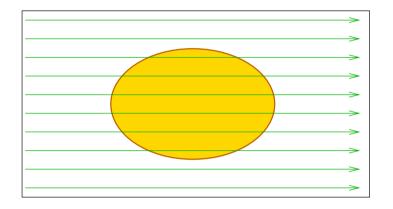
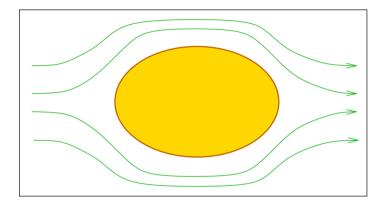
Islands in the Stream:

Complex Shape Evolution Driven by Surface Electromigration¹





P. Kuhn, University of Duisburg-Essen J. Krug, University of Cologne

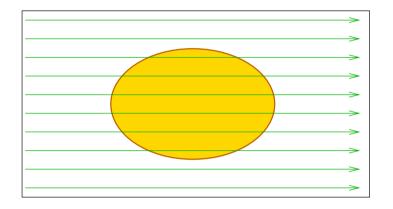
F. Hausser and A. Voigt, research center caesar, Bonn

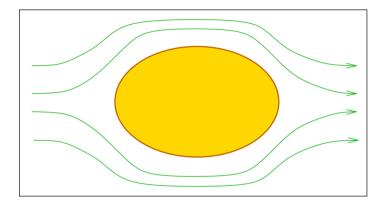
Supported by DFG within SFB 616 *Energy Dissipation at Surfaces* & SFB 611 *Singular phenomena and scaling in mathematical models*

¹cond-mat/0405068 & 0410745

Island in the Straits:

Complex Shape Evolution Driven by Surface Electromigration¹



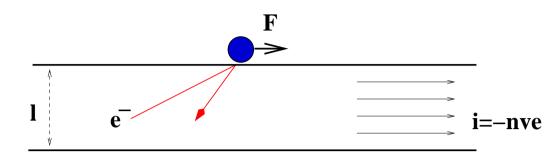


P. Kuhn, University of Duisburg-Essen J. Krug, University of Cologne

F. Hausser and A. Voigt, research center caesar, Bonn

Supported by DFG within SFB 616 *Energy Dissipation at Surfaces* & SFB 611 *Singular phenomena and scaling in mathematical models*

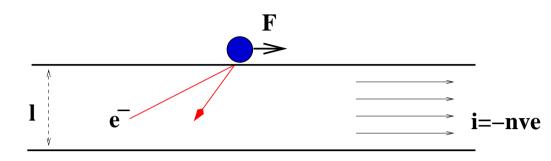
¹cond-mat/0405068 & 0410745



electromigration force: $F = eZ^*E$

Z*: effective valence

- relation to surface resistance and electronic friction
- dominant failure mechanism in integrated circuits

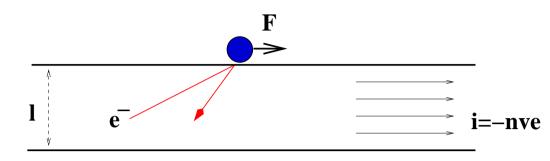


electromigration force: $F = eZ^*E$

Z*: effective valence

- relation to surface resistance and electronic friction
- dominant failure mechanism in integrated circuits

General goal: To bridge the gap between atomistic processes and large scale morphological evolution through the study of simple step and island configurations on single crystal surfaces



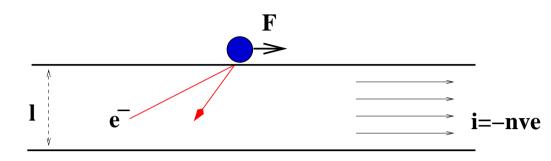
electromigration force: $F = eZ^*E$

Z*: effective valence

- relation to surface resistance and electronic friction
- dominant failure mechanism in integrated circuits

Model problems:

- electromigration-induced step bunching
- current effects on step fluctuations
- electromigration of single layer islands



electromigration force: $F = eZ^*E$

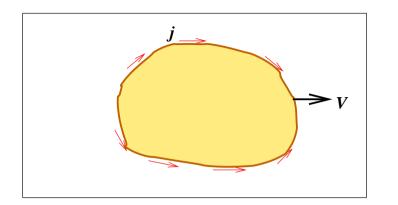
Z*: effective valence

- relation to surface resistance and electronic friction
- dominant failure mechanism in integrated circuits

