
(Summary) (Conclusion)Pierre Degond - Quantum Diffusion models - Singapore, January 200

1

Quantum Diffusion models
derived from the entropy principle

P. Degond, F. Méhats, S. Gallego,(1)

Ch. Ringhofer(2)

(1) MIP, CNRS and Université Paul Sabatier,
118 route de Narbonne, 31062 Toulouse cedex, France

degond,mehats,gallego@mip.ups-tlse.fr http://mip.ups-tlse.fr

(2) Dep. of Math., Arizona State University,
Tempe, Arizona 85287-1804, USA

ringhofer@asu.edu http://math.la.asu.edu/ chris/



(Summary) (Conclusion)Pierre Degond - Quantum Diffusion models - Singapore, January 200

2Summary

1. Introduction

2. Derivation of classical Drift-Diffusion models

3. Quantum Kinetic Equations

4. Quantum equilibria and BGK operators

5. Derivation of Quantum Drift-Diffusion models

6. Properties

7. Numerical simulations

8. Summary and conclusion



(Summary) (Conclusion)Pierre Degond - Quantum Diffusion models - Singapore, January 200

3

1. Introduction



(Summary) (Conclusion)Pierre Degond - Quantum Diffusion models - Singapore, January 200

4Classical Drift-Diffusion models

∂tn+ ∇x · j = 0

j = −D(∇xn+ n∇xV )
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4Classical Drift-Diffusion models

∂tn+ ∇x · j = 0

j = −D(∇xn+ n∇xV )

j = −Dn∇x(µ+ V )

µ = lnn+ Cst
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5Quantum extension (Ancona, Iafrate)

The Density-Gradient model

∂tn+ ∇x · j = 0

j = −D(∇xn+ n∇x(V + VB))
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5Quantum extension (Ancona, Iafrate)

The Density-Gradient model

∂tn+ ∇x · j = 0

j = −D(∇xn+ n∇x(V + VB))

VB =
−~

2

6

1√
n

∆
√
n (Bohm potential)

j = −Dn∇x(µ+ V + VB)
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6Why Bohm potential ?

By analogy with Schrödinger equation:

i~∂tψ = −~
2

2
∆ψ + V (x, t)ψ
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6Why Bohm potential ?

By analogy with Schrödinger equation:

i~∂tψ = −~
2

2
∆ψ + V (x, t)ψ

ψ =
√
neiS/~ u = ∇S

∂tn+ ∇x · nu = 0

∂tu+ u · ∇xu = −∇x(V + 3VB)
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7Other approach (Sacco et al)

Quantum Corrected Drift-Diffuion: Keep

j = −Dn∇x(µ+ V )

and change the relation betweenn andµ
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7Other approach (Sacco et al)

Quantum Corrected Drift-Diffuion: Keep

j = −Dn∇x(µ+ V )

and change the relation betweenn andµ

General property (equilibrium)

n =

∫

eµ−ε g(ε) dε
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7Other approach (Sacco et al)

Quantum Corrected Drift-Diffuion: Keep

j = −Dn∇x(µ+ V )

and change the relation betweenn andµ

General property (equilibrium)

n =

∫

eµ−ε g(ε) dε

Classical case:

g(ε) = C
√
ε
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8Other quantum extension (Sacco et al)

Quantum case:

g(ε) =
∑

k

δ(ε− Ek) |ψk(x)|2

where(Ek, ψk) eigen-elements of the Hamiltonian

H = −~
2

2
∆ + V
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8Other quantum extension (Sacco et al)

Quantum case:

g(ε) =
∑

k

δ(ε− Ek) |ψk(x)|2

where(Ek, ψk) eigen-elements of the Hamiltonian

H = −~
2

2
∆ + V

n =
∑

k

eµ−Ek |ψk(x)|2
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9Our goal (and model)

Propose (and justify) a different reconstruction:

n =
∑

k

e−λk[µ] |ψk[µ](x)|2
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9Our goal (and model)

Propose (and justify) a different reconstruction:

n =
∑

k

e−λk[µ] |ψk[µ](x)|2

where(λk[µ], ψk[µ]) eigen-elements of the modified
’Hamiltonian’

