Quantum Diffusion models derived from the entropy principle

P. Degond, F. Méhats, S. Gallego,⁽¹⁾ Ch. Ringhofer⁽²⁾

(1) MIP, CNRS and Université Paul Sabatier,
 118 route de Narbonne, 31062 Toulouse cedex, France
 degond,mehats,gallego@mip.ups-tlse.fr
 http://mip.ups-tlse.fr

 (2) Dep. of Math., Arizona State University, Tempe, Arizona 85287-1804, USA
 ringhofer@asu.edu
 http://math.la.asu.edu/ chris/

(Summary)

Pierre Degond - Quantum Diffusion models - Singapore, January 200 (Conclusion)

- 1. Introduction
- 2. Derivation of classical Drift-Diffusion models
- 3. Quantum Kinetic Equations
- 4. Quantum equilibria and BGK operators
- 5. Derivation of Quantum Drift-Diffusion models
- 6. Properties
- 7. Numerical simulations
- 8. Summary and conclusion

(Conclusion)

1. Introduction

(Conclusion)

Classical Drift-Diffusion models

4

$$\partial_t n + \nabla_x \cdot j = 0$$

$$j = -D(\nabla_x n + n\nabla_x V)$$

(Summary) Pierre Degond - Quantum Diffusion models - Singapore, January 200 (Conclusion)

Classical Drift-Diffusion models

$$\partial_t n + \nabla_x \cdot j = 0$$

$$j = -D(\nabla_x n + n\nabla_x V)$$

$$j = -D n \nabla_x (\mu + V)$$
$$\mu = \ln n + \mathbf{Cst}$$

(Summary)

Pierre Degond - Quantum Diffusion models - Singapore, January 200 (Conclusion)

Quantum extension (Ancona, Iafrate)

5

The Density-Gradient model

$$\partial_t n + \nabla_x \cdot j = 0$$

$$j = -D(\nabla_x n + n\nabla_x (V + V_B))$$

Quantum extension (Ancona, Iafrate)

5

The Density-Gradient model

$$\partial_t n + \nabla_x \cdot j = 0$$

$$j = -D(\nabla_x n + n\nabla_x (V + V_B))$$

$$V_B = \frac{-\hbar^2}{6} \frac{1}{\sqrt{n}} \Delta \sqrt{n} \quad \text{(Bohm potential)}$$

Quantum extension (Ancona, Iafrate)

5

The Density-Gradient model

$$\partial_t n + \nabla_x \cdot j = 0$$

$$j = -D(\nabla_x n + n\nabla_x (V + V_B))$$

$$V_B = \frac{-\hbar^2}{6} \frac{1}{\sqrt{n}} \Delta \sqrt{n} \quad \text{(Bohm potential)}$$

$$j = -D n \nabla_x (\mu + V + V_B)$$

Why Bohm potential ?

By analogy with Schrödinger equation:

$$i\hbar\partial_t\psi = -\frac{\hbar^2}{2}\Delta\psi + V(x,t)\psi$$

Why Bohm potential ?

By analogy with Schrödinger equation:

$$i\hbar\partial_t\psi = -\frac{\hbar^2}{2}\Delta\psi + V(x,t)\psi$$

$$\psi = \sqrt{n}e^{iS/\hbar} \qquad u = \nabla S$$

6

Why Bohm potential ?

By analogy with Schrödinger equation:

$$i\hbar\partial_t\psi = -\frac{\hbar^2}{2}\Delta\psi + V(x,t)\psi$$

$$\psi = \sqrt{n}e^{iS/\hbar} \qquad u = \nabla S$$

$$\partial_t n + \nabla_x \cdot nu = 0$$

$$\partial_t u + u \cdot \nabla_x u = -\nabla_x (V + 3V_B)$$

Other approach (Sacco et al)

Quantum Corrected Drift-Diffuion: Keep

$$j = -D \, n \, \nabla_x (\mu + V)$$

and change the relation between n and μ

Other approach (Sacco et al)

Quantum Corrected Drift-Diffuion: Keep

$$j = -D \, n \, \nabla_x (\mu + V)$$

and change the relation between n and μ

General property (equilibrium)

$$n = \int e^{\mu - \varepsilon} g(\varepsilon) \, d\varepsilon$$

Other approach (Sacco et al)

Quantum Corrected Drift-Diffuion: Keep

$$j = -D \, n \, \nabla_x (\mu + V)$$

and change the relation between n and μ

General property (equilibrium)

$$n = \int e^{\mu - \varepsilon} g(\varepsilon) \, d\varepsilon$$

Classical case:

