
Q-curvature

The orig. construction of the Q-curv. seeks

to imitate

Yamabe eqn. in dim. n ≥ 3 −−−−−→

Gauss curv. prescription eqn. (GCP) in dim. 2.

It’s closely related to the GJMS operators

Pm. To some extent, the construction can go

either way (P ’s to Q’s or Q’s to P ’s). There

are now constructions of Q that are genuinely

different than the original one we’ll discuss

here (in which Q comes from the GJMS

series).

Let everything as acting on functions (0-densities)

on an n-dimensional manifold M .
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The Graham-Jenne-Mason-Sparling (GJMS)

operators [J. London Math. Soc. 1992] were

built using the

Fefferman-Graham ambient construction ,

and by careful analysis of the construction,

have the properties in the following

(redundant) list. Here n is not nec. even.

• Pm exists for m even and m− n /∈ 2Z+.

• Pm = ∆m/2 + LOT.

• Pm is formally self-adjoint.

• For f ∈ C∞(M), under a conformal

change of metric

ĝ = e2ωg, ω ∈ C∞(M),

we have the conformal covariance

relation

P̂mf = e−
n+m

2 ωPm(e
n−m

2 ωf).
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• Alternatively, Pm gives rise to a

conformally invariant operator

Pm : E[−(n−m)/2]→ E[−(n+m)/2].

• Pm has a polynomial expression in ∇ and

the Riemann tensor (actually the Ricci

tensor, according to a recent result of

Graham) in which all coefficients are

rational in the dimension n.

• Gover and Peterson, CMP 2003 show

that there’s an expression in which the

only poles are given by factors

(n− 2)(n− 4) · · · (n−m+ 2) in the

denominators of these rational functions.

• On flat Rn, Pm = ∆n/2.
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• Pm has the form

δSmd+
n−m

2
Qm,

where Qm is a local scalar invariant, and

Sm is an operator on 1-forms of the form

(dδ)m/2−1 + LOT or ∆m/2−1 + LOT.

All the formulas mentioned above are

universal .

Note that Pm is unable to detect changes in

the (dδ)m/2−1 term in the principal part of

Sm.

Remark Pm gives rise to a Qm in an elementary

way (just take Pm1) when m 6= n. But the

really important Q is Q = Qn.
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Remark P2 is the conformal Laplacian

Y = δd︸︷︷︸
∆

+
n− 2

4(n− 1)
K.

This makes

Q2 =
K

2(n− 1)
=: J,

(the Schouten scalar ).

Here’s an intuitive approach (more formal

approach later) to constructing the

Q-curvature. The Yamabe eqn. is(
∆ +

n− 2

2
J
)

︸ ︷︷ ︸
Y

u =
n− 2

2
Ĵu(n+2)/(n−2),

where

ĝ = e2ωg, ω ∈ C∞(M), u := e(n−2)ω/2.

The GCP eqn. is

∆ω + J = Ĵe2ω (n = 2).
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We get GCP from the Yamabe eqn. by

slipping in a gratuitous 1,

∆
(
e(n−2)ω/2 − 1

)
+
n− 2

2
Je(n−2)ω/2

=
n− 2

2
Ĵe(n+2)ω/2,

dividing by (n− 2)/2, and eval. at n = 2.

Similarly, take the higher-order Yamabe

equation based on the GJMS operators,(
δSmd+

n−m
2

Qm

)
︸ ︷︷ ︸

Pm

u =
n−m

2
Q̂mu

(n+m)/(n−m),

where

u = e(n−m)ω/2 (n /∈ {m,m− 2,m− 4, ...,2,0}),

Sm = (dδ)m/2−1 + LOT.
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We slip in the gratuitous 1,

δSmd(e(n−m)ω/2 − 1) +
n−m

2
Qme(n−m)ω/2

=
n−m

2
Q̂me(n+m)ω/2,

divide by (n−m)/2, and evaluate at n = m:

Pω +Q = Q̂enω.

That is, we define Q from the GJMS op.
series, as [

2Pm1

n−m

]
n=m

.

This construction of Q immediately gives its
unusual linear conformal change law.
Switching to a density viewpoint (more later
on this), we have a conformally invariant
operator P: E[0]→ E[−n], and Q∈ E[−n]
satisfying

Q̂ = Q + Pω.
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For example, GCP looks like

Ĵ = J + ∆ω

for J viewed as a (−2)-density.

In hindsight, we have answered the

Question: Is there a higher (even)

dimensional generalization of the exponential

class Gauss curvature prescription problem

Ĵ = J + ∆ω ?

But the Q-curvature also plays other important

roles in conformal geometry, in that:
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• Its integral has total metric variation the

Fefferman-Graham obstruction tensor;

• It provides the geometric expression of

the exponential class

Beckner-Moser-Trudinger inequality;

• It provides the main term in Polyakov

formulas for the quotient of functional

determinants or torsion quantities, at 2

conformally related metrics;

• It provides one of the important terms in

volume renormalization asymptotics at

conformal infinity

[Fefferman-Graham, MRL 2002].
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Background: The Einstein (divergence free

Ricci) tensor E is the total metric variation of

the scalar curvature. This means that if we

take a smooth curve of metrics g(ε), denote

(d/dε)|ε=0 by a •, and suppose

g(0) = g, g• = h,

then (∫
K dvg

)•
=
∫
habEabdvg.

This is how the Einstein-Hilbert action leads

to the Einstein equation.

