
Some invariant theory

Setting: Smooth manifolds M of even

dimension n.

Riemannian metric: A positive definite

symmetric section g of T ∗M ⊗ T ∗M .

g determines a unique torsion-free affine

connection ∇,

∇g = 0, ∇XY −∇YX = [X,Y ],

which in turn determines the Riemann

curvature R:

[∇a,∇b]X
c = RcdabX

d.

In the last formula, we’re using abstract index

notation. In particular,

∇aXb means (∇X)a
b.
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The index d above, occuring once up and

once down, denotes a contraction (or trace).

Raising and lowering of indices: Via the

metric tensor g = (gab) and its inverse

g] = (gab), defined by

gabgbc = δac.

For example,

∇aXb = gbc∇aX
c.

Natural tensors: Tensors built polynomially

from R, ∇, g and g] using tensor product and

contraction. For example,

the Ricci tensor rab := Rcacb

the scalar curvature K := gabrab = rbb,

(∇arbc)∇brac.

The last 2 are natural scalars.
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Conformal structure: A Riemannian metric,

defined only up to positive function multiples:

[g] = {e2ωg | ω ∈ C∞(M)}.

A choice of metric from within a conformal

class is sometimes called a conformal scale.

Densities: Given a conformal structure,

would like an object that’s like a scalar

function, but which responds to conformal

change of metric

ĝ = e2ωg, ω ∈ C∞(M)

by acquiring a factor of ewω for some w.

Such an object is a section of a line bundle

with trivializations parameterized by (U, g),

where U is open and g is a scale. f ∈ E[w] has

(f)(U,ĝ) = ewω(f)(U,g).

For example, the metric determinant det(g) is

a 2n-density.
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In fact, w-densities may be defined wo/

reference to conformal structure to be

trivialized on (U, g), where U is a coordinate

chart, so that

(f)(V,h) = (det(h)/det(g))w/2n(f)(U,g),

g and h any metrics.

Once you have density bundles, you have

tensor-density bundles like

Ea[w] = E[w]⊗ Ea.

Here we denote a tensor bundle by its index

structure, and blur the distinction between

bundles and their section spaces. As another

example, the 3-forms would be

E[abc],

the [·] denoting antisymmetrization.
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Connection on density bundles:

Determined by

∇det(g) = 0 (so ∇det(g)r = 0).

This really insures that calculus with ∇ can

be carried out without worrying about density

weights.

Conformal metric: There’s a tensor-density

g ∈ E(ab)[2] which represents the conformal

structure, just as a metric g represents a

Riemannian structure. In the trivialization

(U, g), it just gives g.

Natural scalars have a grading by level. If we

multiply the metric by a positive constant α2,

g̃ = α2g,

then a polynomial A has level 2` if

Ã = α−2`A.
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What’s really happening with the level is:

R̃ = R, ∇̃ = ∇, g̃ = α2g, g̃] = α−2g.

Thus the level measures the net number of

indices that must be raised before contracting

to a scalar:

2` = 2N
g]
− 2Ng.

(This is how we know it’s even.)

R has 2 excess down indices and ∇ has 1. So

g] will be used

2` = 2NR +N∇

times more than g. I.e., the level is “secretly”

a derivative count – each ∇ is 1 derivative, and

R is 2 derivs. (of the metric).
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It’s convenient to view level −2` natural

scalars as (−2`)-densities. This naturally

happens if we replace each g in the formula

by g, and each g] by

g] = (gab) ∈ E(ab)[−2], gabgbc = δac.

F.ex., the scalar curvature is

gabrab ∈ E[−2]

in this viewpoint.

Conformal change for natural scalar

densities: To track how natural densities

change under the usual conformal change

ĝ = e2ωg,

we just need to know how the ingredients g,

g], ∇, R change. The change of g is just

above, and that of g] is

ĝ] = e−2ωg].
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For ∇,

(∇aXb)̂ = ∇aXb + (ω|aδc
b + ω|cδa

b − ω|
bgac)︸ ︷︷ ︸

Γ̂acb−Γacb

Xc

= ∇aXb + ω|aX
b + ω|cδa

bXc − ω|bXa.

To get to other tensor densities, we just need
to note that ∇a is a derivation, commutes
with contractions, and agrees with the above
∇a on (scalar) densities.

To see how R changes: first, the partial
decomposition of R into Weyl and Schouten
parts is

Rabcd = Cabcd − 2Pb[cδ
a
d] + 2Pa[cgd]b,

where

Ĉabcd = Cabcd

is the Weyl conformal curvature tensor . P is
the Schouten tensor ,

P =
r − Jg

n− 2
, J =

K

2(n− 1)
.
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Note that

J = Paa, J|a = Pab|
b.

P changes by

P̂ab = Pab − ω|ab + ω|aω|b −
1

2
ω|cω|

cgab.

As a result,

Ĵ = J− ω|a
a −

n− 2

2
ω|aω|

a.

