Q-curvature

The orig. construction of the Q-curv. seeks to imitate

Yamabe eqn. in dim. $n \geq 3 \longrightarrow$
Gauss curv. prescription eqn. (GCP) in dim. 2.

It's closely related to the GJMS operators P_{m}. To some extent, the construction can go either way (P 's to Q 's or Q 's to P 's). There are now constructions of Q that are genuinely different than the original one we'll discuss here (in which Q comes from the GJMS series).

Let everything as acting on functions (0-densities) on an n-dimensional manifold M.

The Graham-Jenne-Mason-Sparling (GJMS) operators [J. London Math. Soc. 1992] were built using the
Fefferman-Graham ambient construction,
and by careful analysis of the construction, have the properties in the following (redundant) list. Here n is not nec. even.

- P_{m} exists for m even and $m-n \notin 2 \mathbf{Z}^{+}$.
- $P_{m}=\Delta^{m / 2}+$ LOT.
- P_{m} is formally self-adjoint.
- For $f \in C^{\infty}(M)$, under a conformal change of metric

$$
\widehat{g}=e^{2 \omega} g, \quad \omega \in C^{\infty}(M)
$$

we have the conformal covariance relation

$$
\hat{P}_{m} f=e^{-\frac{n+m}{2} \omega} P_{m}\left(e^{\frac{n-m}{2} \omega} f\right)
$$

- Alternatively, P_{m} gives rise to a conformally invariant operator
$\mathbf{P}_{m}: \mathcal{E}[-(n-m) / 2] \rightarrow \mathcal{E}[-(n+m) / 2]$.
- P_{m} has a polynomial expression in ∇ and the Riemann tensor (actually the Ricci tensor, according to a recent result of Graham) in which all coefficients are rational in the dimension n.
- Gover and Peterson, CMP 2003 show that there's an expression in which the only poles are given by factors $(n-2)(n-4) \cdots(n-m+2)$ in the denominators of these rational functions.
- On flat $\mathbf{R}^{n}, P_{m}=\Delta^{n / 2}$.
- P_{m} has the form

$$
\delta S_{m} d+\frac{n-m}{2} Q_{m}
$$

where Q_{m} is a local scalar invariant, and S_{m} is an operator on 1-forms of the form

$$
(d \delta)^{m / 2-1}+\text { LOT or } \quad \Delta^{m / 2-1}+\text { LOT. }
$$

All the formulas mentioned above are universal.

Note that P_{m} is unable to detect changes in the $(d \delta)^{m / 2-1}$ term in the principal part of S_{m}.

Remark P_{m} gives rise to a Q_{m} in an elementary way (just take $P_{m} 1$) when $m \neq n$. But the really important Q is $Q=Q_{n}$.

Remark P_{2} is the conformal Laplacian

$$
Y=\underbrace{\delta d}_{\Delta}+\frac{n-2}{4(n-1)} K .
$$

This makes

$$
Q_{2}=\frac{\mathrm{K}}{2(n-1)}=: \mathrm{J},
$$

(the Schouten scalar).
Here's an intuitive approach (more formal approach later) to constructing the Q-curvature. The Yamabe eqn. is

$$
\underbrace{\left(\Delta+\frac{n-2}{2} \mathrm{~J}\right)}_{Y} u=\frac{n-2}{2} \widehat{\jmath} u^{(n+2) /(n-2)}
$$

where

$$
\widehat{g}=e^{2 \omega} g, \quad \omega \in C^{\infty}(M), \quad u:=e^{(n-2) \omega / 2} .
$$

The GCP eqn. is

$$
\Delta \omega+\mathrm{J}=\widehat{\jmath} e^{2 \omega} \quad(n=2)
$$

We get GCP from the Yamabe eqn. by slipping in a gratuitous 1,

$$
\begin{aligned}
& \Delta\left(e^{(n-2) \omega / 2}-1\right)+\frac{n-2}{2} \mathrm{~J} e^{(n-2) \omega / 2} \\
& =\frac{n-2}{2} \widehat{\jmath} e^{(n+2) \omega / 2},
\end{aligned}
$$

dividing by $(n-2) / 2$, and eval. at $n=2$.

Similarly, take the higher-order Yamabe equation based on the GJMS operators,
$\underbrace{\left(\delta S_{m} d+\frac{n-m}{2} Q_{m}\right)}_{P_{m}} u=\frac{n-m}{2} \widehat{Q}_{m} u^{(n+m) /(n-m)}$,
where

$$
\begin{aligned}
& u=e^{(n-m) \omega / 2}(n \notin\{m, m-2, m-4, \ldots, 2,0\}) \\
& S_{m}=(d \delta)^{m / 2-1}+\text { LOT. }
\end{aligned}
$$