Model problems:

- electromigration-induced step bunching \rightarrow M. Uwaha, J. Weeks (today)
- current effects on step fluctuations \rightarrow E. Williams (yesterday)
- electromigration of single layer islands \rightarrow this talk

Continuum Model of Shape Evolution



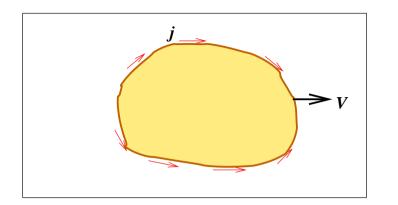
- mass transport restricted to the one-dimensional interface
- anisotropic mobility and stiffness

• normal edge velocity v_n satisfies

$$v_n + \frac{\partial j}{\partial s} = 0, \quad j = \sigma(\theta) \left[F_t - \frac{\partial}{\partial s} \tilde{\gamma}(\theta) \kappa \right]$$

- s: arc length θ : edge orientation κ : edge curvature $\sigma(\theta)$: adatom mobility $\tilde{\gamma}(\theta)$: step stiffness F_t : tangential force
- electromigration dominates on length scales $\gg l_E = \sqrt{\tilde{\gamma}/|F|}$
- Numerical methods: Finite differences & adaptive finite elements

Continuum Model of Shape Evolution



- mass transport restricted to the one-dimensional interface
- anisotropic mobility and stiffness

• normal edge velocity v_n satisfies

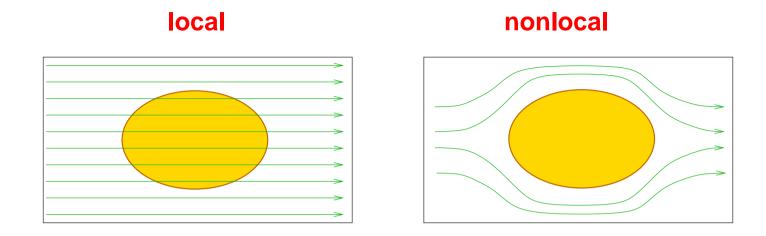
$$v_n + \frac{\partial j}{\partial s} = 0, \quad j = \sigma(\theta) \left[F_t - \frac{\partial}{\partial s} \tilde{\gamma}(\theta) \kappa \right]$$

s: arc length $\sigma(\theta)$: adatom mobility $\tilde{\gamma}(\theta)$: step stiffness F_t : tangential force

 θ : edge orientation κ : edge curvature

- electromigration dominates on length scales $\gg l_E = \sqrt{\tilde{\gamma}/|F|}$
- Numerical methods: Finite differences & adaptive finite elements

Islands vs. Voids



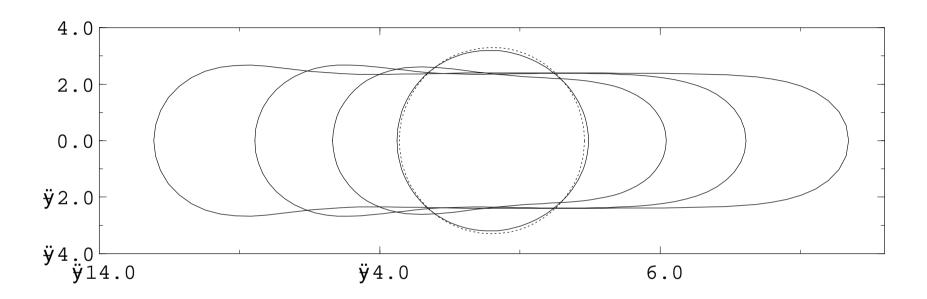
- local model: $F_t = F_0 \cos(\theta + \phi) \phi$: field direction single layer islands (Pierre-Louis & Einstein 2000) dislocation loops (Suo 1994)
- nonlocal model: $F_t = -\frac{\partial U}{\partial s}$ with $\nabla^2 U_{\text{outside}} = U_{\text{inside}} = 0$ insulating voids in metallic thin films (Kraft & Arzt, Gungor & Maroudas, Mahadevan & Bradley, Schimschak & JK...)
- interpolation by general conductivity ratio $\rho = \sum_{\text{inside}} / \sum_{\text{outside}} \in [0, 1]$