Background: In dimension 4, the Bach tensor

B is the total metric variation of |C|2, where C

is the Weyl tensor.
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Question: In general even dimension n, the

Fefferman-Graham tensor Oab is the

obstruction to the power series construction

of the ambient metric assoc. to a conformal

structure. Is Oab the total metric variation of

anything natural?

Answer: Yes, the Q-curvature, according to

Graham-Hirachi, math.DG/0405068. In fact,

for the (−n)-density version Q of the Q-curv.,(∫
Q
)•

=
∫
habOabdvg.

This is sensible at least when h has compact

support.
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Background: Beckner’s [Ann. M. 1993]

generalization, from S2 to Sn, of the

celebrated Moser-Trudinger inequality, says

that with normalized measure on the sphere

(and taking n even for simplicity),

log
∫
Sn
en(ω−ω̄) ≤

n

2(n− 1)!

∫
Sn
ωPω,

where

P = ∆{∆ + n− 2}{∆ + 2(n− 3)}·

·{∆ + 3(n− 4)} · · ·
{

∆ + n
2

(
n
2 − 1

)}
.

Equality holds iff there is a diffeomorphism h

of Sn for which h∗ground = e2ωground.

Remark: See [Branson, JFA 1987] for an early

sighting of the operator P .
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Remark: (2D) Moser-Trudinger is

log
∫
S2
e2(ω−ω̄) ≤

∫
S2
ω∆ω.

But in higher dim., note that P is more

delicate than just ∆n/2. Closely related

inequalities figure in de Branges’ resolution of

the Bieberbach conjecture (the

Lebedev-Mihlin inequality), and Perelman’s

work on the Poincaré conjecture (Gross’

logarithmic Sobolev inequality).

These are sharp endpoint derivatives of

borderline Sobolev imbeddings, or duals of

such.

Question: Is there an expression of Beckner’s

inequality that just involves some local invari-

ant? Something like the soln. of the Yamabe

problem, which realizes the Sobolev imbedding

L2
1 ↪→ L2n/(n−2) as the problem of mimimizing∫
K over volume 1 metrics?
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Answer: For vol. 1 metrics ĝ = e2ωg, where

g = ground,

0 ≤
∫
Sn
ω(Q̂ + Q).

Remark: The borderline Sob. imbeddings are

L2
r ↪→ L2n/(n−2r), and the Beckner-MT edge

of the borderline is L2
n/2 ↪→ eL.

Remark: This gives a glimpse of an

interesting 2-metric functional on a conformal

class,

Q(ĝ, g) =
1

2

∫
ω(Q̂ + Q).

This is alternating, and satisfies the cocycle

condition

Q(̂̂g, g) = Q(̂̂g, ĝ) +Q(ĝ, g)

for iterated conformal changes. Here ̂̂g = e2ηĝ,

ĝ = e2ωg, where ω and η are smooth functions.
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Indeed,

Q(̂̂g, ĝ) +Q(ĝ, g) =

1
2

∫
η(
̂̂
Q + Q̂) + 1

2

∫
ω(Q̂ + Q) =

1
2

∫
η (2Q̂ + P̂η)︸ ︷︷ ︸

2(Q+Pω)+Pη

+1
2

∫
ω(2Q + Pω) =

1
2

∫
(ω + η)(2Q + P(ω + η)) =

Q(̂̂g, g).

The underbrace step used conformal

invariance, P̂ = P. The last step used the

formal self-adjointness of P to equate

2
∫
ηPω and

∫
ηPω +

∫
ωPη.

Q(g1, g2) is a cocycle whose variation (in g1,

in the ω direction) is
∫
ωQ1.
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Background: It’s known that there are

Polyakov formulas expressing functional

determinant quotients within a conformal

class as differential polynomials in the

conformal factor.

For example, let Y be the conformal

Laplacian; then

− log
det Ŷ

detY
=
∫
M
ω polyn(∇· · ·∇︸ ︷︷ ︸

≥1
ω,∇ · · ·∇R)

+(global term)

in even dims., for ĝ = e2ωg. The global term

vanishes if N (Y ) = 0 (a conformally invt. prop-

erty); otherwise it records the variation of the

global inner product on the null space.
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Similarly with Y replaced by anything with

decent elliptic and conformal behavior. This

includes detour torsion quantities developed

in recent joint work with Rod Gover,

generalizing Cheeger’s half-torsion .

Question: Can the RHS above be expressed

more invariantly?

Answer: In low even dims. (2,4,6), and

conjecturally in all even dims., for A a power

of a conformally covariant operator with

suitable positive ellipticity properties,

− log
det Â

detA
= c

∫
M
ω(Q̂ + Q) +

∫
M

(F̂−F)

+(global term)

for some (universal) constant c, where F is

some density-valued local invt. (which vary de-

pending on what A is).
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Formulas like this (together with the link

between these cocycles and sharp inequalities

mentioned above) make possible an attack on

the extremal problem for the determinant (or

torsion) as in [Onofri, CMP 1982],

[Osgood-Phillips-Sarnak, JFA 1988] in 2D;

[Branson-Chang-Yang, CMP 1992] and

[Chang-Yang, Ann. M. 1995] in 4D;

[Branson, Seoul Natl. U. Lec. Notes no. 4, 1993],

[Branson, TAMS 1995] in 6D;

[Branson-Peterson, in prep.] in 8D.
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