We slip in the gratuitous 1 ,

$$
\begin{aligned}
& \delta S_{m} d\left(e^{(n-m) \omega / 2}-1\right)+\frac{n-m}{2} Q_{m} e^{(n-m) \omega / 2} \\
& =\frac{n-m}{2} \widehat{Q}_{m} e^{(n+m) \omega / 2}
\end{aligned}
$$

divide by $(n-m) / 2$, and evaluate at $n=m$:

$$
P \omega+Q=\widehat{Q} e^{n \omega}
$$

That is, we define Q from the GJMS op. series, as

$$
\left[\frac{2 P_{m} 1}{n-m}\right]_{n=m}
$$

This construction of Q immediately gives its unusual linear conformal change law.
Switching to a density viewpoint (more later on this), we have a conformally invariant operator $\mathbf{P}: \mathcal{E}[0] \rightarrow \mathcal{E}[-n]$, and $\mathbf{Q} \in \mathcal{E}[-n]$ satisfying

$$
\widehat{\mathbf{Q}}=\mathbf{Q}+\mathbf{P} \omega .
$$

For example, GCP looks like

$$
\hat{\jmath}=\jmath+\Delta \omega
$$

for J viewed as a (-2)-density.

In hindsight, we have answered the

Question: Is there a higher (even)
dimensional generalization of the exponential
class Gauss curvature prescription problem
$\hat{\jmath}=\jmath+\Delta \omega$?

But the Q-curvature also plays other important roles in conformal geometry, in that:

- Its integral has total metric variation the Fefferman-Graham obstruction tensor;
- It provides the geometric expression of the exponential class
Beckner-Moser-Trudinger inequality;
- It provides the main term in Polyakov formulas for the quotient of functional determinants or torsion quantities, at 2 conformally related metrics;
- It provides one of the important terms in volume renormalization asymptotics at conformal infinity
[Fefferman-Graham, MRL 2002].

Background: The Einstein (divergence free Ricci) tensor E is the total metric variation of the scalar curvature. This means that if we take a smooth curve of metrics $g(\varepsilon)$, denote $\left.(d / d \varepsilon)\right|_{\varepsilon=0}$ by a •, and suppose

$$
g(0)=g, \quad g^{\bullet}=h,
$$

then

$$
\left(\int K d v_{g}\right)^{\bullet}=\int h^{a b} E_{a b} d v_{g} .
$$

This is how the Einstein-Hilbert action leads to the Einstein equation.

Background: In dimension 4, the Bach tensor \mathcal{B} is the total metric variation of $|C|^{2}$, where C is the Weyl tensor.

Question: In general even dimension n, the Fefferman-Graham tensor $\mathcal{O}_{a b}$ is the obstruction to the power series construction of the ambient metric assoc. to a conformal structure. Is $\mathcal{O}_{a b}$ the total metric variation of anything natural?

Answer: Yes, the Q-curvature, according to Graham-Hirachi, math.DG/0405068. In fact, for the ($-n$)-density version \mathbf{Q} of the \mathbf{Q}-curv.,

$$
\left(\int \mathbf{Q}\right)^{\bullet}=\int h^{a b} \mathcal{O}_{a b} d v_{g} .
$$

This is sensible at least when h has compact support.

Background: Beckner's [Ann. M. 1993] generalization, from S^{2} to S^{n}, of the celebrated Moser-Trudinger inequality, says that with normalized measure on the sphere (and taking n even for simplicity),

$$
\log \int_{S^{n}} e^{n(\omega-\bar{\omega})} \leq \frac{n}{2(n-1)!} \int_{S^{n}} \omega P \omega,
$$

where

$$
\begin{aligned}
& P=\Delta\{\Delta+n-2\}\{\Delta+2(n-3)\} . \\
& \cdot\{\Delta+3(n-4)\} \cdots\left\{\Delta+\frac{n}{2}\left(\frac{n}{2}-1\right)\right\} .
\end{aligned}
$$

Equality holds iff there is a diffeomorphism h of S^{n} for which $h^{*} g_{\text {round }}=e^{2 \omega} g_{\text {round }}$.

Remark: See [Branson, JFA 1987] for an early sighting of the operator P.

Remark: (2D) Moser-Trudinger is

$$
\log \int_{S^{2}} e^{2(\omega-\bar{\omega})} \leq \int_{S^{2}} \omega \Delta \omega .
$$

But in higher dim., note that P is more delicate than just $\Delta^{n / 2}$. Closely related inequalities figure in de Branges' resolution of the Bieberbach conjecture (the Lebedev-Mihlin inequality), and Perelman's work on the Poincaré conjecture (Gross' logarithmic Sobolev inequality).

These are sharp endpoint derivatives of borderline Sobolev imbeddings, or duals of such.

Question: Is there an expression of Beckner's inequality that just involves some local invariant? Something like the soln. of the Yamabe problem, which realizes the Sobolev imbedding $L_{1}^{2} \hookrightarrow L^{2 n /(n-2)}$ as the problem of mimimizing $\int K$ over volume 1 metrics?