(Summary)

$$g(\varepsilon) = C\sqrt{\varepsilon}$$

(Conclusion)

Other quantum extension (Sacco et al)

8

Quantum case:

(Summary)

$$g(\varepsilon) = \sum_{k} \delta(\varepsilon - E_k) |\psi_k(x)|^2$$

where (E_k, ψ_k) eigen-elements of the Hamiltonian

$$H = -\frac{\hbar^2}{2}\Delta + V$$

Other quantum extension (Sacco et al)

Quantum case:

$$g(\varepsilon) = \sum_{k} \delta(\varepsilon - E_k) |\psi_k(x)|^2$$

where (E_k, ψ_k) eigen-elements of the Hamiltonian

$$H = -\frac{\hbar^2}{2}\Delta + V$$

$$n = \sum_{k} e^{\mu - E_k} |\psi_k(x)|^2$$

(Summary)

Pierre Degond - Quantum Diffusion models - Singapore, January 200 (Con

(Conclusion)

8

Our goal (and model)

Propose (and justify) a different reconstruction:

$$n = \sum_{k} e^{-\lambda_k[\mu]} |\psi_k[\mu](x)|^2$$

Our goal (and model)

Propose (and justify) a different reconstruction:

$$n = \sum_{k} e^{-\lambda_k[\mu]} |\psi_k[\mu](x)|^2$$

where $(\lambda_k[\mu], \psi_k[\mu])$ eigen-elements of the modified 'Hamiltonian'

$$H_{-\mu} = -\frac{\hbar^2}{2}\Delta - \mu$$

2. Derivation of classical Drift-Diffusion

Boltzmann equation

■ phase-space density f(x, p, t): Boltzmann-BGK equation

$$\partial_t f + p \cdot \nabla_x f - \nabla_x V \cdot \nabla_p f = Q(f)$$
$$Q(f) = -\nu(f - M_f)$$

Boltzmann equation

■ phase-space density f(x, p, t): Boltzmann-BGK equation

$$\partial_t f + p \cdot \nabla_x f - \nabla_x V \cdot \nabla_p f = Q(f)$$

 $Q(f) = -\nu(f - M_f)$

 \longrightarrow M_f = Maxwellian:

$$M_f = \frac{n}{(2\pi)^{3/2}} \exp\left(-\frac{|p|^2}{2}\right) \qquad n = \int f \, dp$$
$$= \exp\left(\mu - \frac{|p|^2}{2}\right)$$

11

Diffusion scaling:

Rescaling:

Diffusion scaling:

$$Q \to \frac{1}{\varepsilon}Q \qquad t \to \frac{1}{\varepsilon}t$$
$$\varepsilon \partial_t f + p \cdot \nabla_x f - \nabla_x V \cdot \nabla_p f = \frac{1}{\varepsilon}Q(f)$$

When $\varepsilon \to 0$:

(Summary)

$$f \to M_f$$

where *n* satisfies Drift-Diffusion model with $D = \frac{1}{3\nu}$.

Characterization of the Maxellian

13

Free energy

$$\mathcal{F}[f] = \int f(\ln f - 1 + H) \, dp$$

 $H = \text{Hamiltonian} = \frac{p^2}{2} + V$

Characterization of the Maxellian

13

Free energy

(Summary)

$$\mathcal{F}[f] = \int f(\ln f - 1 + H) \, dp$$

 $H = \text{Hamiltonian} = \frac{p^2}{2} + V$

 \blacksquare Density *n* given. Maxwellian is the solution of

$$\min\left\{ \mathcal{F}[f] \mid \int f \, dp = n \right\}$$

Extension to quantum systems:

Quantum kinetic equation

Extension to quantum systems:

- Quantum kinetic equation
- Quantum BGK operator

Extension to quantum systems:

- Quantum kinetic equation
- Quantum BGK operator
- Quantum Maxwellian

3. Quantum kinetic equation

(Summary) Pierre Degond - Quantum Diffusion models - Singapore, January 200 (Conclusion)

Density operator

Basic object: ρ : Hermitian, postive, trace-class operator on $L^2(\mathbb{R}^d)$ s.t.

$$\mathrm{Tr}\rho = 1$$

Density operator

Basic object: ρ : Hermitian, postive, trace-class operator on $L^2(\mathbb{R}^d)$ s.t.

$$\mathrm{Tr}\rho = 1$$

Typically:

$$\rho\psi = \sum_{s\in S} \rho_s(\psi, \phi_s) \phi_s$$

for a complete orthonormal system $(\phi_s)_{s\in S}$ and real numbers $(\rho_s)_{s\in S}$ such that $0 \leq \rho_s \leq 1$, $\sum \rho_s = 1$

