
Dimension 4

With our current setup, the 4D calculation
[Branson-Ørsted, PAMS 1991] is now a
leisurely task.

At the level of U4, there are 4 indep. natural
scalars:

K2, |r|2, |R|2, ∆K.

Other bases are better for our purposes, like

J2, |P|2, |C|2, ∆J.

Here

P :=
r − Jg

n− 2

is the Schouten tensor .

The fact that
∫

U4 is conformally invariant
puts 1 condition on the coefficients, so that
we are down to the 3 invariants

Q = ∆J + 2(J2 − |P|2), |C|2, ∆J.
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Any linear combination of Q and |C|2 is usable

as a Q-curvature. So (with this slightly soft

meaning of Q),

U4 = cQ+a∆J,
∫

U4 = c
∫

Q (in dim. 4).

For the Yamabe operator,

(4π)n/2U4 =
1

180

(
|C|2 − (n− 6)(n− 2)|P|2

+1
2(n− 6)(5n− 16)J2 + 3(n− 6)∆J

)
.

In 4D, this is

1

180

(
|C|2 + 4|P|2 − 4J2 − 6∆J

)
=

1

180

(
−2Q + |C|2 − 4∆J

)
.
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Recall that the amount of Q we want to
“break off”here is determined by the integral
in 4D. It may even be determined on a test
manifold, like standard S4. Here we’re
breaking off −Q/90.

The 4π power is a priori an issue in analytic
continuation, since it has an essential
singularity at ∞ (which is being used as the
accumulation point, if you just think of
meromorphic continuation). This is easily
handled though, if we first drain out the
(predictable) 4π power to return to rational
functions.

The GJMS operator being used is the
Paneitz operator , [Paneitz, preprint 1983]

P = ∆2 + δTd+
n− 4

2
Q (n ≥ 3),

where

T = (n− 2)J− 4P·, Q =
n

2
J2 − 2|P|2 + ∆J.
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(We need to extend Q correctly to higher

dims. to take advantage of the continuation

argument we made.)

The (or a) correct extension of

1

180

∫ (
−2Q + |C|2)

)
to higher dims. is thus

1

180

∫ (
−2Q + |C|2 − (n− 4)2|P|2

+1
2(n− 4)(5n− 24)J2

)
.

We may just treat Q− 1
2|C|

2 as our new

alternative Q-curvature, say Q.

The conclusion is that

ζ′(0)ĝ − ζ′(0)g =

−
(4π)−2

90

{∫
ω
(
Q̂ + Q

)
− 2

∫ (
Ĵ2 − J2

)}
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Let’s immediately treat the max/min problem

within the standard conformal class on S4.

Let g be the round metric, and ĝ = e2ωg

another metric in the conformal class.

Note that the functional determinant is not

invariant under uniform scaling, so should be

penalized to avoid trivialities. If g̃ = α2g for

α > 0 constant, then

ζ(s)g̃ =
∑
j

(α−2λj)
−s = α2sζ(s)g,

ζ′(0)g̃ = ζ′(0)g + 2(logα)ζ(0)g.

Recall the ζ(0) is a conformal invariant (the

conformal index), so we didn’really need the

subscript g we put on it.
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To penalize the scaling effect, we need

another quantity that scales – how about the

volume? This is a good choice, as it actually

appears in Beckner’s inequality. Since

log vol(g̃) = log(αnvol(g))

= n(logα) + log vol(g),

the quantity

D(g) := ζ′(0)−
2ζ(0)

n
log vol(g)

is insensitive to uniform scaling.

Recall that our c constant was chosen by∫
Un = c

∫
Q in dim. n,

and that
∫

Un = ζ(0).
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Thus

D(g) = ζ′(0)−
2c
∫

Q

n
log vol(g),

D(ĝ)−D(g) = ζ′(0)ĝ − ζ′(0)g

−
2c
∫

Q

n
log

vol(ĝ)

vol(g)

= c
∫
ω(Q̂ + Q) +

∫
(F̂−F)−

2c
∫

Q

n
log

vol(ĝ)

vol(g)
.

These last paragraphs were quite general.
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Back in the case at hand,

c = −
(4π)−2

90
, vol(S4) =

(4π)2

2
,

F = −
(4π)−2

90
J2. Q = 6.

So (with
∫
− as normalized

∫
and J the

(−2)-density J),

D(ĝ)−D(g) =

−
1

45


∫
−ω(Q̂ + Q︸ ︷︷ ︸

Pω+2Q

) +
∫
− (Ĵ

2 − J2)

+
1

15
log

∫
− e4ω

}

= −
1

15

1

3

∫
−ω(Q̂ + Q︸ ︷︷ ︸

Pω+12

)− log
∫
− e4ω


−

1

45

∫
− (Ĵ

2 − J2)

= −
1

15

{
1

3

∫
−ωPω − log

∫
− e4(ω−ω̄)

}
−

1

45

∫
− (Ĵ

2 − J2).
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This is really shaping up, as the { · } of the

first term is exactly the thing estimates by

Beckner-Moser-Trudinger – it’s ≥ 0 with

equality iff ĝ is a round metric (a conformal

diffeomorph of the round one we started

with).

