Concentration on curves for nonlinear Schrodinger equations

Juncheng Wei Chinese University of Hong Kong

Abstract

We consider the problem

$$\epsilon^2 \Delta u - V(x)u + u^p = 0, \ u > 0, \ u \in H^1(\mathbb{R}^2)$$

where p > 1, $\epsilon > 0$ is a small parameter and V is a uniformly positive, smooth potential. Let Γ be a closed curve, non-degenerate geodesic relative to the weighted arclenght $\int_{\Gamma} V^{\sigma}$, where $\sigma = \frac{p+1}{p-1} - \frac{1}{2}$. We prove the existence of a solution u_{ϵ} concentrating along the whole of Γ , exponentially small in ϵ at any positive distance from it, provided that ϵ is small and satisfies some Gap Condition. In particular this establishes the validity of a conjecture raised by Ambrosetti-Malchiodi-Ni (2003) in the two-dimensional case. (Joint work with M. del Pino and M. Kolwalczyk.)