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Abstracts of the lectures:

I. Sharp and diffuse models of interface dynamics
Diffusion and adherence can drive the migration of material interfaces by
flux deposition, by diffusion along the interface, or by fluctuation-induced
Brownian motion. Classically the dynamics of interfaces is described by
evolving surfaces, but on a finer scale interfaces can be modeled as diffuse
zones of rapid transition of an order parameter. In this talk I’ll focus on two
problems recently treated by such models: (i) On vicinal surfaces of crystals,
the step edges of atomically flat terraces can evolve by such mechanisms,
and I’ll describe work of Otto et al that recovers the BCF (Burton-Cabrera-
Frank) sharp-interface model of step migration from a viscous Cahn-Hilliard
equation with degenerate mobility. (ii) For Hele-Shaw flow between parallel
plates, Glasner has adapted Otto’s description of Hele-Shaw dynamics as
gradient flow with respect to the Wasserstein transport metric, in order to
derive a degenerate Cahn-Hilliard equation as a suitable diffuse interface
approximation.

II. Paradigms for coarsening dynamics: metastability, geometric
models, mean-field self-similarity
Entropy increases, and at constant temperature, free energy decreases. Mor-
phologically complex systems dominated by interfacial energy exhibit coars-
ening behavior associated with dynamic scaling laws which are not so well un-
derstood. I’ll describe some simple scaling concepts, and hierarchies of mod-
els in 1D, 2D and 3D that describe coarsening. Especially I’ll discuss recent
mathematical progress in analyzing the universality of self-similar behavior
in idealized mean-field models such as the classic LSW (Lifshitz-Slyozov-
Wagner) model of Ostwald ripening that serves as a paradigm for dynamic
scaling in materials science.
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III. Rigorous bounds on coarsening rates
I’ll discuss recent progress deriving from work of Kohn and Otto, toward
justifying dynamic scaling laws through rigorous upper bounds derived from
underlying diffuse-interface models. I’ll also discuss how this work has been
extended in a number of directions by Kohn and Yan, by B. Li and J.-G. Liu,
and by S. Dai and myself. Work on rigorous bounds is particularly intriguing
in light of recent experimental evidence of Voorhees, suggesting that power-
law coarsening rates can occur in the absence of statistical self-similarity at
the microscopic level.

IV. Mean-field agglomeration models, stochastic effects.
Models of interfacial growth and coarsening can involve stochastic effects.
Understanding the statistical properties of solutions of nonlinear field equa-
tions is a fundamental scientific problem in general. I’ll describe several
mean-field models of coarsening and discuss the effects of noise. Also I’ll
describe 2-D models of epitaxial growth by ballistic deposition, including
the KPZ (Kadar-Parisi-Zhang) and the Lai-dasSarma models. An important
mean-field model of agglomeration or clustering is Smoluchowski’s coagula-
tion equation. Surprisingly it has a rigorous connection to Burgers’ classic
“turbulence” model.
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Outline of the lectures

I. Sharp & diffuse models of interface dynamics

• Step edge dynamics on vicinal surfaces

– Phenomena. Yellow diamonds by chemical vapor deposition [19]

– BCF model of step edge motion [12, 4]

– Diffuse-interface models — background [41, 13, 40]

– Diffuse-interface BCF model by Otto et al [39]

– Limiting regimes: Diffusion-limited, attachment-limited kinetics

• Hele-Shaw flow between parallel plates

– Gradient flow and the Wasserstein transport metric [38, 6]

– A Cahn-Hilliard-type diffuse-interface model [27]

II. Paradigms for coarsening dynamics: metastability, geometric models,
mean-field self-similarity

• Phase-space geometry of relaxation in 1D – FHCP picture [25, 16, 14]

• Remarkable solution of a 1D mean field model [15, 26]

• LSW mean-field models, analysis, and computation [5, 2, 3, 36, 37, 35,
43, 44]

III. Rigorous bounds on coarsening rates

• Experimental evidence for statistical non-self-similarity [33]

• Kohn-Otto rigorous upper bounds on coarsening rates [28, 29, 30, 32,
18]

• Rigorous upper bounds for mean-field models [17]

IV. Mean-field agglomeration models, stochastic effects.

• Effect of noise on coarsening in 1D [23, 20]

• KPZ equation, Lai-das Sarma model [46, 31]

• Burgers turbulence [11, 22, 24, 7, 8, 9]

• Smoluchowski’s coagulation equation [42, 45, 21, 1, 34, 10]
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