
Spectral invariants

Let’s see how issues of Q-curvature, etc. turn
up starting with the problem of tracking the
conformal change of det(Y ), where (recall)

Y = ∆ +
n− 2

4(n− 1)
K = ∆ +

n− 2

2
J.

Y may really be replaced by lots of things –
Dirac-squared, one of the GJMS ops., even
the coboundaries of a natural complex for
conformal structure – and the following will
go through mutatis mutandi.

What is det(Y ) anyway? Take a compact
Riem. mfld. (M, g), and the eigenvalues λj of
Y . Then

ζ(s) = ζY (s) =
∑
λj 6=0

|λj|−s.

Note that Y may have (finitely many) neg. and
0 eigenvalues.
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Let’s assume Y has positive spectrum for

simplicity. (This is a conformally invt.

condition.) For the genl. case, 0 eigs. are no

real problem – they may be handled by a

global term. Negative eigenvalues are even

easier – they actually present no bother at all.

Also for simplicity, let us (again) say n is even.

Because of the Weyl asymptotics, ζ(s) conv.

absolutely in Re(s) > n/2. It analytically

continues to a mero. fcn. on C with (at

worst) simple poles at n/2, n/2− 1, · · ·, 1. In

particular, it’s regular at s = 0 and

det(Y ) := exp(−ζ′(0)).
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For example, on the round 2,4,6-spheres,
det(Y ) is:

exp(1
2 − 4ζ′R(−1)) = 3.19531 . . . ,

exp
(

1
3

{
1

48 + 2ζ′R(−3) + ζ′R(−1)
})
,

exp
(

1
30

{
− 1

45 + ζ′R(−5)− ζ′R(−1)
})
,

where ζR(s) is the Riemann zeta function.

As we’re getting into the nuts and bolts a
little, let’s carry along a generalization that
will be useful. Note that

ζ(s) = Tr
L2Y

−s

(henceforth just Tr Y −s). We may insert a
multiplication operator just prior to tracing,
and have something “just as traceable”:

ζ(s, ω) := TrωY −s, ω ∈ C∞(M).

This is strictly more than the old info as

ζ(s) = ζ(s,1).
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The Mellin transform

(Mf)(s) =
1

Γ(s)

∫ ∞
0

ts−1f(t)dt

performs the convenient trick of carrying

exp(−tλ) 7→ λ−s.

So it carries

Z(t, ω) := Trω exp(−tY ) 7→ ζ(s, ω).

In more detail, the kernel fcns. for the ops.

being traced are

ω(x)
∑
j

e−λjtϕj(x)ϕj(y),

ω(x)
∑
j

λ−sj ϕj(x)ϕj(y),

where (λj, ϕj) is the spectral resolution. (I.e.

ϕj is the corresp. eigenfcn.) M acts only on

the exp(−λjt) factors to produce the λ−sj fac-

tors.
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However, the heat trace Z(t, ω) has the

asymptotic heat expansion

Z(t, ω) ∼
∑

even i≥0

t(i−n)/2
∫
ωUi

as t ↓ 0. The Ui are natural scalars built

from ∇, the Riemann tensor, the metric, and

the metric inverse using tensor product and

contraction.

For example,

(4π)n/2U0 = 1,

(4π)n/2U2 =
4− n

12(n− 1)
K,

(4π)n/2U4 =
1

180

90

(
4− n

12(n− 1)

)2

K2

−|r|2 + |R|2 −
3(6− n)

2(n− 1)
∆K

)
.
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The heat expansion actually accomplishes the
analytic continuation of the zeta function:

Γ(s)ζ(s, ω) =(∫ 1

0
+
∫ ∞

1

)
ts−1(Trω exp(−tY ))dt =

∑
even i≤m

(
s−

n− i
2

)−1 ∫
ωUi

+
∫ 1

0
ts−1O(t(m−n+2)/2)dt

+
∫ ∞

1
ts−1(Trω exp(−tY ))dt.

The last term is entire; the next to last is
regular in a right half-plane whose boundary
is moving to the left as m ↑. The first term
shows us the poles and residues. Since 1/Γ(s)
has zeros at the nonpositive integers, ζ(s, ω)
is regular at 0,−1,−2, · · ·.

In particular, at s = 0,

ζ(0, ω) =
∫
ωUn.
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In the following, let’s pay (even) less

attention to analytic questions (like

interchanging limit processes). They can be

handled.

We now think about the conformal variation

of ζ(s), and esp. ζ(0), ζ′(0). Take a

conformal curve of metrics gε = e2εωg0, and

let a • denote (d/dε)|ε=0. In part.,

g• = 2ωg,

Y • =
n− 2

2
Y ω −

n+ 2

2
ωY

= −2ωY +
n− 2

2
[Y, ω],

since

Yε = e−(n+2)εω/2Y0e
(n−2)εω/2.
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We have:

ζ(s)• =
(
Tr Y −s

)•
= −sTr(Y •Y −s−1)

= −sTr
(
− 2ωY −s +

n− 2

2
[Y, ω]Y −s−1︸ ︷︷ ︸

contrib.0

)

= 2sζ(s, ω).

From this we get

ζ(0) is a conformal invariant,

ζ′(0)• = 2ζ(0, ω) = 2
∫
ωUn.

