Islands in the Stream:

Complex Shape Evolution Driven by Surface Electromigration ${ }^{1}$

P. Kuhn, University of Duisburg-Essen

J. Krug, University of Cologne F. Hausser and A. Voigt, research center caesar, Bonn

Supported by DFG within SFB 616 Energy Dissipation at Surfaces \&
SFB 611 Singular phenomena and scaling in mathematical models

[^0]
Island in the Straits:

Complex Shape Evolution Driven by Surface Electromigration ${ }^{1}$

P. Kuhn, University of Duisburg-Essen

J. Krug, University of Cologne F. Hausser and A. Voigt, research center caesar, Bonn

Supported by DFG within SFB 616 Energy Dissipation at Surfaces \&
SFB 611 Singular phenomena and scaling in mathematical models

[^1]
Surface Electromigration

electromigration force: $F=e Z^{*} E$
Z^{*} : effective valence

- relation to surface resistance and electronic friction
- dominant failure mechanism in integrated circuits

Surface Electromigration

electromigration force: $F=e Z^{*} E$
Z^{*} : effective valence

- relation to surface resistance and electronic friction
- dominant failure mechanism in integrated circuits

General goal: To bridge the gap between atomistic processes and large scale morphological evolution through the study of simple step and island configurations on single crystal surfaces

Surface Electromigration

electromigration force: $F=e Z^{*} E$
Z^{*} : effective valence

- relation to surface resistance and electronic friction
- dominant failure mechanism in integrated circuits

Model problems:

- electromigration-induced step bunching
- current effects on step fluctuations
- electromigration of single layer islands

Surface Electromigration

electromigration force: $F=e Z^{*} E$
Z^{*} : effective valence

- relation to surface resistance and electronic friction
- dominant failure mechanism in integrated circuits

Model problems:

- electromigration-induced step bunching \rightarrow M. Uwaha, J. Weeks (today)
- current effects on step fluctuations \rightarrow E. Williams (yesterday)
- electromigration of single layer islands \rightarrow this talk

Continuum Model of Shape Evolution

- mass transport restricted to the one-dimensional interface
- anisotropic mobility and stiffness
- normal edge velocity v_{n} satisfies

$$
v_{n}+\frac{\partial j}{\partial s}=0, \quad j=\sigma(\theta)\left[F_{t}-\frac{\partial}{\partial s} \tilde{\gamma}(\theta) \kappa\right]
$$

$$
\begin{array}{lll}
s: \text { arc length } & \theta: \text { edge orientation } & \kappa: \text { edge curvature } \\
\sigma(\theta): \text { adatom mobility } & \tilde{\gamma}(\theta): \text { step stiffness } & F_{t}: \text { tangential force }
\end{array}
$$

- electromigration dominates on length scales $\gg l_{E}=\sqrt{\tilde{\gamma} /|F|}$
- Numerical methods: Finite differences \& adaptive finite elements

Continuum Model of Shape Evolution

- mass transport restricted to the one-dimensional interface
- anisotropic mobility and stiffness
- normal edge velocity v_{n} satisfies

$$
v_{n}+\frac{\partial j}{\partial s}=0, \quad j=\sigma(\theta)\left[F_{t}-\frac{\partial}{\partial s} \tilde{\gamma}(\theta) \kappa\right]
$$

$$
\begin{array}{llc}
s: \text { arc length } & \theta: \text { edge orientation } & \kappa: \text { edge curvature } \\
\sigma(\theta): \text { adatom mobility } & \tilde{\gamma}(\theta): \text { step stiffness } & F_{t}: \text { tangential force }
\end{array}
$$

- electromigration dominates on length scales $\gg l_{E}=\sqrt{\tilde{\gamma} /|F|}$
- Numerical methods: Finite differences \& adaptive finite elements

Islands vs. Voids

local

nonlocal

- local model: $\quad F_{t}=F_{0} \cos (\theta+\phi) \quad \phi$: field direction single layer islands (Pierre-Louis \& Einstein 2000) dislocation loops (Suo 1994)
- nonlocal model: $F_{t}=-\partial U / \partial s$ with $\nabla^{2} U_{\text {outside }}=U_{\text {inside }}=0$ insulating voids in metallic thin films (Kraft \& Arzt, Gungor \& Maroudas, Mahadevan \& Bradley, Schimschak \& JK...)
- interpolation by general conductivity ratio $\rho=\Sigma_{\text {inside }} / \Sigma_{\text {outside }} \in[0,1]$

Results for the isotropic case

- The circle is a stationary solution for any ρ (Ho, 1970)
- Linear instability at critical radius $R_{c}^{(1)}=\hat{R}_{c}^{(1)} l_{E}$ for $\rho>0$ (Wang, Suo, Hao 1996)
- Nonlinear instability for $\rho=0$ (Schimschak \& JK, 1998)
- No non-circular stationary shapes for $\rho=0$
(Cummings, Richardson, Ben Amar 2001)
- $\rho=1$: Non-circular stationary shapes are stable for

$$
\hat{R}_{c}^{(1)} \approx 3.26<R / l_{E}<\hat{R}_{c}^{(2)} \approx 6.2
$$

Non-circular stationary shapes

- Dimensionless initial radius $R_{0}=R / l_{E}=3.3,4,5,6$
- Shapes approach a finger solution of width $W \approx 4.8 l_{E}$ (Suo, Wang, Yang 1994)

Island breakup

- Dimensionless radius $R_{0}=R / l_{E}=7$
- Breakup mediated by outgrowth of finger