Results for the isotropic case

- The circle is a stationary solution for any ρ (Ho, 1970)
- Linear instability at critical radius $R_c^{(1)} = \hat{R}_c^{(1)} l_E$ for $\rho > 0$ (Wang, Suo, Hao 1996)
- Nonlinear instability for $\rho = 0$ (Schimschak & JK, 1998)
- No non-circular stationary shapes for $\rho = 0$ (Cummings, Richardson, Ben Amar 2001)
- $\rho = 1$: Non-circular stationary shapes are stable for

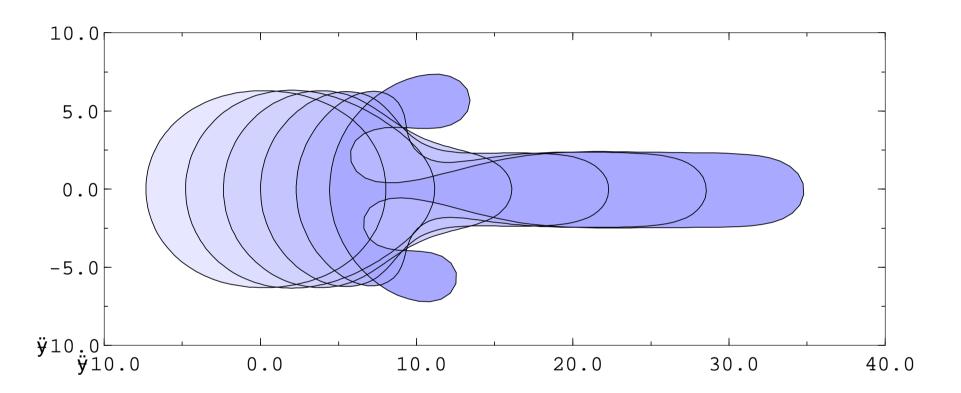
$$\hat{R}_{c}^{(1)} \approx 3.26 < R/l_{E} < \hat{R}_{c}^{(2)} \approx 6.2$$

Non-circular stationary shapes



- Dimensionless initial radius $R_0 = R/l_E = 3.3, 4, 5, 6$
- Shapes approach a finger solution of width $W \approx 4.8 l_E$ (Suo, Wang, Yang 1994)

