
Statistical Methods in Microarray Analysis Tutorial:
Clustering and Discrimination

Jean Yee Hwa Yang

January 4, 2004

The purpose of this lab is two fold. The first is to perform some basic clustering and
examine the effect of different cluster algorithms. The second aim is to build different
classification procedures for tumor samples using gene expression data and to assess the
accuracy of these classification procedures. We will use the dataset presented in Golub et
al. (1999) and available at http://www.genome.wi.mit.edu/MPR. These data come from
a study of gene expression in three types of acute leukemias: B-cell acute lymphoblastic
leukemia (B-ALL), T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid
leukemia (AML). Gene expression levels were measured for 38 B-cell ALL, 9 T-cell ALL
and 25 AML tumor samples, using Affymetrix high-density oligonucleotide arrays hgu68a
containing p = 6817 human genes.

You will work with data that have been pre-processed using procedures similar to
the one described in Golub et al. (1999) and Dudoit et al. (2000). These steps are:

1. thresholding: floor of 100 and ceiling of 16,000;

2. filtering: exclusion of genes with max/min ≤ 5 or (max − min) ≤ 500 where
max and min refer respectively to the maximum and minimum intensities for a
particular gene across the mRNA samples;

3. base 2 logarithmic transformation (Golub et al. uses log 10 logarithmic transfor-
mation).

The R data file GolubData.RData contains gene expression levels and gene names.
The filtered gene expression levels are stored in a 3571 × 72 matrix named golub with
rows corresponding to genes and columns to mRNA samples.

You could proceed with this lab in two ways. For users who are familiar with R
or S-plus language, you may prefer to work through this lab by writing your own
code. For other users less familiar with R, you can use the vExplorer function from
the tkWidgets package to step through this lab interactively. The vExplorer function
provides a graphical interface for viewing and executing code chunks from the lab. To
begin, start R and load the tutorial by typing the command:

1

> library(IMSLAB)
> vExplorer()

Next, select the IMSLAB package using the widget. A basic overview of R and Biocon-
ductor WWW resources are provided at the end of this tutorial. In addition, you can
find other Bioconductor tutorials and labs on this data set at www.bioconductor.org.

1 Getting started

Before we start the lab, here are some useful commands for getting help and sample
scripts demonstrating software functionality

> help.start()
> apropos("mean")
> ? mean
> example("mean")

To load the data packages

> library(IMSLAB)
> data(GolubData)

2 Clustering

Cluster the leukemia mRNA samples using the hclust function and vary the number of
genes. Do the T-ALL, B-ALL and AML samples cluster together? Try different between-
clusters dissimilarity measures by modifying the ”method” argument in hclust. Also
try different dissimilarities metric by modifying the ”method” argument in dist or come
up with your own. Below are some questions to help you get started.

Q1. Perform a hierarchical clustering on the mRNA samples using correlation as simi-
larity function and complete linkage agglomeration.

> library(mva)
> clust.cor <- hclust(as.dist(1 - cor(golub)), method = "complete")
> plot(clust.cor, cex = 0.6)

Q2. Perform a hierarchical clustering on the mRNA samples se Euclidean distance and
average linkage agglomeration.

> clust.euclid <- hclust(dist(t(golub)), method = "average")
> plot(clust.euclid, cex = 0.6)

2

www.bioconductor.org�

Q3. You might also like to create a cluster image using the function heatmap in the
package mva. Keeping in mind that, this function performs hirarchical clustering on both
geness and samples, this method will slow down considerably if the number of genes are
too large. For illustration purposes, we have selected 100 variable genes.

> library(sma)
> golubvar <- apply(golub, 1, var, na.rm = TRUE)
> top100 <- stat.gnames(golubvar, 1:length(golubvar), crit = 100)$gnames
> heatmap(golub[top100,])

Next, we can try different partition methods.
Q4. Perform kmeans clustering on the mRNA samples using correlation as the similarity
function.

> clust.kmeans <- kmeans(as.dist(1 - cor(golub)), 3)
> names(clust.kmeans$cluster) <- colnames(golub)
> clust.kmeans$cluster[1:10]

B-ALL:1 T-ALL:2 T-ALL:3 B-ALL:4 B-ALL:5 T-ALL:6 B-ALL:7
1 1 1 1 2 1 1

B-ALL:8 T-ALL:9 T-ALL:10
1 1 1

Q5. Perform ”Partition Around Medoids” clustering using the function PAM in the
cluster library.

> library(cluster)
> clust.pam <- pam(as.dist(1 - cor(golub)), 3, diss = TRUE)
> clusplot(clust.pam, labels = 3, col.p = clust.pam$clustering)
Q6. Optional, use “Self Organizing Maps” (SOM) methods from the som library using
a 2 by 2 grid size.