There is that other term though. But this is

also precisely estimated, with the same

extremals, by an argument of Paul Yang.

(This argument can be generalized quite a bit

to handle some “trailing terms”in higher

dimensional calculations.)

In the setting of compact conformal

manifolds, take the Yamabe quotient

Y(u) :=

∫
uY u

‖u‖2q
, q :=

2n

n− 2
,

where

Y = ∆ +
n− 2

2
J.
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The Yamabe number is

µ = inf
u>0
Y(u).

If we think of u as a (2− n)/2-density, Y(u) is
conformally invariant. If we think of u as a
function, conformal covariance is expressed by

Yĝ(e
(2−n)ω/2u) = Yg(u).

Take a positive function u, which we secretly
think of as a metric ĝ = e2ωg via
u = e(n−2)ω/2:

µ ≤

∫
uY u

‖u‖2q
≤

∫
u2|Y u/u|

‖u‖2q

≤
‖u2‖n/(n−2)‖Y u/u‖n/2

‖u‖22n/(n−2)

= ‖Y u/u‖n/2

=
∥∥∥∥n− 2

2
Ĵe2ω

∥∥∥∥
n/2

=
n− 2

2

{∫ ∣∣∣Ĵ∣∣∣n/2
dvĝ

}2/n

=
n− 2

2

{∫ ∣∣∣Ĵ∣∣∣n/2
}2/n

.
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So (
2µ

n− 2

)n/2
≤
∫ ∣∣∣Ĵ∣∣∣n/2

.

If g minimizes the Yamabe quotient, then J is

const. and

µ =

∫
n− 2

2
Jdvg

vol(g)(n−2)/n
=
n− 2

2
J vol(g)2/n,

so (
2µ

n− 2

)n/2
= Jn/2vol(g) =

∫
Jn/2dvg,

and

0 ≤
∫ {∣∣∣Ĵ∣∣∣n/2

− Jn/2
}
.

This is nicer when n/2 is even (or the Yam-

abe number is ≥ 0). Recall that our current

interest is dim. 4.
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Just to stop and smell the roses, if n/m is an

integer > 1, the same argument works with

Qm in place of J = Q2 – this is one virtue of

having the higher-order Yamabe problems.

The conclusion is

0 ≤
∫ {∣∣∣Q̂m

∣∣∣n/m −Q
n/m
m

}
.

The corresponding Yamabe-like fcnl. is

(Pmu, u)L2

‖u‖2q
, q =

2n

n−m
,

and (recall that) the corresp. prescription

eqn. is

Pmu =
n−m

2
Q̂mu

(n+m)/(n−m), u = e(n−m)ω/2.
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Implicitly, the inequality being used is the

Sobolev imbedding L2
m/2 ↪→ Lq, for which (on

the sphere) Beckner has a sharp form that

applies exactly. One difference is that these

higher-order Yamabe problems are not solved

in general. But on the sphere the Yamabe

fcnls. are minimized at the round metrics, so

it all works.

Back to S4, we now know that

0 ≤
∫
− (Ĵ

2 − J2).

In order to have equality, ĝ has to be a

Yamabe quotient minimizer (we started the

string of ineqs. by saying µ ≤ Y(u) ≤ · · ·). On

the sphere, these are the round metrics.

Thm. [Branson-Chang-Yang, CMP 1992] In

the standard conformal class on S4, the pe-

nalized − log det fcnl. D = DY is maximized

exactly at the round metrics.
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Recall the assertion that there was nothing

special about Y (as the operator whose det is

being taken) in this. At least among ops.

with decent conformal behavior this is true.

For the square of the Dirac op. D on spinors,

all is the same, except that the coefs. on the

2 sub-functionals, instead of being −1/15 and

−1/45, are two (specific) positive numbers.

Thus

Thm. • • • D
D2 is mimimized • • •.

One can get the coefficients to disagree.

[Branson, CMP 1996] shows that this happens

in 4D with the DP of the Paneitz op. It’s

an open question whether one still gets the

“correct”extremals.
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The way in which J2 arrived in the above

formulas is obscured somewhat by the

dimensional continuation process. Thus, for

the sake of better understanding, it’s useful to

contemplate how this goes completely within

4D (but still using some Q-technology).

What happened was that we needed a

conformal primitive for∫
ω
(
−2Q + |C|2︸ ︷︷ ︸
−2Q

−4∆J
)
.

For the Q term, the answer was Q(ĝ, g) as

worked out before. For the ∆J term,(∫
J2
)•

= 2
∫

J∆ω = 2
∫
ω∆J.
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A really old-fashioned approach would have

had us getting out formulas like

(∆J dv)̂ =
{

∆J + ∆2ω − 2J∆ω + 2〈dJ, dω〉

−∆|dω|2 − 2(∆ω)2 + 2〈dω, d∆ω〉

+2|dω|2∆ω − 2〈dω, d|dω|2〉
}
dv,

and for the conformal primitive, multiplying

the s-homog. part (in ω) by (s+ 1)−1,

multiplying by ω, and integating. This gives a

small taste of the recognition problem.

After some integrations by parts (in which

there is no normal form to work toward), one

has to find the

(J2dv)̂− J2dv.
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