H−µ = −~
2

2
∆ − µ
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2. Derivation of classical Drift-Diffusion
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11Boltzmann equation

➠ phase-space densityf(x, p, t): Boltzmann-BGK
equation

∂tf + p · ∇xf −∇xV · ∇pf = Q(f)

Q(f) = −ν(f −Mf)
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11Boltzmann equation

➠ phase-space densityf(x, p, t): Boltzmann-BGK
equation

∂tf + p · ∇xf −∇xV · ∇pf = Q(f)

Q(f) = −ν(f −Mf)

➠ Mf = Maxwellian:

Mf =
n

(2π)3/2
exp

(

−|p|2
2

)

n =

∫

f dp

= exp

(

µ− |p|2
2

)
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12Diffusion scaling:

➠ Rescaling:

Q→ 1

ε
Q t→ 1

ε
t

ε∂tf + p · ∇xf −∇xV · ∇pf =
1

ε
Q(f)
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12Diffusion scaling:

➠ Rescaling:

Q→ 1

ε
Q t→ 1

ε
t

ε∂tf + p · ∇xf −∇xV · ∇pf =
1

ε
Q(f)

➠ Whenε→ 0:
f →Mf

wheren satisfies Drift-Diffusion model with
D = 1

3ν .
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13Characterization of the Maxellian

➠ Free energy

F [f ] =

∫

f(ln f − 1 +H) dp

H = Hamiltonian= p2

2 + V
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13Characterization of the Maxellian

➠ Free energy

F [f ] =

∫

f(ln f − 1 +H) dp

H = Hamiltonian= p2

2 + V

➠ Densityn given. Maxwellian is the solution of

min {F [f ] |
∫

f dp = n}
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14Extension to quantum systems:

➠ Quantum kinetic equation
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14Extension to quantum systems:

➠ Quantum kinetic equation

➠ Quantum BGK operator

➠ Quantum Maxwellian
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3. Quantum kinetic equation
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16Density operator

➠ Basic object:ρ: Hermitian, postive, trace-class
operator onL2(Rd) s.t.

Trρ = 1
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16Density operator

➠ Basic object:ρ: Hermitian, postive, trace-class
operator onL2(Rd) s.t.

Trρ = 1

➠ Typically:

ρψ =
∑

s∈S

ρs(ψ, φs)φs

for a complete orthonormal system(φs)s∈S and real

numbers(ρs)s∈S such that0 ≤ ρs ≤ 1,
∑

ρs = 1
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17Quantum Liouville equation

➠

i~∂tρ = [H, ρ] +Q(ρ)
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17Quantum Liouville equation
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i~∂tρ = [H, ρ] +Q(ρ)

➠ H = Hamiltonian:

Hψ = −~
2

2
∆ψ + V (x, t)ψ
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17Quantum Liouville equation

➠

i~∂tρ = [H, ρ] +Q(ρ)

➠ H = Hamiltonian:

Hψ = −~
2

2
∆ψ + V (x, t)ψ

➠ Q(ρ) to be specified later
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18Wigner Transform

➠ ρ(x, x′) integral kernel ofρ:

ρψ =

∫

ρ(x, x′)ψ(x′) dx′
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18Wigner Transform

➠ ρ(x, x′) integral kernel ofρ:

ρψ =

∫

ρ(x, x′)ψ(x′) dx′

➠ W [ρ](x, p) Wigner transform ofρ:

W [ρ](x, p) =

∫

ρ(x− 1

2
ξ, x+

1

2
ξ) ei ξ·p

~ dξ
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19Inverse Wigner transform (Weyl quantization)

➠ Letw(x, p). ρ = W−1(w) is the operator defined
by:

W−1(w)ψ =
1

(2π)d

∫

w(
x+ y

2
, ~k)ψ(y)eik(x−y) dk dy

w= Weyl symbol ofρ.
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19Inverse Wigner transform (Weyl quantization)

➠ Letw(x, p). ρ = W−1(w) is the operator defined
by:

W−1(w)ψ =
1

(2π)d

∫

w(
x+ y

2
, ~k)ψ(y)eik(x−y) dk dy

w= Weyl symbol ofρ.