Island breakup

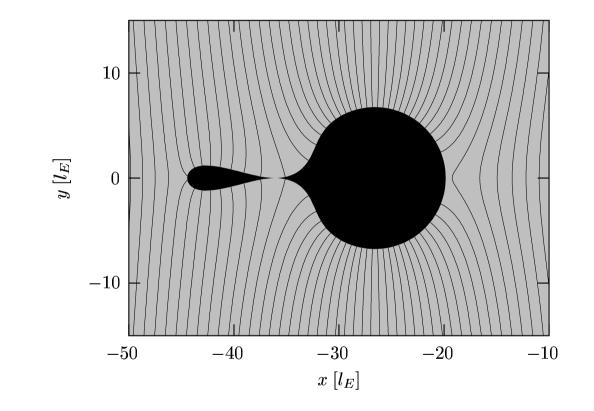


• Dimensionless radius $R_0 = R/l_E = 7$

• Breakup mediated by outgrowth of finger

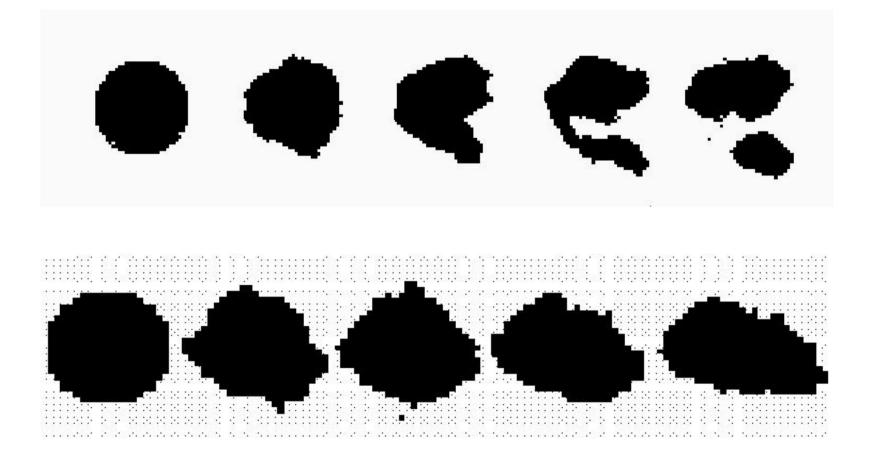
Void breakup

M. Schimschak, J.K., J. Appl. Phys. 87, 695 (2000)



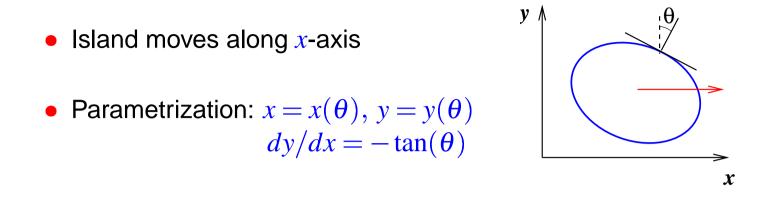
• Splitoff of circular void, no finger solution

Island breakup in kinetic Monte Carlo simulations



O. Pierre-Louis, T.L. Einstein, Phys. Rev. B 62, 13697 (2000)

Anisotropic stationary shapes without capillarity



- Stationarity condition: $v_n = V \sin(\theta) \Rightarrow Vy = j + \text{const.}$ (Suo 1994)
- In the absence of capillarity $(\tilde{\gamma} = 0)$ this implies

$$y(\theta) = \frac{F}{V}\sigma(\theta)\cos(\theta + \phi), \ x(\theta) = -\int_0^\theta d\theta' \frac{dy}{d\theta'}\cot(\theta')$$

• Mobility model: $\sigma(\theta) = \sigma_0 \{1 + S \cos^2[n(\theta + \alpha)/2]\}$ S: Anisotropy strength *n*: Number of symmetry axes α : Orientation of symmetry axes

Conditions on physical shapes:

(i) $x(\theta)$ finite $\Rightarrow dy/d\theta = 0$ at $\theta = 0$ and π

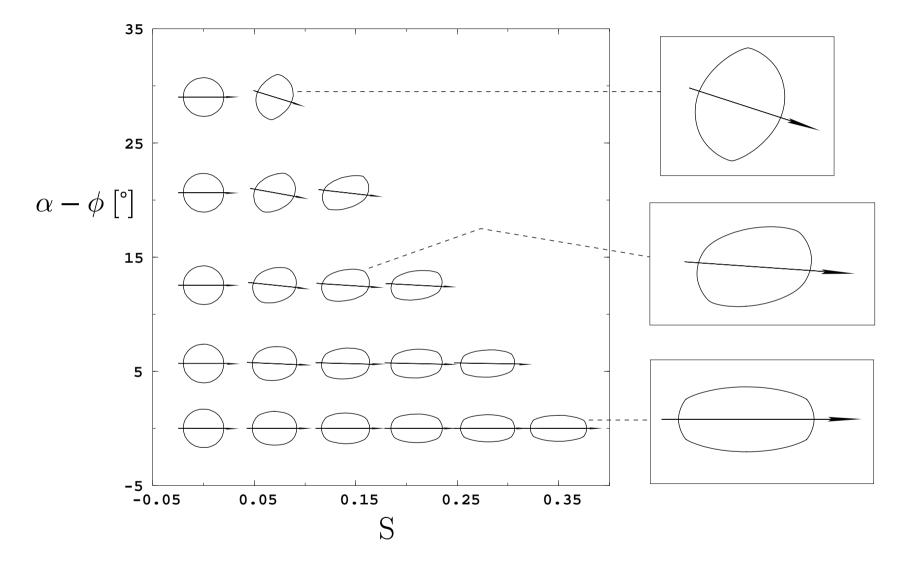
(ii) no self-intersections $\Rightarrow dy/d\theta \neq 0$ for $\theta \neq 0, \pi$