Quantum Liouville equation

17

 $i\hbar\partial_t\rho = [H,\rho] + Q(\rho)$

Quantum Liouville equation

17

$$i\hbar\partial_t\rho = [H,\rho] + Q(\rho)$$

H = Hamiltonian:

$$H\psi = -\frac{\hbar^2}{2}\Delta\psi + V(x,t)\psi$$

Quantum Liouville equation

17

$$i\hbar\partial_t\rho = [H,\rho] + Q(\rho)$$

\blacksquare H = Hamiltonian:

(Summary)

$$H\psi = -\frac{\hbar^2}{2}\Delta\psi + V(x,t)\psi$$

 $\blacksquare Q(\rho)$ to be specified later

Wigner Transform

18

 $\rightarrow \underline{\rho}(x, x')$ integral kernel of ρ :

$$\rho\psi = \int \underline{\rho}(x, x')\psi(x') \, dx'$$

Wigner Transform

 $\rightarrow \rho(x, x')$ integral kernel of ρ :

$$\rho\psi = \int \underline{\rho}(x, x')\psi(x') \, dx'$$

 \blacktriangleright $W[\rho](x,p)$ Wigner transform of ρ :

$$W[\rho](x,p) = \int \underline{\rho}(x - \frac{1}{2}\xi, x + \frac{1}{2}\xi) e^{i\frac{\xi \cdot p}{\hbar}} d\xi$$

Pierre Degond - Quantum Diffusion models - Singapore, January 200 (Conclusion)
Inverse Wigner transform (Weyl quantization)9

Let w(x, p). $\rho = W^{-1}(w)$ is the operator defined by:

$$W^{-1}(w)\psi = \frac{1}{(2\pi)^d} \int w(\frac{x+y}{2},\hbar k) \,\psi(y)e^{ik(x-y)} \,dk \,dy$$

w= Weyl symbol of ρ .

Inverse Wigner transform (Weyl quantization)9

→ Let w(x, p). $\rho = W^{-1}(w)$ is the operator defined by:

$$W^{-1}(w)\psi = \frac{1}{(2\pi)^d} \int w(\frac{x+y}{2},\hbar k) \,\psi(y)e^{ik(x-y)} \,dk \,dy$$

w= Weyl symbol of ρ .

(Summary)

Isometries between \mathcal{L}^2 (Operators s.t. $\rho \rho^{\dagger}$ is trace-class) and $L^2(\mathbb{R}^{2d})$:

$$\operatorname{Tr}\{\rho\sigma^{\dagger}\} = \int W[\rho](x,p)\overline{W[\sigma](x,p)} \,\frac{dx\,dp}{(2\pi\hbar)^d}$$

Wigner equation

 \blacksquare Eq. for $w = W[\rho]$:

$$\partial_t w + p \cdot \nabla_x w + \Theta^{\hbar}[V]w = Q(w)$$

Wigner equation

20

 \blacksquare Eq. for $w = W[\rho]$:

$$\partial_t w + p \cdot \nabla_x w + \Theta^{\hbar}[V]w = Q(w)$$

$$\Theta^{\hbar}[V]w = -\frac{i}{(2\pi)^{d}\hbar} \int (V(x + \frac{\hbar}{2}\eta) - V(x - \frac{\hbar}{2}\eta)) \times w(x,q) e^{i\eta \cdot (p-q)} dq d\eta$$

Wigner equation

20

 \blacktriangleright Eq. for $w = W[\rho]$:

$$\partial_t w + p \cdot \nabla_x w + \Theta^{\hbar}[V]w = Q(w)$$

$$\Theta^{\hbar}[V]w = -\frac{i}{(2\pi)^{d}\hbar} \int (V(x + \frac{\hbar}{2}\eta) - V(x - \frac{\hbar}{2}\eta)) \times w(x,q) e^{i\eta \cdot (p-q)} dq d\eta$$

$$\Theta^{\hbar}[V]w \xrightarrow{\hbar \to 0} -\nabla_x V \cdot \nabla_p w$$
$$Q(w) \text{ collision operator (to be specified later)}$$

4. Quantum equilibria and BGK operator

Entropy principle

 \blacksquare Entropy = free energy

$$\mathcal{F}[\rho] = \operatorname{Tr}\{\rho(\ln \rho - 1 + H)\}$$
$$H = \operatorname{Hamiltonian} = \frac{p^2}{2} + V$$

Entropy principle

 \blacksquare Entropy = free energy

$$\mathcal{F}[\rho] = \operatorname{Tr}\{\rho(\ln \rho - 1 + H)\}$$
$$H = \operatorname{Hamiltonian} = \frac{p^2}{2} + V$$