➠ Isometries betweenL2 (Operators s.t.ρρ† is
trace-class) andL2(R2d):

Tr{ρσ†} =

∫

W [ρ](x, p)W [σ](x, p)
dx dp

(2π~)d
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20Wigner equation

➠ Eq. forw = W [ρ]:

∂tw + p · ∇xw + Θ~[V ]w = Q(w)
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20Wigner equation

➠ Eq. forw = W [ρ]:

∂tw + p · ∇xw + Θ~[V ]w = Q(w)

Θ~[V ]w = − i

(2π)d~

∫

(V (x+
~

2
η) − V (x− ~

2
η))

×w(x, q) eiη·(p−q) dq dη
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20Wigner equation

➠ Eq. forw = W [ρ]:

∂tw + p · ∇xw + Θ~[V ]w = Q(w)

Θ~[V ]w = − i

(2π)d~

∫

(V (x+
~

2
η) − V (x− ~

2
η))

×w(x, q) eiη·(p−q) dq dη

➠ Θ~[V ]w
~→0−→ −∇xV · ∇pw

➠ Q(w) collision operator (to be specified later)
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4. Quantum equilibria and BGK operator
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22Entropy principle

➠ Entropy= free energy

F [ρ] = Tr{ρ(ln ρ− 1 +H)}
H = Hamiltonian= p2

2 + V
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22Entropy principle

➠ Entropy= free energy

F [ρ] = Tr{ρ(ln ρ− 1 +H)}
H = Hamiltonian= p2

2 + V

➠ Densityn(x) given. MinimizeF under the
constraint of given densityn(x), i.e.

min{F [ρ] |
∫

W [ρ](x, p) dp = n(x)}
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23Quantum equilibria

➠ Solution of the entropy minimization problem

ρµ = expW−1(µ− |p|2
2

)

or

fµ(x, p) = Exp(µ− |p|2
2

) Exp = W expW−1
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23Quantum equilibria

➠ Solution of the entropy minimization problem

ρµ = expW−1(µ− |p|2
2

)

or

fµ(x, p) = Exp(µ− |p|2
2

) Exp = W expW−1

➠ µ related ton by the density constraint:
∫

fµ(x, p) dp = n
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24Quantum BGK operator

Q(f) = −ν(f −Mf)

Mf = Exp(µ− |p|2
2

)

whereµ is related withf by:
∫

(f −Mf) dp = 0
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24Quantum BGK operator

Q(f) = −ν(f −Mf)

Mf = Exp(µ− |p|2
2

)

whereµ is related withf by:
∫

(f −Mf) dp = 0

➠ Q decreases the quantum entropy:

Tr{W−1(Q(f)) ln ρ} ≤ 0
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5. Derivation of new quantum
Drift-Diffusion model
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26Rescaling of Quantum Kinetic Equation

➠ Same as for Classical Bolzmann equation gives

∂tn+ ∇x · j = 0

j = −Dn∇x(µ+ V )
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26Rescaling of Quantum Kinetic Equation

➠ Same as for Classical Bolzmann equation gives

∂tn+ ∇x · j = 0

j = −Dn∇x(µ+ V )

n =

∫

Exp(µ− |p|2
2

) dp

(only change from Classical DD)
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27Bounded domain

➠ bounded domainΩ

H−µ =
p2

2
− µ = −~

2

2
∆ − µ

with ψ = 0 or ∂ψ/∂n = 0 on∂Ω.
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27Bounded domain

➠ bounded domainΩ

H−µ =
p2

2
− µ = −~

2

2
∆ − µ

with ψ = 0 or ∂ψ/∂n = 0 on∂Ω.

➠ µ ∈ L2 =⇒ H−µ has compact resolvent
(λk[µ], ψk[µ](x)) discrete eigenvalues and vectors

Exp(µ− |p|2
2

) =
∑

k

e−λk[µ]ψk[µ]ψ∗
k[µ]
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28Reconstruction of n

n(x) =
∑

k

e−λk[µ]|ψk[µ]|2(x)

The result previously stated
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6. Properties
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30Poisson eq. and equilibria

➠ Coupling with Poisson eq.