In the last formula, using the (−2)-density ver-

sion J of J as a (−2)-density made a difference

– viewing it as a function, there would be a

“weight factor” e−2ω in front of the RHS.
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By induction from the above, a level 2`

natural scalar A, viewed as a (−2`)-density,

has a conformal change law

Â = A + X1[A](dω, g, g],∇, R) + · · ·

+X2`[A](dω, g, g],∇, R),

where

• ∇ and R are computed in g (not ĝ);

• Xs is a universal polynomial formula for a

(−2`)-density, s-multilinear in ω;

• 2` = s+N∇+ 2NR for a monomial term

in Xs[A].
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Let I2` be the space of natural

(−2`)-densities A, and let It2` be the subspace

of those for which

Xs[A] = 0, s > t.

In fact, this is the same as just requiring

Xt+1[A] = 0 – universality does the rest.

Take a curve of metrics gε = e2εωg0; then

Xs[A]εω = εsXs[A]ω,

ds

dεs

∣∣∣∣∣
ε=0

Aεω = Xs[A]0.

If Xs[A]0 = 0 universally, then it’s 0 replacing

g0 by gε0ω, so

ds

dεs
Aεω = 0;

thus all higher derivatives also vanish.
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I0
2` is the space of local conformal invariants

(Â = A) of level 2`. F.ex.

|C|2 = CabcdCabcd ∈ I0
4.

To check whether some A in I2` is in I0
2`, we

just need to check whether its

conformal variation

X1[A](dω) =: (bA)ω

vanishes. Note that bA is a linear differential

operator on functions. Furthermore, it can

be written with a right d factor:

bA = Td,

for some linear differential operator T .

bA has a formal adjoint (bA)∗. If bA is

formally self-adjoint , it can be written δT ∗,
and thus δSd. F.ex.

(bJ)ω = −ω|a
a =: ∆ω = δdω.

Thus (to coin a notation) J ∈ IFSA
2 .
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Note that on the k-forms Ek = E[a1···ak],

(dϕ)a0···ak = (k + 1)∇[a0
ϕ
a1···ak],

(δϕ)a2···ak = −∇bϕba2···ak.

The Q-curvature space is

IQ = I1
n ∩ IFSA

n .

A Q-curvature is an element Q of IQ with

bQ = δSd = δ
{

(dδ)n/2−1 + LOT
}
d

(= ∆n/2 + LOT).

In other words, a Q-curvature Q has

Q̂ = Q + Pω,

where P : E → E[−n] is an operator of the
form

P = δ
{

(dδ)n/2−1 + LOT
}
d.
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Such an operator is automatically

conformally invariant, and is called a

critical GJMS operator .

The name refers to the landmark paper by

Graham, Jenne, Mason, and Sparling,

J. London Math. Soc. 1992. Q-curvatures

were constructed in even dimensions using

the whole series of GJMS operators in

Branson, Seoul Natl. U. lecture notes

#4, 1993. So the P’s came first, but in

hindsight the critical P is implicit in Q.

Thm. There exists a Q-curvature.

The original proof involved higher (than n, the

“target dimension”) dim. manifolds.
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One may view this as taking products with

tori. It’s been called “analytic continuation in

dimension,” but this terminology is overly

frightening – it has nothing to do with

non-integer dimensions. These days there are

many proofs, including some taking place

entirely within manifolds of the target

dimension.

Example: In dimension 2, I2 is generated by

J, which is a Q-curvature, recalling

Ĵ = J− ω|a
a −

n− 2

2
ω|aω|

a.

The corresponding P is ∆.
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Related to IFSA is a potentially larger space,

Iix, the conformal index densities . If we take

the conformal variation of
∫

A for A ∈ In, we

get ∫
(bA)ω =

∫
ω (bA)∗1︸ ︷︷ ︸

:=∂A

.

This will be universally 0 iff (bA)∗ has the

form Td, iff bA has the form δT ∗. By

universality again, infinitesimal invariance is

the same as invariance, so

A ∈ Iix ⇐⇒
∫

A is conformally invt.

Note that (−n)-densities are just what can be

integrated given a conformal structure, since

their conformal scaling cancels that of the Rie-

mannian measure dvg.
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Prop.



∂In ⊂ Idiv
n ⊂ Iix,

IQ + ∂In ⊂ IFSA
n ⊂ Iix,

∂∂ = 0,

and Iix is strictly larger than Idiv
n .

Proof: If A ∈ In, then bA = Td,

∂A = (bA)∗1 = δT ∗1 ∈ Idiv
n .

∂∂A = 0 since (
∫
δF )• = 0• = 0.

If A ∈ IFSA
n , then bA = (bA)∗ = δSd,

∂A = δSd1 = 0.

Pff ∈ Iix \ Idiv
n since χ(Sn) = 2.
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The only nontrivial assertion is ∂In ⊂ IFSA
n . If

A = ∂F , then

H(ĝ, g) =
∫

(F̂ − F )

is a conformal primitive for A. This means

that H is a 2-metric functional on the

conformal class which

• is alternating , H(g0, g1) = −H(g1, g0);

• is a cocycle ,

H(g2, g0) = H(g2, g1) +H(g1, g0);

• has conformal variation A, in the sense

that

d

dε

∣∣∣∣
ε=0
H(e2εωg, g) =

∫
ωA.
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Note that taking

d

dε

∣∣∣∣
ε=0
H(e2εηg, g0)

for any other metric in the conformal class

will give the same answer, by the cocycle

condition.

