit object, coefficients is the average M-value for each gene and sigma is the 
sample standard deviations for each gene. Ordinary t-statistics for comparing mutant to wt could 
be computed by 

ordinary.t <- fit$coef / fit$stdev.unscaled / fit$sigma 

Empirical Bayes analysis. We prefer though to use empirical Bayes moderated t-statistics. The 
moderated t-statistics use sample standard deviations which have been shrunk towards a pooled 
standard deviation value. 

fit <- eBayes(fit) 
fit 

Notice the estimated hyperparameters which have been added to the fit. 

options(digits=3) 
topTable(fit) 
topTable(fit, number=30, adjust="fdr") 
     Block Row Column      ID   Name     M    A     t  P.Value    B 
3721     8   2      1 control   BMP2 -2.21 12.1 -21.1 0.000357 7.96 
1609     4   2      1 control   BMP2 -2.30 13.1 -20.3 0.000357 7.78 
3723     8   2      3 control   Dlx3 -2.18 13.3 -20.0 0.000357 7.71 
1611     4   2      3 control   Dlx3 -2.18 13.5 -19.6 0.000357 7.62 
8295    16  16     15 fb94h06 20-L12  1.27 12.0  14.1 0.002067 5.78 
7036    14   8      4 fb40h07  7-D14  1.35 13.8  13.5 0.002067 5.54 
515      1  22     11 fc22a09 27-E17  1.27 13.2  13.4 0.002067 5.48 
5075    10  14     11 fb85f09 18-G18  1.28 14.4  13.4 0.002067 5.48 
7307    14  19     11 fc10h09 24-H18  1.20 13.4  13.2 0.002067 5.40 
319      1  14      7 fb85a01  18-E1 -1.29 12.5 -13.1 0.002067 5.32 
2961     6  14      9 fb85d05 18-F10 -2.69 10.3 -13.0 0.002067 5.29 
4032     8  14     24 fb87d12 18-N24  1.27 14.2  12.8 0.002067 5.22 
6903    14   2     15 control    Vox -1.26 13.4 -12.8 0.002067 5.20 
4546     9  14     10 fb85e07 18-G13  1.23 14.2  12.8 0.002067 5.18 
683      2   7     11 fb37b09  6-E18  1.31 13.3  12.4 0.002182 5.02 
1697     4   5     17 fb26b10  3-I20  1.09 13.3  12.4 0.002182 4.97 
7491    15   5      3 fb24g06  3-D11  1.33 13.6  12.3 0.002182 4.96 
4188     8  21     12 fc18d12 26-F24 -1.25 12.1 -12.2 0.002209 4.89 



4380     9   7     12 fb37e11  6-G21  1.23 14.0  12.0 0.002216 4.80 
3726     8   2      6 control  fli-1 -1.32 10.3 -11.9 0.002216 4.76 
2679     6   2     15 control    Vox -1.25 13.4 -11.9 0.002216 4.71 
5931    12   6      3 fb32f06  5-C12 -1.10 13.0 -11.7 0.002216 4.63 
7602    15   9     18 fb50g12  9-L23  1.16 14.0  11.7 0.002216 4.63 
2151     5   2     15 control   vent -1.40 12.7 -11.7 0.002216 4.62 
3790     8   4     22 fb23d08  2-N16  1.16 12.5  11.6 0.002221 4.58 
7542    15   7      6 fb36g12  6-D23  1.12 13.5  11.0 0.003000 4.27 
4263     9   2     15 control   vent -1.41 12.7 -10.8 0.003326 4.13 
6375    13   2     15 control   vent -1.37 12.5 -10.5 0.004026 3.91 
1146     3   4     18 fb22a12  2-I23  1.05 13.7  10.2 0.004242 3.76 
157      1   7     13 fb38a01   6-I1 -1.82 10.8 -10.2 0.004242 3.75 

The top gene is BMP2 which is significantly down-regulated in the Swirl zebrafish, as it should 
be because the Swirl fish are mutant in this gene. Other positive controls also appear in the top 50 
genes in terms. 

In the table, t is the empirical Bayes moderated t-statistic, the corresponding P-values have been 
adjusted to control the false discovery rate and B is the empirical Bayes log odds of differential 
expression. Beware that the Benjamini and Hochberg method used to control the false discovery 
rate assumes independent statistics which we do not have here (see help(p.adjust)). 