Q7. Optional, finally, we can also select the top 100 genes based on variance and
perform the various clustering methods described above. Notice that we did not use any
information associated with the samples during the gene selection process here. The
function stat.gnames sorts genes according to the value of a statistic and in this case
the statistics of interest is ”variance”.

> golubSub <- golub[top100,]
> par(mfrow = c(2, 2))
> plot(hclust(as.dist(1 - cor(golubSub)), method = "complete"),
+ cex = 0.6)
> plot(hclust(dist(t(golubSub)), method = "average"), cex = 0.6)
> clust.pam <- pam(as.dist(1 - cor(golubSub)), 3, diss = TRUE)
> clusplot(clust.pam, labels = 3, col.p = clust.pam$clustering)
> par(mfrow = c(1, 1))

3

3 Discrimination

In the second part of this lab, we are interested in building classification rules to discrim-
inate between the three tumor groups, B-ALL, T-ALL and AML. For ease of processing,
the golub matrix was further separated into expression data for the learning and test
set in matrix objects named LS and TS respectively. Different from the golub matrix,
the matrix LS and TS are 38× 3517 and 34× 3517 respectively, with rows corresponding
to tumor samples and columns corresponding to genes. The tumor class labels for the
learning and test sets are given in vector objects named LS.resp and TS.resp respec-
tively.

3.1 KNN

Q8. Lets begin by examining the K Nearest neighbor classifer. We will use the
function knn from the class package); use ?knn to see what options are available for
this function. We want to see what happens with the different values of k. Using a simple
feature selection procedure, we have selected the top 100 genes based on the between to
within group sum of squares (BWSS) using the function stat.bwss in sma package.

> library(class)
> LS.bw <- stat.bwss(t(LS), as.integer(LS.resp))$bw
> LStop100 <- stat.gnames(LS.bw, 1:length(LS.bw), crit = 100)$gnames
> for (k in 4:7) {
+ disc.knn <- as.vector(knn(LS[, LStop100], TS[, LStop100],
+ cl = LS.resp, k))
+ print(paste("K = ", k))
+ print(table(disc.knn, TS.resp))
+ }

[1] "K = 4"
TS.resp

disc.knn AML B-ALL T-ALL
AML 14 0 1
B-ALL 0 19 0

[1] "K = 5"
TS.resp

disc.knn AML B-ALL T-ALL
AML 14 0 0
B-ALL 0 19 0
T-ALL 0 0 1

[1] "K = 6"
TS.resp

disc.knn AML B-ALL T-ALL

4

AML 14 0 1
B-ALL 0 19 0

[1] "K = 7"
TS.resp

disc.knn AML B-ALL T-ALL
AML 14 0 1
B-ALL 0 19 0

Q9. Optional, if you are interested in producing similar pictures as shown in the lecture,
you can try the functions geneTS and plot.class2 provided with this lab. At the
moment, this works only for bivariate data. A simple way is to choose two genes from the
vector LStop100, alternatively, one can use the first and second principal components.

> newLS <- LS[, LStop100[2:3]]
> newTS <- geneTS(newLS)
> res.knn <- knn(newLS, newTS, cl = as.numeric(LS.resp),
+ k = 3)
> plot.class2(newLS, newTS, res.knn, cl = LS.resp)

NULL

3.2 Maximum likelihood discriminant rules

Q10. Use stat.diag.da from sma packages to build DLDA and DQDA classification
procedures for tumor samples.

> disc.dqda <- stat.diag.da(LS[, LStop100], TS[, LStop100],
+ cl = as.integer(LS.resp), pool = 0)[[1]]
> table(disc.dqda, TS.resp)

TS.resp
disc.dqda AML B-ALL T-ALL

1 12 0 0
2 2 19 0
3 0 0 1

> disc.dlda <- stat.diag.da(LS[, LStop100], TS[, LStop100],
+ cl = as.integer(LS.resp), pool = 1)[[1]]
> table(disc.dlda, TS.resp)

TS.resp
disc.dlda AML B-ALL T-ALL

1 14 0 0
2 0 19 0
3 0 0 1

5

3.3 Trees

Q11. Use function rpart from rpart packages to build a classification tree. Compare
the results from different classification rules.

> library(rpart)
> disc.rpart <- dorpart(LS = LS[, LStop100], TS = TS[,
+ LStop100], cl = as.numeric(LS.resp))
> table(disc.rpart, TS.resp)

TS.resp
disc.rpart AML B-ALL T-ALL

1 11 1 0
2 3 18 0
3 0 0 1

3.4 Error rate

Let us reconsider the K-nearest neighbor classifer.

Q12. Calculate the resubstitution error rate for a nearest neighbor using all the genes
and k equals to 3.

