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Smoluchowski’s coagulation equations

n(x, t) is the number density of size-x clusters. K(x, y) = K(y, x).

Clusters of size x and y form x+ y-clusters at a mean-field rate
K(x, y)n(x, t)n(y, t).

x + y =⇒ x+ y

x− y + y =⇒ x

∂n

∂t
(x, t) =

1
2

∫ x

0

K(x− y, y)n(x− y, t)n(y, t) dy

−
∫ ∞

0

K(x, y)n(x, t)n(y, t) dy



Scientific applications

Smoluchowski’s coagulation equations have been used to describe:

• formation of clouds and smog

• droplet sizes in spray painting, ink fog

• agglomeration of planetesimals, star clusters, galaxies

• bubble swarms

• polymerization reactions

• island size distributions in epitaxial growth

• random graph theory

• lines of descent in population genetics

• renewal processes in probability theory

Smoluchowski’s 1917 paper was one of the 58 most highly cited papers in science
published before 1930. (ISI report, 1974)



Burgers’ turbulence model

ut + uux = 0, u(x, 0) = u0(x)

Given the statistical properties of initial data u0, what are the statistical properties
of the solution?

With, e.g., white noise data, the solution is like:

u

x

This is a restricted model of ballistic aggregation.

How do the shocks cluster? Mean-field model: K(x, y) = x+ y



A framework for dynamic scaling analysis,
inspired by dynamical systems and probability theory

Dynamic scaling

Dynamical systems Probability theory

• (i) What scaling solutions exist?
(Fixed points of a renormalization group.)

• (ii) What are the domains of attraction?
(Universality classes for scaling.)

• (iii) What other scaling limit points are possible?
(Call the set of these the scaling attractor.)

• (iv) What is the ultimate dynamics on the scaling attractor?



(ia) Self-similar solutions for “solvable” kernels

K = 1 + 1 : n = (1 + t)−2 exp
(
−x

1 + t

)
K = x+ y : n =

1√
2π
e−tx−3/2 exp(−e−2tx/2)

K = xy : n =
1√
2π
x−5/2 exp(−(1− t)2x/2) (t < 1)

These were all the self-similar solutions known for any K, until 2002.

Diverging moments:

K = x+ y :
∫
ndx = ∞,

∫
xn dx ≡ 1.

K = xy :
∫
ndx = ∞,

∫
xn dx = ∞,

∫
x2ndx→∞ as t→ 1−.

Long-outstanding problem: existence for general homogenous K.

New in 2004: Fournier & Laurençot, Escobedo, Mischler & Rodriguez Ricard



(iia) Dynamic scaling: stability of SSS

Q: Is there a universal scaling limit (x̂ = x/x̄(t))

x̄(t)2n(x̄(t)x̂, t) → f(x̂) as t→∞?

A: With strong assumptions on decay & smoothness of initial density n0(x) dx:

For K = 1, Kreer & Penrose (1994) get pointwise convergence of n for continuous
& discrete cases.

For K = x+ y and xy, Deaconu & Tanré (2000) get weak convergence (i.e. in
distribution).

A: For K = 1, Aldous (2000) gets weak convergence for any data with finite 0th
and 1st moments, using classical stochastic results on thinning of renewal
processes.



Analytic approach via Laplace transform

Introduce desingularized Laplace transforms:

ϕ(t, s) =
∫ ∞

0

(1− e−sx)n(t, x) dx, for K = 2 or x+ y,

ψ(t, s) =
∫ ∞

0

(1− e−sx)xn(t, x) dx for K = xy

Then

∂tϕ = −ϕ2 for K = 2,

∂tϕ− ϕ∂sϕ = −ϕ for K = x+ y,

∂tψ − ψ∂sψ = 0 for K = xy,



Weak convergence with two finite moments

(Leyvraz 2003, Menon & P 2004)

Pointwise limits of Laplace transforms correspond to pointwise limits for the size
distribution function, i.e. weak convergence of measures.

After mass-preserving rescaling, there is weak convergence to self-similar form for
all initial size-distribution measures

• for K = 2 with finite 0th and 1st moments

• for K = x+ y with finite 1st and 2nd moments

• for K = xy with finite 2nd and 3rd moments, as t ↑ Tgel

Note (M & P): There is existence and uniqueness for measure-valued weak
solutions with only one finite moment.



Uniform convergence of densities

Discrete case: one obtains uniform convergence of rescaled lattice densities with
only the two finite moments described above.

Continuous case: Suppose that for the moment density

• xn0(x) for K = 2,

• x2n0(x) for K = x+ y

• x3n0(x) for K = xy

the Fourier transform is integrable. Then under mass-preserving rescaling, the
corresponding moment density for the solution converges to self-similar form
uniformly for x > 0.