Void breakup

M. Schimschak, J.K., J. Appl. Phys. 87, 695 (2000)

- Splitoff of circular void, no finger solution

Island breakup in kinetic Monte Carlo simulations

O. Pierre-Louis, T.L. Einstein, Phys. Rev. B 62, 13697 (2000)

Anisotropic stationary shapes without capillarity

- Island moves along x-axis
- Parametrization: $x=x(\theta), y=y(\theta)$

$$
d y / d x=-\tan (\theta)
$$

- Stationarity condition: $v_{n}=V \sin (\theta) \Rightarrow V y=j+$ const. (Suo 1994)
- In the absence of capillarity $(\tilde{\gamma}=0)$ this implies

$$
y(\theta)=\frac{F}{V} \sigma(\theta) \cos (\theta+\phi), \quad x(\theta)=-\int_{0}^{\theta} d \theta^{\prime} \frac{d y}{d \theta^{\prime}} \cot \left(\theta^{\prime}\right)
$$

- Mobility model: $\sigma(\theta)=\sigma_{0}\left\{1+S \cos ^{2}[n(\theta+\alpha) / 2]\right\} \quad S$: Anisotropy strength n : Number of symmetry axes α : Orientation of symmetry axes

Conditions on physical shapes:

(i) $x(\theta)$ finite $\Rightarrow d y / d \theta=0$ at $\theta=0$ and π
(ii) no self-intersections $\Rightarrow d y / d \theta \neq 0$ for $\theta \neq 0, \pi$
(iii) closed contour: $x(\theta+2 \pi)=x(\theta) \Rightarrow \tan (n \alpha) \tan (\phi)=n$ for odd n

Consequences:

- No stationary shapes for odd n !
- For even n smooth stationary shapes exist in a range $0<S<S_{c}$ of anisotropy strengths
- Condition (i) selects direction of island motion which is generally different from the direction of the field

Stationary shapes without capillarity for $n=6$

- Direction of motion may vary discontinuously with $\alpha-\phi$

Anisotropic stationary shapes with capillarity

$R_{0}=2.5$

$\sigma(\theta)$ for $n=6$

- $\sigma(\theta)=\sigma_{0}\left\{1+S \cos ^{2}[n \theta / 2]\right\}$, isotropic stiffness
- R_{0} : Dimensionless radius of a circle of the same area

Obliquely moving stationary shapes ($\mathrm{n}=6, \mathrm{~S}=2$)

- Spontaneous breaking of symmetry w.r.t. field \& anisotropy direction

Angle of motion as an order parameter $(S=2)$

SS: straight stationary
OS: oblique stationary
OO: oblique oscillatory

Oblique oscillatory motion

- Dimensionless radius $R_{0}=4$, anisotropy strength $S=1$
- Upper edge is linearly stable, lower edge linearly unstable

Zig-zag motion

Regular and irregular oscillations of the island perimeter

characteristic time scale: $t_{E}=l_{E}^{4} / \sigma_{\max } \tilde{\gamma}$

Complex oscillatory motion

Selected facets and the origin of oscillations

- Large islands are composed of selected facets which are stationary in the substrate frame. Oscillations arise because islands slide past the static facets.
- Facets are constant current solutions of the evolution equation:

$$
j=j^{*} \Rightarrow \tilde{\gamma} \frac{d^{2}}{d s^{2}} \theta(s)=-\frac{j^{*}}{\sigma(\theta)}+F_{0} \cos (\theta) \equiv-V^{\prime}(\theta)
$$

- Facet orientations are degenerate maxima of the "potential" $V(\theta)$
- For $n=6, \alpha=0$ there are four selected orientations, out of which three are needed to form a closed island:

A tentative phase diagram

Divergence of the oscillation period at the $\mathbf{0 0} \rightarrow$ os transition

- N : Number of discretization points
- Best fit: $\tau \sim\left(R_{0}-R_{c}\right)^{-2.5}$

Oscillatory behavior in void electromigration

M.R. Gungor, D. Maroudas, Surf. Sci. 461 (2000), L550

- Propagation of edge voids with crystal anisotropy

- Onset of oscillations at a critical void size
- Divergence of oscillation period at onset

Experimental considerations: Islands on $\mathrm{Cu}(100)$

- Electromigration force on a step atom: $400 \mathrm{eV} / \mathrm{cm}$ at $i=10^{7} \mathrm{~A} / \mathrm{cm}^{2}$ H. Mehl, O. Biham, O. Millo, M. Karimi, Phys. Rev. B 61, 4975 (2000)
- Step stiffness $\tilde{\gamma} \approx 0.13 \mathrm{eV} /$ atom for kinked steps
S. Dieluweit, H. Ibach, M. Giesen, T.L. Einstein, Phys. Rev. B 67, 121410 (2003)

$$
\Rightarrow \quad l_{E} \approx 25-100 \mathrm{~nm}
$$

- Characteristic time scale from step fluctuation kinetics M. Giesen, S. Dieluweit, J. Mol. Cat. A 216, 263 (2004)

$$
\Rightarrow \quad t_{E}=\frac{l_{E}^{4}}{\sigma_{\max } \tilde{\gamma}} \approx 1 \mathrm{~s} \text { at } 300 \mathrm{~K}
$$

Outlook

- Nature of bifurcations (low-dimensional truncation)?
- Oscillatory behavior in kinetic Monte Carlo simulations?
- Nonlinear behavior in the kinetic regimes involving mass exchange with the terrace?

[^0]: ${ }^{1}$ cond-mat/0405068 \& 0410745

[^1]: ${ }^{1}$ cond-mat/ 0405068 \& 0410745