→ Density n(x) given. Minimize \mathcal{F} under the constraint of given density n(x), i.e.

$$\min\{\mathcal{F}[\rho] \mid \int W[\rho](x,p) \, dp = n(x)\}$$

Quantum equilibria

Solution of the entropy minimization problem

$$\rho_{\mu} = \exp W^{-1} \left(\mu - \frac{|p|^2}{2}\right)$$

or

$$f_{\mu}(x,p) = \mathcal{E}\mathbf{x}\mathbf{p}(\mu - \frac{|p|^2}{2}) \qquad \mathcal{E}\mathbf{x}\mathbf{p} = W \exp$$

 W^{-1}

Quantum equilibria

Solution of the entropy minimization problem

$$\rho_{\mu} = \exp W^{-1} \left(\mu - \frac{|p|^2}{2}\right)$$

or

$$f_{\mu}(x,p) = \mathcal{E}\mathbf{x}\mathbf{p}(\mu - \frac{|p|^2}{2}) \qquad \mathcal{E}\mathbf{x}\mathbf{p} = W \exp W^{-1}$$

 \rightarrow μ related to *n* by the density constraint:

$$\int f_{\mu}(x,p) \, dp = n$$

Quantum BGK operator

$$Q(f) = -\nu(f - \mathcal{M}_f)$$
$$\mathcal{M}_f = \mathcal{E}\operatorname{xp}(\mu - \frac{|p|^2}{2})$$

where μ is related with f by:

(Summary)

$$\int (f - \mathcal{M}_f) \, dp = 0$$

Pierre Degond - Quantum Diffusion models - Singapore, January 200 (Conclusion)

Quantum BGK operator

$$Q(f) = -\nu(f - \mathcal{M}_f)$$
$$\mathcal{M}_f = \mathcal{E}\mathrm{xp}(\mu - \frac{|p|^2}{2})$$

where μ is related with f by:

$$\int (f - \mathcal{M}_f) \, dp = 0$$

24

5. Derivation of new quantum Drift-Diffusion model

Pierre Degond - Quantum Diffusion models - Singapore, January 200 (Conclusion)

Rescaling of Quantum Kinetic Equation 26

Same as for Classical Bolzmann equation gives

$$\partial_t n + \nabla_x \cdot j = 0$$

$$j = -D \, n \, \nabla_x (\mu + V)$$

Rescaling of Quantum Kinetic Equation 26

Same as for Classical Bolzmann equation gives

$$\partial_t n + \nabla_x \cdot j = 0$$

$$j = -D \, n \, \nabla_x (\mu + V)$$

$$n = \int \mathcal{E}\mathbf{x}\mathbf{p}(\mu - \frac{|p|^2}{2}) \, dp$$

(only change from Classical DD)

Bounded domain

 \blacksquare bounded domain Ω

$$H_{-\mu} = \frac{p^2}{2} - \mu = -\frac{\hbar^2}{2}\Delta - \mu$$

with $\psi = 0$ or $\partial \psi / \partial n = 0$ on $\partial \Omega$.

Bounded domain

 \blacksquare bounded domain Ω

$$H_{-\mu} = \frac{p^2}{2} - \mu = -\frac{\hbar^2}{2}\Delta - \mu$$

with $\psi = 0$ or $\partial \psi / \partial n = 0$ on $\partial \Omega$.

 $\mu \in L^2 \Longrightarrow H_{-\mu} \text{ has compact resolvent}$ $(\lambda_k[\mu], \psi_k[\mu](x)) \text{ discrete eigenvalues and vectors}$

$$\mathcal{E}\mathbf{x}\mathbf{p}(\mu - \frac{|p|^2}{2}) = \sum_k e^{-\lambda_k[\mu]}\psi_k[\mu]\psi_k^*[\mu]$$

Reconstruction of n

$$n(x) = \sum_{k} e^{-\lambda_{k}[\mu]} |\psi_{k}[\mu]|^{2}(x)$$

The result previously stated

6. Properties

Poisson eq. and equilibria

30

Coupling with Poisson eq.

$$V = V_{ext} + V_{sc}$$
 $-\Delta V_{sc} = n$ V_{ext} given

Poisson eq. and equilibria

30

Coupling with Poisson eq.