Proofs combine the uniform-convergence proof of the central limit theorem with
study of flow along complex characteristics.



Necessary & sufficient conditions for dynamic scaling limits?

An analogy in probability theory:

The central limit theorem says that the Gaussian is a universal scaling limit for
averages of i.i.d. random variables with finite variance.

For heavy-tailed distributions, presuming symmetry there is a one-parameter
family of possible limits, the “stable distributions”. The domains of attraction of
these solutions can be completely characterized (Feller, vol II) as distributions with
“almost power-law” behavior:∫ x

−x
y2F{dy} ∼ x2−αL(x),

where 0 < α ≤ 2 and L is slowly varying: L(λx)/L(λ) → 1 as λ→∞,∀x.

Heavy-tailed distributions are prevalent as statistical models, for communications
networks, Web statistics, financial data, etc. (Adler, Feldman & Taqqu 1998)



Rigidity of scaling limits

and regular variation (almost power-law behavior)

Lemma (in Feller’s book) Suppose that f is monotone and that there exist
λj →∞ and aj/aj+1 → 1 such that

h(x) = lim
j→∞

ajf(λjx) exists ∀x > 0.

Then necessarily h(x) = cxp for some c > 0 and p ∈ R, and furthermore,
f is regularly varying at ∞, meaning

f(x) ∼ xpL(x) where L is slowly varying.

Examples xp lnx is regularly varying at ∞, but xp(1 + ε sinx) is not.



(ib) New fat-tailed scaling limits

(Bertoin 2002, Menon & P 2004) For K = x+ y, there is a new one-parameter
family of self- similar solutions with form

n(x, t) = e−2t/βfβ(e−t/βx)

for 0 < β ≤ 1
2 with mass density

x fβ(x) = xβ−1p(xβ;α, 2− α),

where p is the density of a maximally skewed α-stable Lévy distribution with

α =
1

1− β
∈ (1, 2].

The mass distribution function

Fα(x) =
∫ x

0

yfβ(y) dy =
∞∑
k=1

(−1)k−1xkβ

k!
Γ(1 + k − kβ)

sinπkβ
πkβ

.



(iib) Universality classes for dynamic scaling

Theorem (Menon & P) For K = x+ y, given a weak solution corresponding to
any positive measure n0(x) dx with finite 1st moment, let

F (x, t) =
∫ x

0

y n(y, t) dy
/ ∫ ∞

0

y n(y, t) dy.

(i) Suppose ∃λ(t) →∞ as t→∞ and a nontrivial distribution function F∗ so

F (λ(t)x, t) → F∗(x) as t→∞ (1)

(at all points of continuity). Then for some α ∈ (1, 2] and L slowly varying,∫ x

0

y2 n0(x) dx ∼ x2−αL(x). as x→∞ (2)

(ii) Suppose for some α ∈ (1, 2] and L slowly varying, (2) holds. Then (1) holds,
where F∗ is a trivial scaling of Fα.



• (i) What scaling solutions exist?
(Fixed points of a renormalization group.)

• (ii) What are the domains of attraction?
(Universality classes for scaling.)

• (iii) What other scaling limit points are possible?
(Call the set of these the scaling attractor.)

• (iv) What is the ultimate dynamics on the scaling attractor?

Note: Smoluchowski’s equation determines a dynamical system on the space of
probability measures determined by

F (x, t) =
∫ x

0

yp n(y, t) dy
/ ∫ ∞

0

yp n(y, t) dy,

under the topology of weak convergence (convergence in distribution).
Here p = 0, 1, 2 respectively for K = 2, x+ y, xy.



Comparative table of answers

Probability theory
X1 + · · ·+Xn

Smoluchowski’s equation
K = x+ y

(ia) Gaussian n =
exp(−e−2tx/2)√

2πetx3/2

(ib) Lévy stable laws new SSS with m2 = ∞

(iia) CLT: E(X2) <∞ m2 =
∫∞
0
y2ν0(dy) <∞

(iib) Regularly varying tails
∫ x
0
y2ν0(dy) ∼ x2−αL(x)

(iii) Infinitely divisible laws
Eternal solutions, defined for
−∞ < t <∞

(iv) Doeblin’s universal laws Chaos on the scaling attractor



(iii) The scaling attractor

Define it to consist of all possible scaling limit points

F∗(x) = lim
n→∞

Fn(λnx, tn)

• Points in the scaling attractor correspond 1-1 with eternal solutions
(solutions defined for −∞ < t <∞)

• Bertoin (2002): Eternal solutions have a Lévy-Khintchine-type representation

• The Lévy-Khintchine representation linearizes the ultimate dynamics on the
scaling attractor. This dynamics is conjugate to a shift map, given simply by
continuously dilating the Lévy measure.