(iii) closed contour: $x(\theta + 2\pi) = x(\theta) \Rightarrow \tan(n\alpha) \tan(\phi) = n$ for odd *n*

Consequences:

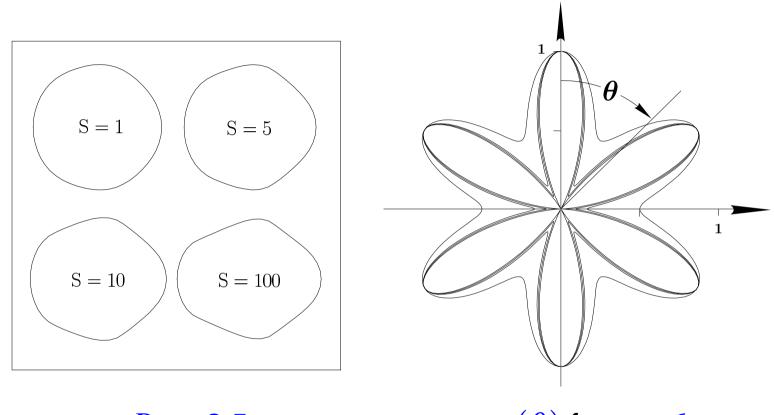
- No stationary shapes for odd n !
- For even n smooth stationary shapes exist in a range $0 < S < S_c$ of anisotropy strengths
- Condition (i) selects direction of island motion which is generally different from the direction of the field

Stationary shapes without capillarity for n = 6



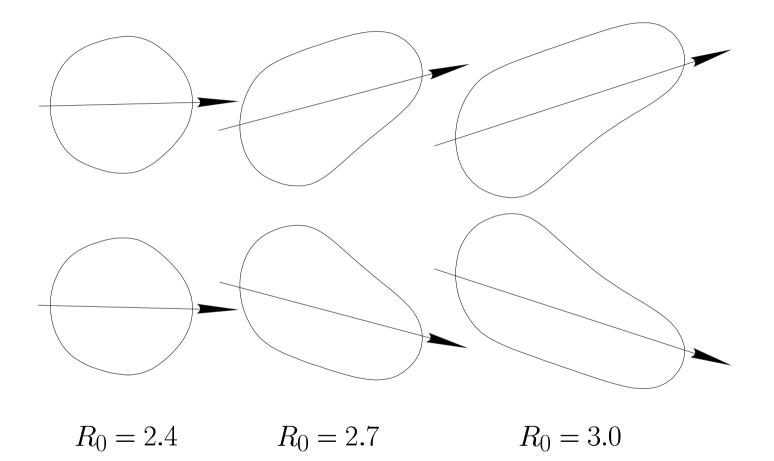
• Direction of motion may vary discontinuously with $\alpha - \phi$

Anisotropic stationary shapes with capillarity



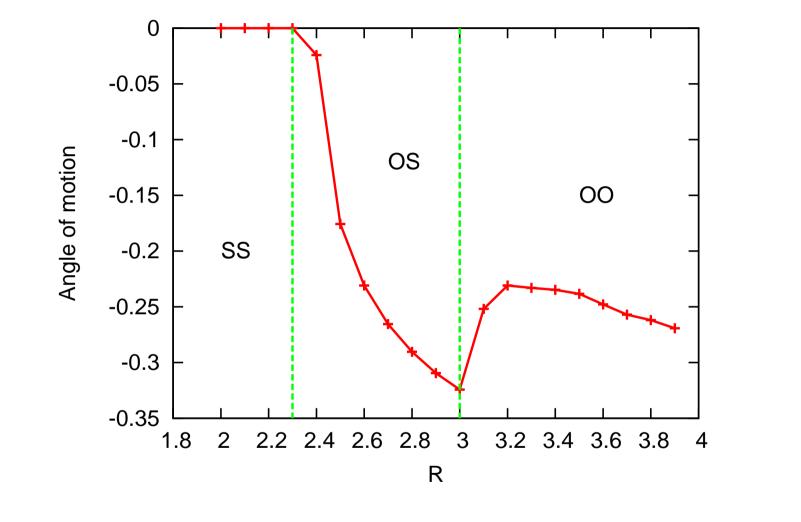
- $R_0 = 2.5$ $\sigma(\theta)$ for n = 6
- $\sigma(\theta) = \sigma_0 \{1 + S \cos^2[n\theta/2]\}$, isotropic stiffness
- R_0 : Dimensionless radius of a circle of the same area