> pred.LS <- as.vector(knn(LS, LS, cl = LS.resp, k = 3))
> table(pred.LS, LS.resp)

LS.resp
pred.LS AML B-ALL T-ALL

AML 11 0 0
B-ALL 0 19 0
T-ALL 0 0 8

> sum(pred.LS != LS.resp)

[1] 0

Q13. Calculate the test set error rate for a nearest neighbor using all the genes and k
equals to 3.

> pred.TS <- as.vector(knn(LS, TS, cl = LS.resp, k = 3))
> table(pred.TS, TS.resp)

TS.resp
pred.TS AML B-ALL T-ALL

AML 13 0 0
B-ALL 1 19 0
T-ALL 0 0 1

6

> sum(pred.TS != TS.resp)

[1] 1

Q14. Lets consider another nearest neighbour classification rule using top 5 BWSS
genes and k equals to 2. Calculate and compare the resubstitution and testset error.
Notice how in this case, the test set error is much higher than the resubsitution error.

> LStop5 <- stat.gnames(LS.bw, 1:length(LS.bw), crit = 5)$gnames
> pred.LS <- as.vector(knn(LS[, LStop5], LS[, LStop5],
+ cl = LS.resp, k = 2))
> table(pred.LS, LS.resp)

LS.resp
pred.LS AML B-ALL T-ALL

AML 11 0 0
B-ALL 0 19 1
T-ALL 0 0 7

> sum(pred.LS != LS.resp)

[1] 1

> pred.TS <- as.vector(knn(LS[, LStop5], TS[, LStop5],
+ cl = LS.resp, k = 2))
> table(pred.TS, TS.resp)

TS.resp
pred.TS AML B-ALL T-ALL

AML 13 2 0
B-ALL 1 16 0
T-ALL 0 1 1

> sum(pred.TS != TS.resp)

[1] 4

Q15. Optional. Build a nearest neighbor classifier with k selected by cross-validation?
Here is an example function build on the function knn.cv.

> knn.cvk <- function(LS, cl, k = 1:5, ...) {
+ cv.err <- cl.pred <- c()
+ for (i in k) {
+ newpre <- as.vector(knn.cv(LS, cl, i))
+ cl.pred <- cbind(cl.pred, newpre)

7

+ cv.err <- c(cv.err, sum(cl != newpre))
+ }
+ k0 <- k[which.min(cv.err)]
+ return(list(k = k0, pred = cl.pred[, which.min(cv.err)]))
+ }
> knn.cvk(LS, cl = LS.resp, k = 3:7)
$k
[1] 4

$pred
[1] "B-ALL" "T-ALL" "T-ALL" "B-ALL" "B-ALL" "T-ALL" "B-ALL" "B-ALL"
[9] "T-ALL" "T-ALL" "T-ALL" "AML" "B-ALL" "T-ALL" "B-ALL" "B-ALL"

[17] "B-ALL" "B-ALL" "B-ALL" "B-ALL" "B-ALL" "B-ALL" "T-ALL" "B-ALL"
[25] "B-ALL" "B-ALL" "B-ALL" "AML" "AML" "AML" "AML" "AML"
[33] "AML" "AML" "AML" "AML" "AML" "AML"

Finally, build a nearest neighbour classifer with the number of features selected by
cross-validation. You can check out the function knn.var from the knnTree package.

4 Annotation

Q16. Optional. Using the Affymetrix or EBI web site to find out the gene names
associated with the Affymetrix IDs

X04145_at and M27891_at.

5 R and Bioconductor WWW resources

For software and documentation consult

• Main R project website: www.R-project.org.

• Comprehensive R Archive Network (CRAN): cran.r-project.org.
Base system and contributed packages (Linux, MacOS, Windows), manuals, tuto-
rials, R News.
For Windows, there is an installer for the main R system. Contributed packages
from CRAN can be installed using the ”Install package from CRAN ...” item on
the ”Packages” menu. For other packages, you can use the ”Install package from
local zip file ...” item.

• Bioconductor website: www.bioconductor.org.
Software packages, vignettes, datasets, short course materials.
To install Bioconductor packages for windows, use the ”Install package(s) from
Bioconductor ...” item on the ”Packages” menu.

8

www.R-project.org�
cran.r-project.org�
www.bioconductor.org�

Acknowledgements

This lab was modified from a previous classification lab perpared by Sandrine Dudoit.
Thanks also to Jane Fridlyand for discussion during the prepartion of this lab.

References

1. Golub et. al. (1999) Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring. Science 286(5439): 531-537.

2. Dudoit, S., Fridlyand, J. and Speed, T. P. (2002). Comparison of discrimination
methods for the classification of tumors using gene expression data. Journal of the
American Statistical Association, Vol. 97, No. 457, p. 77-87.

9