(iv) Chaotic dynamics of scaling limits

For solutions with K = x+ y and total mass 1, long-time scaling behavior is
sensitive to the mass distribution of the largest clusters:

• All domains of attraction are dense.

• There is a dense set of scaling-periodic solutions. (Analog to semistable laws.)

• There are dense orbits on the scaling attractor, and a dense set of initial data
that shadow such orbits.



Relevance for Burgers turbulence

ut + uux = 0

Take initial data x 7→ u0(x) as a continuous-time random walk, stationary with
independent increments having no positive jumps (“one-sided Lévy process with
no positive jumps”) This includes:

- one-sided Brownian motion

- compound Poisson processes w/no jumps up

u

x
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• Brownian motion:

Y. G. Sinăı 1992 Comm. Math. Phys., 148, 601–621.

Z.-S. She, E. Aurell, and U. Frisch 1992 Comm. Math. Phys., 148,
623–641.

J. Bertoin 1998 Comm. Math. Phys., 193, 397–406.



Implicit in works of J. Bertoin and Cararro & Duchon 1998 are the results that:

• For t > 0 the solution increments in x remain a Lévy process with no positive
jumps

• Smoluchowski mean-field theory with K = x + y gives an exact description of
the shock size distribution



Lévy process initial data

Classical probability theory: The distribution of increments of a Lévy process,

δu0(x) = u0(x+ y)− u0(y),

is infinitely divisible. Its Lévy-Khintchine representation states that:

E
(
eiq δu0(x))

)
= eΨ(q)x = e−σ

2q2x/2 · eiqbx · e−Φ(q)x

δu0(x) = UBr(x) + bx + Upj(x)

Brownian drift pure jump

Φ(q) =
∫ ∞

−∞
(1− eiqz + iqz1|z|<1) Λ(dz) where

∫∞
−∞(1 ∧ z2)Λ(dz) <∞.

The Lévy measure Λ gives the distribution of jump sizes. Its total mass∫∞
−∞Λ(dz), if finite, gives the frequency of (Poisson-spaced) jumps.



Implicit 1-1 correspondence of Bertoin

With no positive jumps, it suffices to consider data having zero drift and∫∞
1
zΛ(dz) <∞, with Laplace exponent (E(equ0(x)) = e−xψ(q))

ψ(q) =
σ2q2

2
−

∫ ∞

0

(1− e−qz − qz)Λ(dz).

• The Laplace exponent of x 7→ u(x, t)− u(0, t) has the form

ψ(q, t) = −1
t

∫ ∞

0

(1− e−qz − qz)ν(dz, ln t),
∫ ∞

0

zν(dz, t) = 1,

where ν(dz, t) is a measure-valued weak solution to Smoluchowski’s eq!

• Initial data has ∞ total variation if and only if σ2 > 0 or
∫ 1

0
zΛ(dz) = ∞.

Bertoin (2002): Such Lévy pairs (σ2,Λ) correspond 1-1 to eternal solutions of
Smoluchowski’s equation.



Dynamic scaling in Burgers turbulence

• Self-similar solutions correspond to

Brownian motion: σ2 > 0, Λ = 0 (α = 2)

Scaled α-stable laws: σ2 = 0, Λ(dz) = z−1−α dz

The corresponding shock size distributions are:

α = 2 :
z−3/2e−z/2t

2

√
2π

dz

1 < α < 2 : p(zβt−1;α, 2− α)zβ−2 dz

• Domains of attraction are determined by the rate of divergence of the 2nd
moment of the Lévy jump measure:∫ x

0

z2Λ(dz) ∼ x2−αL(x) as x→∞, for 1 < α ≤ 2.



In progress:

Work to complete description of:

• all scaling limit points (scaling attractor)

• dynamics on the scaling attractor



Dynamic scaling

Dynamical systems Probability theory



Smoluchowski’s equation
K = x+ y

Probability theory
X1 + · · ·+Xn

n =
exp(−e−2tx/2)√

2πetx3/2
Gaussian

new SSS with m2 = ∞ Lévy stable laws

m2 =
∫∞
0
y2ν0(dy) <∞ CLT: E(X2) <∞∫ x

0
y2ν0(dy) ∼ x2−αL(x) Regularly varying tails

Eternal solutions
−∞ < t <∞ Infinitely divisible laws

Chaos on the S-attractor Doeblin’s universal laws