Obliquely moving stationary shapes (n=6, S=2)



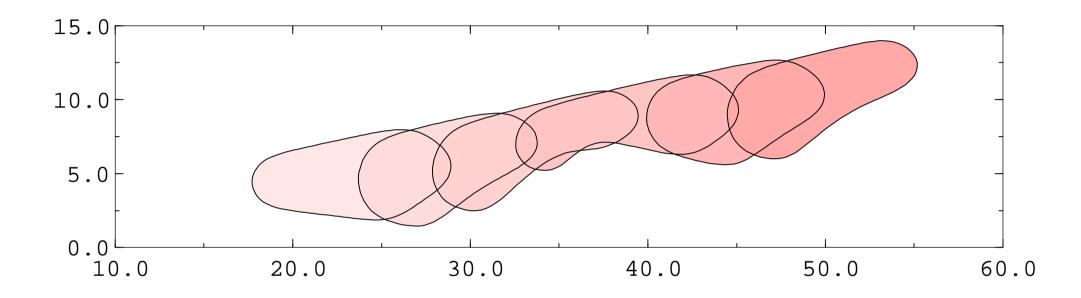
• Spontaneous breaking of symmetry w.r.t. field & anisotropy direction

Angle of motion as an order parameter (S = 2)



SS: straight stationary **OS**: oblique stationary **OO**: oblique oscillatory

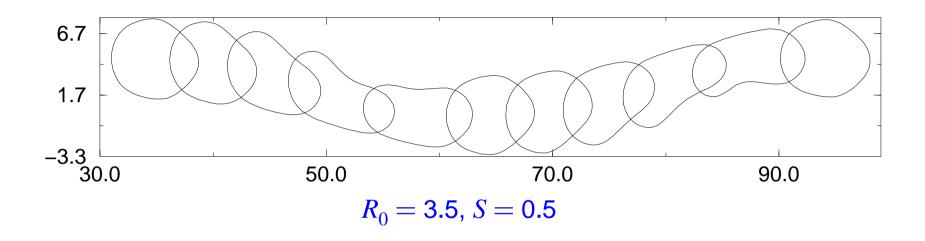
Oblique oscillatory motion

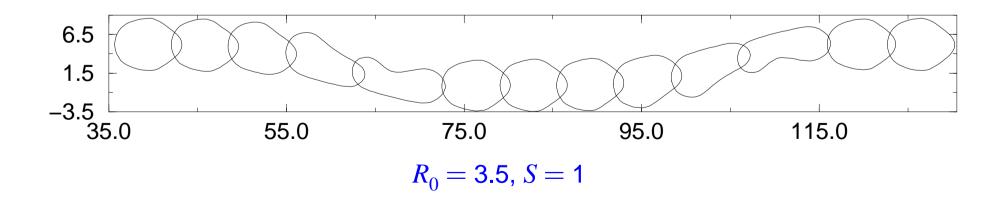


• Dimensionless radius $R_0 = 4$, anisotropy strength S = 1