3. Two-Sample Experiments 

ApoAI Knockout Data:  

The zip file associated with this experiment is apoai.zip. This contains the binary data file 
ApoAI.RData which should be unpacked into your working directory. You can then load the data 
in your R session as described below or start a new R session by clicking on the file 
ApoAI.RData in Windows Explorer. 

Background. The data is from a study of lipid metabolism by Callow et al (2000). The 
apolipoprotein AI (ApoAI) gene is known to play a pivotal role in high density lipoprotein (HDL) 
metabolism. Mice which have the ApoAI gene knocked out have very low HDL cholesterol 
levels. The purpose of this experiment is to determine how ApoAI deficiency affects the action of 
other genes in the liver, with the idea that this will help determine the molecular pathways 
through which ApoAI operates.  

Hybridizations. The experiment compared 8 ApoAI knockout mice with 8 normal C57BL/6 
("black six") mice, the control mice. For each of these 16 mice, target mRNA was obtained from 
liver tissue and labelled using a Cy5 dye. The RNA from each mouse was hybridized to a 
separate microarray. Common reference RNA was labelled with Cy3 dye and used for all the 
arrays. The reference RNA was obtained by pooling RNA extracted from the 8 control mice. 

Number of arrays Red Green 
8 Normal "black six" mice Pooled reference 
8 ApoAI knockout Pooled reference 

This is an example of a single comparison experiment using a common reference. The fact that 
the comparison is made by way of a common reference rather than directly as for the swirl 
experiment makes this, for each gene, a two-sample rather than a single-sample setup. 



Load the data into you session by typing: 

load("ApoAI.RData") 

This contains just one R object called RG. Try to following commands: 

names(RG) 
RG 
show(RG) 
RG$targets 
designMatrix(RG$targets, ref="Pool") 

Firstly we'll print-tip loess normalize the data for each array: 

MA <- normalizeWithinArrays(RG) 
MA 

There are lots of ways to construct a design matrix for this experiment but we will use a method 
that generalizes to more complex experiments: 

design <- designMatrix(RG$targets, ref="Pool") 
design 
fit <- lmFit(MA, design) 
fit 

This estimates the average difference between C56BL/6 and the Pooled Reference and between 
ApoAI-/- and the Pooled Reference for each gene. We want to test for a difference between these 
two coefficients for each gene, i.e., we want to test the c(-1,1) contrast equal to zero. 

cont.matrix <- cbind("KO-WT"=c(-1,1)) 
rownames(cont.matrix) <- colnames(design) 
cont.matrix 
fit2 <- contrasts.fit(fit, cont.matrix) 
fit2 
fit2 <- eBayes(fit2) 
fit2 
fit2 <- ebayes(fit2) 
options(digits=2) 
topTable(fit2) 
topTable(fit2,adjust="fdr") 
                      NAME TYPE    CLID          ACC     M  A     t P.Value     B 
2149       ApoAI,lipid-Img cDNA 1077520              -3.17 12 -24.0 3.0e-11 14.93 
540   EST,HighlysimilartoA cDNA  439353              -3.05 12 -13.0 5.0e-07 10.81 
5356  CATECHOLO-METHYLTRAN cDNA 1350232              -1.85 13 -12.4 6.5e-07 10.45 
4139  EST,WeaklysimilartoC cDNA  374370              -1.03 13 -11.8 1.2e-06  9.93 
1739     ApoCIII,lipid-Img cDNA  483614              -0.93 14  -9.8 1.6e-05  8.19 
2537  ESTs,Highlysimilarto cDNA  483614              -1.01 14  -9.0 4.2e-05  7.30 
1496                   est cDNA  484183 genome.wustl -0.98 12  -9.0 4.2e-05  7.29 
4941  similartoyeaststerol cDNA  737183              -0.95 13  -7.4 5.6e-04  5.31 
947   EST,WeaklysimilartoF cDNA  353292              -0.57 11  -4.6 1.8e-01  0.56 
5604                       cDNA  317638              -0.37 13  -4.0 5.3e-01 -0.55 

Notice that the top gene is ApoAI itself which is heavily down-regulated. Theoretically the M-
value should be minus infinity for ApoAI because it is the knockout gene. Several of the other 
genes are closely related. The top eight genes here were confirmed by independent assay 
subsequent to the microarray experiment to be differentially expressed in the knockout versus the 
control line. 
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