V = Vext + Vsc − ∆Vsc = n Vext given
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30Poisson eq. and equilibria

➠ Coupling with Poisson eq.

V = Vext + Vsc − ∆Vsc = n Vext given

➠ Equilibria: j = 0 µ = −V

−∆Vsc =
∑

k

e−λk[−(Vext+Vsc)]|ψk|2(x)

Schrödinger-Poisson problem



(Summary) (Conclusion)Pierre Degond - Quantum Diffusion models - Singapore, January 200

31Entropy decay

➠ Free energy:V independent oft

d

dt

(
∫

n(µ+ V − 1) dx

)

≤ 0
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31Entropy decay

➠ Free energy:V independent oft

d

dt

(
∫

n(µ+ V − 1) dx

)

≤ 0

➠ V coupled with Poisson

d

dt

(
∫

(n(µ− 1) +
1

2
|∇xV |2) dx

)

≤ 0
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31Entropy decay

➠ Free energy:V independent oft

d

dt

(
∫

n(µ+ V − 1) dx

)

≤ 0

➠ V coupled with Poisson

d

dt

(
∫

(n(µ− 1) +
1

2
|∇xV |2) dx

)

≤ 0

➠ The relative entropy to the equilibrium decreases.
⇒ convervence to equilibrium ifn bounded from
below
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32Discrete models

➠ The implicit semi-discretized model (coupled w
Poisson) is well-posed and has a variational
formulation [Gallego, Méhats]
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32Discrete models

➠ The implicit semi-discretized model (coupled w
Poisson) is well-posed and has a variational
formulation [Gallego, Méhats]

➠ The fully (space and time) discretized problem
converges in time towards a solution of a discrete
Schrödinger-Poisson problem [GM]
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33~
2 expansions of QDD

➠ ~ → 0 gives classical DD model
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33~
2 expansions of QDD

➠ ~ → 0 gives classical DD model

➠ O(~2) corrections to classical DD: recover the
Density-Gradient Drift-Diffusion model (with the
Bohm potential) of [Ancona, Iafrate]
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7. Numerical results
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35Resonant tunneling diode
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36I − V curve
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37Densities
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8. Summary and conclusion
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39Summary

➠ Developed a new concept of quantum equilibria as
the minimizers of the quantum entropy subject to
local constraints [D., Ringhofer]
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➠ Proposed a formulation of a quantum BGK
operator
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39Summary

➠ Developed a new concept of quantum equilibria as
the minimizers of the quantum entropy subject to
local constraints [D., Ringhofer]

➠ Proposed a formulation of a quantum BGK
operator

➠ Realized a diffusion approximation of the
resulting Quantum Kinetic Equation which
provides new Quantum Dift-Diffusion models
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40Comparison with existing approaches

➠ Differs from classical model by the reconstruction
of the density from the chemical potential
(through an eigenvalue problem)
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40Comparison with existing approaches

➠ Differs from classical model by the reconstruction
of the density from the chemical potential
(through an eigenvalue problem)

➠ Recovers Density-Gradient (Bohm potential)
models of [Ancona, Iafrate] as anO(~2)
approximation.
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40Comparison with existing approaches

➠ Differs from classical model by the reconstruction
of the density from the chemical potential
(through an eigenvalue problem)

➠ Recovers Density-Gradient (Bohm potential)
models of [Ancona, Iafrate] as anO(~2)
approximation.

➠ Reconstruction bears similarities with but is
different from Quantum Corrected Drift-Diffusion
[Sacco et al]
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41Possible extensions

➠ Energy-Transport models. Classical:

∂tn+ ∇x · jn = 0

∂tW + ∇x · jW + jn · ∇xV = 0
(

jn
jW

)

= −D
(

∇xn+ n∇xV
T

∇xT

)
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41Possible extensions

➠ Energy-Transport models. Classical:

∂tn+ ∇x · jn = 0

∂tW + ∇x · jW + jn · ∇xV = 0
(

jn
jW

)

= −D
(

∇xn+ n∇xV
T

∇xT

)

➠ Extension of our approach written but not
implemented yet

➠ Note: extension of Density-Gradient approach to
Energy-Transport by [Chen, Liu]
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