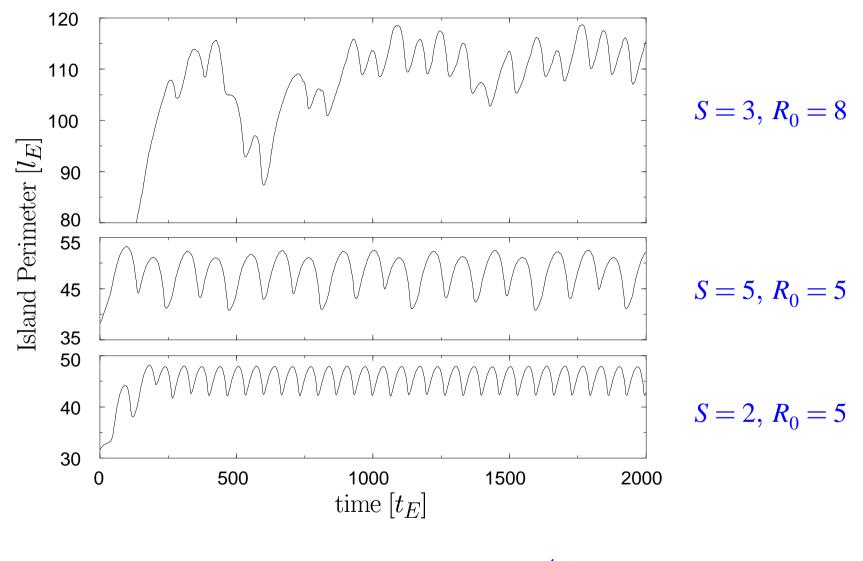
• Upper edge is linearly stable, lower edge linearly unstable

Zig-zag motion



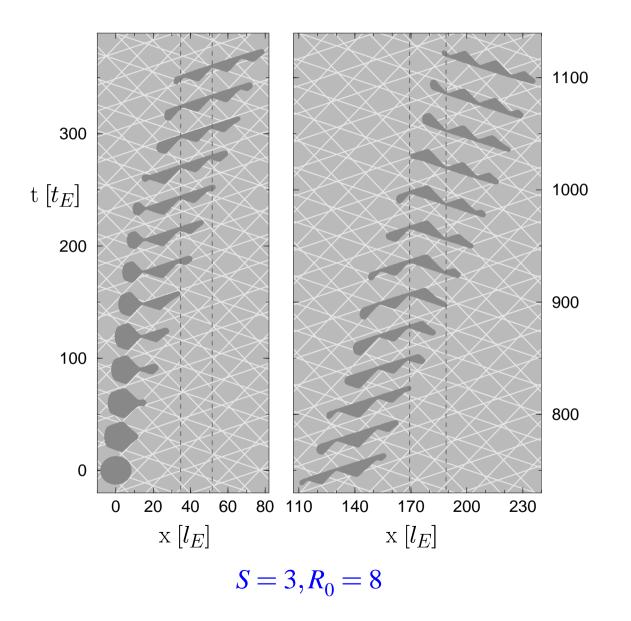


Regular and irregular oscillations of the island perimeter



characteristic time scale: $t_E = l_E^4 / \sigma_{\max} \tilde{\gamma}$

Complex oscillatory motion



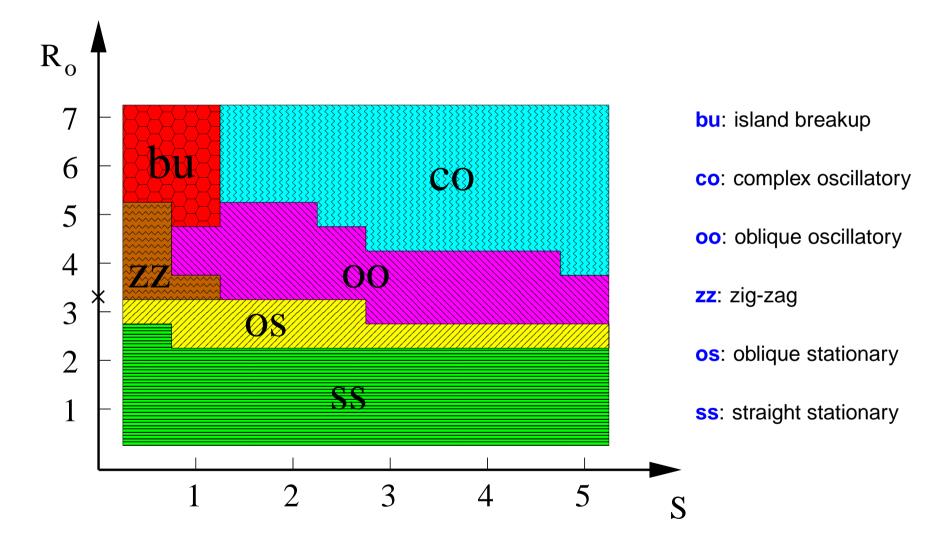
Selected facets and the origin of oscillations