The first statement is the conformal index

property [Branson-Ørsted, Compositio M. 1986].
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Another conclusion, which seems a little

off-topic but isn’t, is(∫
Ui

)•
= (n− i)

∫
ωUi.

This comes from looking at what’s happening

at s = (n− i)/2 (either a value or a residue).

The conformal invce. of ζ(0) =
∫
Un is of

course a special case.

If we turn things around and look at

conformal anti-variations, or

conformal primitives , we’re finding that

Prim
∫
ωUi =

1

n− i

∫
Ui (i 6= n),

Prim
∫
ωUn = 1

2ζ
′(0).

Like all indef. integrals, these primitives are re-

ally only well-def. up to a constant summand.
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2 ways of getting a handle on the difference

between the values of ζ′(0) in conformally

related metrics now present themselves – one

straightforward, and one tricky.

First way: If we know Un very well, we may

write it in each metric gε and integrate in ε

from 0 to 1. The result will be

ζ′(0)g1 − ζ
′(0)g0 ,

where g1 = e2ωg0. In fact, to do this we

only need to integrate polynomials in ε. The

downside is the recognition problem . The func-

tional we get is (I claim) very geometric in real-

ity, but the formula doesn’t show it. We need

to somehow reassemble the diffl. polyn. in ω

that we get into curvatures, etc.
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Second way: We note that the 1/(n− i)
would not look so bad at i = n if the

dimension could be raised (as it was in the

def. of the Q-curvature). In dim. N ,

Prim
∫
ωUn =

1

N − n

∫
Un.

So formally,

ζ′(0) = 2 Prim
∫
ωUn =

[
2

N − n

∫
Un

]
N=n

.

All these primitives were def. up to a constant

summand, so really what we’re getting is

ζ′(0)ĝ − ζ
′(0)g =

[
2

N − n

∫
(Ûn −Un)

]
N=n

,

where Un is the (−n)-density version of Un.

If the continuation in dimension scares you (as

perhaps it should), note that, if it produces

an answer, this will at the very least solve the

recognition problem from the first method!
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It would be nice if Ûn −Un in dim. N would

just exhibit an obvious factor of N − n. But

the story is more interesting than that – it

doesn’t, and you need Q-curvature to find

the “hidden”factor.

It’s interesting that the 2nd method doesn’t

require us to know Un as well in dim. n. But

we need to know
∫

Un in many dims.

If we have a Q-curvature for which∫
Un = c

∫
Q in dim. n,

then∫
(Ûn−Un) = c

∫
(Q̂−Q) + (N −n)

∫
(F̂−F).

The first term on the right vanishes at

N = n. The claim is that it’s really

1

2
c(N − n)

∫
ω(Q̂ + Q) +O((n− n)2).
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Take the Yamabe-like eqn.{
P0

(
e(N−n)ω/2 − 1

)
+
N − n

2
Qe(N−n)ω/2

}
dvg

=
N − n

2
Q̂e−(N−n)ω/2dvĝ,

divide by (N −n)/2 and multiply by e(N−n)ω/2:e(N−n)ω/2P0

e(N−n)ω/2 − 1

(N − n)/2

+Qe(N−n)ω

 dvg
= (Qdv)ĝ.
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Now rearrange:

(Qdv)ĝ − (Qdv)g =

e(N−n)ω/2P0

e(N−n)ω/2 − 1

(N − n)/2

 dvg
+(e(N−n)ω − 1)(Qdv)g

= P0

e(N−n)ω/2 − 1

(N − n)/2

 dvg
+(e(N−n)ω/2 − 1)P0

e(N−n)ω/2 − 1

(N − n)/2

 dvg
+(e(N−n)ω − 1)(Qdv)g.
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Now integrate and divide by N − n, noting

that something in the range of P0 integrates

to 0:

1

N − n

∫ (
(Qdv)ĝ − (Qdv)g

)
=∫ e(N−n)ω/2 − 1

N − n
P0

e(N−n)ω/2 − 1

(N − n)/2


+
e(N−n)ω − 1

N − n
Q

 dv0

Eval. at N = n:[
1

N − n

∫ (
(Qdv)ĝ − (Qdv)g

)]
N=n

=∫ {
1

2
ωP0ω + ωQ

}
dv0 =

1
2

∫
ω
{

(Qdv)ĝ + (Qdv)g
}

=

Q(ĝ, g).
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To restate,

[
1

N − n

∫ (
Q̂−Q

)]
N=n

= 1
2

∫
ω
(
Q̂ + Q

)
.

Now recall the point of all this:

ζ′(0)ĝ − ζ
′(0)g =

[
2

N − n

∫
(Ûn −Un)

]
N=n

,

and∫
(Ûn−Un) = c

∫
(Q̂−Q) + (N −n)

∫
(F̂−F).

As a result,

ζ′(0)ĝ − ζ′(0)g = c
∫
ω
(
Q̂ + Q

)
+
∫

(F̂−F)

where c is determined by∫
Un = c

∫
Q in dim. n,

and F appears because of the “inflation”to

higher dims. via∫
(Ûn−Un) = c

∫
(Q̂−Q) + (N −n)

∫
(F̂−F).
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Note that there is some ambiguity in F in the

boxed formula above – in particular, we could

change F by adding a multiple of Un.
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