Continuation in dimension

Recall that a Q-curvature Q in even
dimension n has

—~

Q= Q + Puw,

where P : £ — £[—n] is an operator of the
form

P=5{(d6)">" 1 +LOT}d.

P is automatically conformally invariant.

Let's do the original Q-curvature construction
in the case n = 2, where Q = J. This is really
the derivation of the | Gauss curv. presc. egn.
from the higher-dimensional | Yamabe egn. | The
packaging in terms of |stabilization| (inflating
the dimension by taking the product with flat
tori) was suggested by Robin Graham. The
original treatment inflates the dimension in an
invariant-theoretic sense.




Start with a Riemannian 2-manifold (M, g),
and take the product with a standard flat
m-torus (T,k) for m =0,1,2,---. Then
change the metric
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conformally, using a conformal factor w that
depends only on the M-parameter x.

The Yamabe equation

<A L ; 2J> J(n—2)w/2 _ T ; 25, (n+2)w/2

in our situation says that

{A[g + k] + %J[g + k]} eMw/2 —

[ (g + k)e(mT /2,



Dividing by €™¥/2  this may be written

5 g+ e —Jlg +K]) =

e—Mw/?2 Alg + k]emw/2.
A[Q]me/Q

The RHS in this last egn. is polyn. in m, and
in fact (since A = §d) one with no constant
term. After evaluation at some xz € M, these
are true polynomials (with numerical
coefficients). In particular, everything is
indep. of y € T'. This establishes the LHS
(eval. at x) as a polyn. in m, indep. of the
T-parameter y.

What's happening here is: there was an
(m 4+ 1)~1 involved in defining J from K. But
the formula for the difference of J quantities
at conformally related metrics is supplying an
m -+ 1 factor to keep things polynomial.



When going to higher order, it's important to
be able to conclude the polynomial nature as
above, rather than by explicit formulas.

We have either

e oo many eqgns. (param. by m) on M; or

e a polynomial egn. (in the vbl. m) at each
x e M.

Taking the 2nd viewpoint and harvesting the
termwise eqns., the mO level gives

Alg]l = 0.

What the m! level provides can be seen by
truncating power series:



(-7 ot (1472 -
% (J[e?(g + B)]e? — Jlg + k]) + O(m?),

where O(m?2) denotes a polynomial with a
factor of m2. (Recall that all this is
happening at some =z € M.)

This is

mw m
5 Alg]l +5A[9]w =
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2 Il g1 — 2 g + 0(m?),

since to get the m® term in the polynomial
J[e2“ (g + k)]e?¥, we may evaluate at m = 0.



T his last equation really doesn’t have
anything (even typographical) to remind us of
the torus T'. The m!l coef. in the last egn. is
Gauss curvature prescription,

Alglw + J[g] = J[e*“gle*”  (dim. 2).

Now generalize this to a way of getting the
critical Q-curvature prescription

Pplglw + Qnlg] = Qn[ezwg]em"

(in the non-density version) from the
subcritical (Yamabe type) Q-prescription
equations in higher dimensions:

N_
0
(Pn[g]+ >
N —n
2

nQn[g]) e(N—n)w/Q —

On [€2wg]€(N—|—n)w/2.

Here n is the|target dim.|and NN is the|running dim.




This is the conformal covariance law
ﬁn — Q—(N—I—n)w/QPnQ(N—n)w/Q
for the GJMS operator

N —n
2

PnZP,,?—F Qn

applied to the function 1.

We want to use this in the situation where
the manifold is a product of the n-dim. M
and a flat m-torus T' (so N =n + m):

{PRlg+ 1 + 2 Qulg + 4} /2 =
%Qn[ez“’(g + k)]elmt2n)w/2,
We divide by e™¥/2 to get

> (@nle®(g + W)™ — Qulg + k) =

e—mw/QPn(?[g + k]emw/Q.



Since P9 has the form 6(e)d, this establishes

Qnle®” (g + k)]e™ — Qnlg + k]

as a rational function in m (at each z € M,
indep. of y € T'). (Recall that we can keep the
poles under control; the rightmost one is at
n — 2.) This is just as good, for our purposes,
as the polynomial behavior we had in the
Yamabe — GCP case, since

rat’'l. fcns. agree at oo many points <=
they agree <=
their power series expansions

(at some regular point) agree termwise.

And the engine behind these equivalences is
(not complex variables but) polynomial con-
tinuation.



At the mP level we have P91 = 0. At the ml
level, it's

S PRw =2 (Qule*gle™ — Qnlg])

But this is the critical Q-curvature
prescription equation
Polglw 4+ Qnlgl = Qule*gle™  (dim. n),

since P, = P? in dim. n.