- Large islands are composed of selected facets which are stationary in the substrate frame. Oscillations arise because islands slide past the static facets.
- Facets are constant current solutions of the evolution equation:

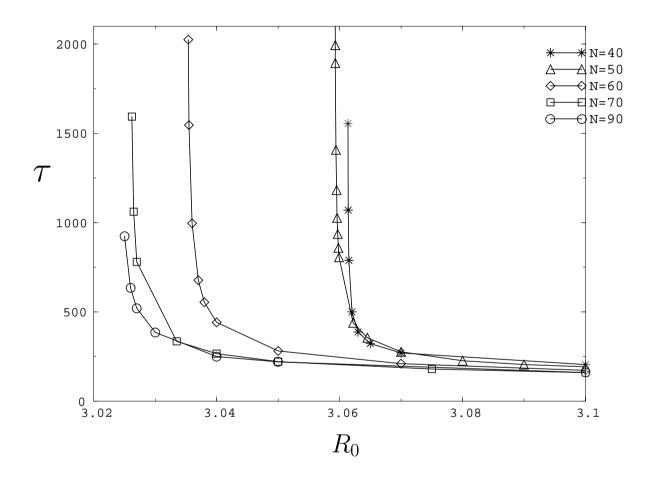
$$j = j^* \implies \tilde{\gamma} \frac{d^2}{ds^2} \theta(s) = -\frac{j^*}{\sigma(\theta)} + F_0 \cos(\theta) \equiv -V'(\theta)$$

- Facet orientations are degenerate maxima of the "potential" $V(\theta)$
- For n = 6, $\alpha = 0$ there are four selected orientations, out of which three are needed to form a closed island:

A tentative phase diagram



Divergence of the oscillation period at the oo \rightarrow os transition

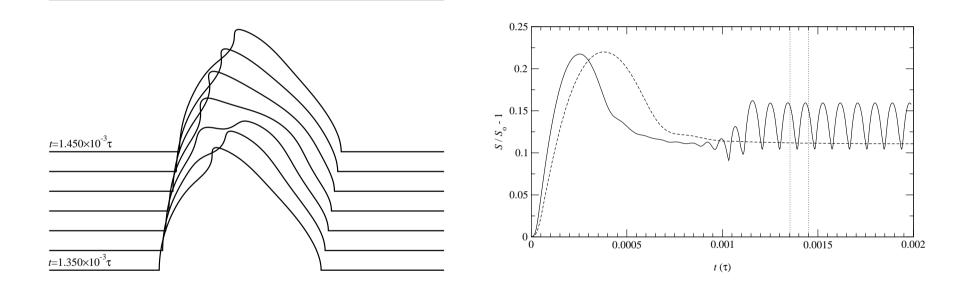


- N: Number of discretization points
- Best fit: $\tau \sim (R_0 R_c)^{-2.5}$

Oscillatory behavior in void electromigration

M.R. Gungor, D. Maroudas, Surf. Sci. 461 (2000), L550

• Propagation of edge voids with crystal anisotropy



- Onset of oscillations at a critical void size
- Divergence of oscillation period at onset

Experimental considerations: Islands on Cu(100)

- Electromigration force on a step atom: 400 eV/cm at *i* = 10⁷ A/cm²
 H. Mehl, O. Biham, O. Millo, M. Karimi, Phys. Rev. B 61, 4975 (2000)
- Step stiffness γ̃ ≈ 0.13 eV/atom for kinked steps
 S. Dieluweit, H. Ibach, M. Giesen, T.L. Einstein, Phys. Rev. B 67, 121410 (2003)

 \Rightarrow $l_E \approx 25 - 100$ nm

Characteristic time scale from step fluctuation kinetics
 M. Giesen, S. Dieluweit, J. Mol. Cat. A 216, 263 (2004)

$$\Rightarrow$$
 $t_E = rac{l_E^4}{\sigma_{
m max} ilde{\gamma}} pprox 1$ s at 300 K

Outlook

• Nature of bifurcations (low-dimensional truncation)?

• Oscillatory behavior in kinetic Monte Carlo simulations?

 Nonlinear behavior in the kinetic regimes involving mass exchange with the terrace?