Answer: For vol. 1 metrics $\hat{g}=e^{2 \omega} g$, where $g=g_{\text {round }}$,

$$
0 \leq \int_{S^{n}} \omega(\widehat{\mathbf{Q}}+\mathbf{Q})
$$

Remark: The borderline Sob. imbeddings are $L_{r}^{2} \hookrightarrow L^{2 n /(n-2 r)}$, and the Beckner-MT edge of the borderline is $L_{n / 2}^{2} \hookrightarrow e^{L}$.

Remark: This gives a glimpse of an interesting 2-metric functional on a conformal class,

$$
\mathcal{Q}(\widehat{g}, g)=\frac{1}{2} \int \omega(\widehat{\mathbf{Q}}+\mathbf{Q}) .
$$

This is alternating, and satisfies the cocycle condition

$$
\mathcal{Q}(\widehat{\widehat{g}}, g)=\mathcal{Q}(\widehat{\widehat{g}}, \widehat{g})+\mathcal{Q}(\widehat{g}, g)
$$

for iterated conformal changes. Here $\widehat{\hat{g}}=e^{2 \eta} \widehat{g}$, $\hat{g}=e^{2 \omega} g$, where ω and η are smooth functions.

Indeed,

$$
\begin{aligned}
& \mathcal{Q}(\widehat{\widehat{g}}, \widehat{g})+\mathcal{Q}(\widehat{g}, g)= \\
& \frac{1}{2} \int \eta(\widehat{\widehat{\mathbf{Q}}}+\widehat{\mathbf{Q}})+\frac{1}{2} \int \omega(\widehat{\mathbf{Q}}+\mathbf{Q})= \\
& \frac{1}{2} \int \eta \underbrace{\eta}_{2(\mathbf{Q}+\mathbf{P} \omega)+\mathbf{P}}(2 \widehat{\mathbf{Q}}+\widehat{\mathbf{P}} \eta) \\
& \frac{1}{2} \int \omega(2 \mathbf{Q}+\mathbf{P} \omega)= \\
& \frac{1}{2} \int(\omega+\eta)(2 \mathbf{Q}+\mathbf{P}(\omega+\eta))= \\
& \mathcal{Q}(\widehat{\hat{g}}, g) .
\end{aligned}
$$

The underbrace step used conformal invariance, $\hat{\mathbf{P}}=\mathbf{P}$. The last step used the formal self-adjointness of \mathbf{P} to equate

$$
2 \int \eta \mathbf{P} \omega \text { and } \int \eta \mathbf{P} \omega+\int \omega \mathbf{P} \eta \text {. }
$$

$\mathbf{Q}\left(g_{1}, g_{2}\right)$ is a cocycle whose variation (in g_{1}, in the ω direction) is $\int \omega \mathbf{Q}_{1}$.

Background: It's known that there are Polyakov formulas expressing functional determinant quotients within a conformal class as differential polynomials in the conformal factor.

For example, let Y be the conformal Laplacian; then

$$
\begin{array}{r}
-\log \frac{\operatorname{det} \hat{Y}}{\operatorname{det} Y}=\int_{M} \omega \operatorname{polyn}(\underbrace{\nabla \cdots \nabla}_{\geq 1} \omega, \nabla \cdots \nabla R) \\
+(\text { global term })
\end{array}
$$

in even dims., for $\widehat{g}=e^{2 \omega} g$. The global term vanishes if $\mathcal{N}(Y)=0$ (a conformally invt. property); otherwise it records the variation of the global inner product on the null space.

Similarly with Y replaced by anything with decent elliptic and conformal behavior. This includes detour torsion quantities developed in recent joint work with Rod Gover, generalizing Cheeger's half-torsion.

Question: Can the RHS above be expressed more invariantly?

Answer: In low even dims. $(2,4,6)$, and conjecturally in all even dims., for A a power of a conformally covariant operator with suitable positive ellipticity properties,

$$
\begin{aligned}
-\log \frac{\operatorname{det} \widehat{A}}{\operatorname{det} A}=c \int_{M} \omega(\widehat{\mathbf{Q}}+\mathbf{Q}) & +\int_{M}(\hat{\mathbf{F}}-\mathbf{F}) \\
+ & (\text { global term })
\end{aligned}
$$

for some (universal) constant c, where \mathbf{F} is some density-valued local invt. (which vary depending on what A is).

Formulas like this (together with the link between these cocycles and sharp inequalities mentioned above) make possible an attack on the extremal problem for the determinant (or torsion) as in [Onofri, CMP 1982],
[Osgood-Phillips-Sarnak, JFA 1988] in 2D;
[Branson-Chang-Yang, CMP 1992] and
[Chang-Yang, Ann. M. 1995] in 4D;
[Branson, Seoul Natl. U. Lec. Notes no. 4, 1993],
[Branson, TAMS 1995] in 6D;
[Branson-Peterson, in prep.] in 8D.