(Summary)

$$V = V_{ext} + V_{sc}$$
 $-\Delta V_{sc} = n$ V_{ext} given

Equilibria:
$$j = 0$$
 $\mu = -V$
$$-\Delta V_{sc} = \sum_{k} e^{-\lambda_k [-(V_{ext} + V_{sc})]} |\psi_k|^2(x)$$

Schrödinger-Poisson problem

Entropy decay

 \blacksquare Free energy: V independent of t

$$\frac{d}{dt}\left(\int n(\mu+V-1)\,dx\right) \le 0$$

Entropy decay

 \blacksquare Free energy: V independent of t

$$\frac{d}{dt}\left(\int n(\mu+V-1)\,dx\right) \le 0$$

 \blacksquare V coupled with Poisson

(Summary)

$$\frac{d}{dt}\left(\int \left(n(\mu-1) + \frac{1}{2}|\nabla_x V|^2\right)dx\right) \le 0$$

Pierre Degond - Quantum Diffusion models - Singapore, January 200 (Conclusion)

Entropy decay

 \blacksquare Free energy: V independent of t

$$\frac{d}{dt}\left(\int n(\mu+V-1)\,dx\right) \le 0$$

► V coupled with Poisson $\frac{d}{dt} \left(\int (n(\mu - 1) + \frac{1}{2} |\nabla_x V|^2) \, dx \right) \le 0$

The relative entropy to the equilibrium decreases.
⇒ convervence to equilibrium if n bounded from below

Discrete models

 The implicit semi-discretized model (coupled w Poisson) is well-posed and has a variational formulation [Gallego, Méhats]

Discrete models

- The implicit semi-discretized model (coupled w Poisson) is well-posed and has a variational formulation [Gallego, Méhats]
- The fully (space and time) discretized problem converges in time towards a solution of a discrete Schrödinger-Poisson problem [GM]

\hbar^2 expansions of QDD

33

$\hbar \to 0$ gives classical DD model

\hbar^2 expansions of QDD

- $\hbar \to 0$ gives classical DD model
- → O(ħ²) corrections to classical DD: recover the Density-Gradient Drift-Diffusion model (with the Bohm potential) of [Ancona, Iafrate]

7. Numerical results

Resonant tunneling diode

I - V curve

Pierre Degond - Quantum Diffusion models - Singapore, January 200 (Conclusion)

Densities

Pierre Degond - Quantum Diffusion models - Singapore, January 200 (Conclusion)

8. Summary and conclusion

Summary

 Developed a new concept of quantum equilibria as the minimizers of the quantum entropy subject to local constraints [D., Ringhofer]

Summary

- Developed a new concept of quantum equilibria as the minimizers of the quantum entropy subject to local constraints [D., Ringhofer]
- Proposed a formulation of a quantum BGK operator

Summary

- Developed a new concept of quantum equilibria as the minimizers of the quantum entropy subject to local constraints [D., Ringhofer]
- Proposed a formulation of a quantum BGK operator
- Realized a diffusion approximation of the resulting Quantum Kinetic Equation which provides new Quantum Dift-Diffusion models
Comparison with existing approaches

40

 Differs from classical model by the reconstruction of the density from the chemical potential (through an eigenvalue problem)

(Summary)

Comparison with existing approaches

40

- Differs from classical model by the reconstruction of the density from the chemical potential (through an eigenvalue problem)
- Recovers Density-Gradient (Bohm potential) models of [Ancona, Iafrate] as an $O(\hbar^2)$ approximation.

Comparison with existing approaches

40

- Differs from classical model by the reconstruction of the density from the chemical potential (through an eigenvalue problem)
- Recovers Density-Gradient (Bohm potential) models of [Ancona, Iafrate] as an $O(\hbar^2)$ approximation.
- Reconstruction bears similarities with but is different from Quantum Corrected Drift-Diffusion [Sacco et al]

Possible extensions

Energy-Transport models. Classical:

(Summary)

$$\partial_t n + \nabla_x \cdot j_n = 0$$

$$\partial_t W + \nabla_x \cdot j_W + j_n \cdot \nabla_x V = 0$$

$$\begin{pmatrix} j_n \\ j_W \end{pmatrix} = -D \begin{pmatrix} \nabla_x n + n \frac{\nabla_x V}{T} \\ \nabla_x T \end{pmatrix}$$

Energy-Transport models. Classical:

$$\partial_t n + \nabla_x \cdot j_n = 0$$

$$\partial_t W + \nabla_x \cdot j_W + j_n \cdot \nabla_x V = 0$$

$$\begin{pmatrix} j_n \\ j_W \end{pmatrix} = -D \begin{pmatrix} \nabla_x n + n \frac{\nabla_x V}{T} \\ \nabla_x T \end{pmatrix}$$

- Extension of our approach written but not implemented yet
- Note: extension of Density-Gradient approach to Energy-Transport by [Chen, Liu]