The corresp. sec variation (in the direction η)

is
∫
ω(bA)η; but this must be symmetric,

meaning bA is FSA.

An important open question is:

Conjecture. IQ + ∂In = IFSA
n .

(We know ⊂.)
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Example: In dim. 4, I4 is generated by J2,
|P|2, |C|2, and ∆J. |C|2 is a local conformal
invariant; ∆J is an exact divergence, so both
are conformal index densities. In fact

Idiv
n = span{∆J}.

The Pfaffian (Euler characteristic density) is
(up to a constant factor)

Pff = |C|2 + 8(J2 − |P|2).

The conformal index densities thus are at
least 3-dim. in a 4-dim. space. Since
Iix = N (∂) and(∫

J2
)•

= 2
∫

J∆ω︸ ︷︷ ︸∫
(b(J2))ω

= 2
∫
ω∆J,

we have ∂(J2) = 2∆J. So Iix is exactly 3-dim.

This also shows

∂I4 = span{∆J}.
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Let

Q = ∆J + 2(J2 − |P|2).

The conformal change of Q is

Q̂ = Q + Pω,
P = ∆2 + δTd,

T = 2J− 4P·,

where (P · ϕ)a = Pbaϕb. This shows Q is a

Q-curvature. In fact,

IQ = span{Q, |C|2} (see below).

Now IQ+∂I4 and Iix are each span{Q,∆J, |C|2}.
So IFSA

n , which is caught in between, is also.
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If I1
4 is more than 2-dim., then some lin.

comb. of J2, |P|2 is in I1
4. But the sec order

terms are

J2 : −2Jω|aω|
a + ω|a

aω|b
b

|P|2 : 2Pabω|aω|b − Jω|aω|
a + ω|

abω|ab.

Conclusion: I1
4 = span{Q, |C|2}.

Example: Going up to dimension 6, we finally

get Iix to be strictly larger than IFSA
6 . The

dimensions of the spaces in the Proposition

above (within the 17-dimensional I6) are

[6]
∂I6⊂

[7]

Idiv
6 ⊂

[11]

Iix ,

[6]

IQ +
[6]
∂I6⊂

[10]

IFSA
6 ⊂

[11]

Iix .

In addition, dim I0
6 = 3 (the local conformal

invariants).
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A good choice of Q

Gover-Peterson, CMP 2003 is

∆2J + 8|∇P|2 + 16PabP
ab
|c
c − 8JJ|c

c

−32PabP
a
cP
bc − 16J|P|2 + 8J3 + 16PabPcdCacbd.

Example: A smaller situation where there’s a

difference between IFSA
n and Iix is the

conformally flat case in dim. 6. Just taking

flat conformal classes reduces the number of

invariants. This is more involved than just

crossing out any invt. mentioning C (though

in dims. > 3, vanishing of C is equivalent to

conformal flatness). The fact that

Cabcd|
a = 2(n− 3)Pb[d|c]

shows there are “hidden” identities. In fact,

the reduced invariant space I6,[ has dim. 8.

23



The dimensions of the important subspaces

are:

[3]
∂I6,[⊂

[4]

Idiv
6,[⊂

[5]

Iix
[ ,

[1]

IQ
[

+
[3]
∂I6,[⊂

[4]

IFSA
6,[ ⊂

[5]

Iix
[ .

Another model in which explicit calculations

are accessible is the 4-dim. case with

boundary – see Branson-Gilkey 1994 and its

use in Chang-Qing 1997.

The idea is that the natural scalar density Un

that arises in the variation of the functional

determinant must be in IFSA
n , since it is the

variation of something, and so the corresp. 2nd

variation must be symmetric.
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If we can express any such thing as something
in the Q-space plus something with a local
conformal primitive, we’ve attained the form

c
∫
ω(Q̂ + Q) +

∫
(F̂−F)

for the log(determinant quotient) of the
Yamabe op., or of anything else with good
conformal and ellipticity props.

Another approach uses diml. continuation. S.
Alexakis will tell us on Friday about his proof
of:

Conjecture/Theorem
[Alexakis, Princeton PhD dissertation 2005]:
A natural scalar density A ∈ In with

∫
A

conformally invariant may be universally
expressed as

aPff + δη + L

where a is a constant, δη is the divergence of
a natural 1-form (2 − n)-density η, and L is a
local conformal invariant, L̂ = L.
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Corollary: The same is true with Q replacing

Pff.

In fact, if we write the decomposition of Q,

Q = aPff + δη + L,

then in the conformally flat case, L = 0. On

the sphere, Q and Pff, are positive constants

we can give explicitly, so (integrating over the

sphere) a is also.

This gets us (something like) our other

conjecture, and enough to guarantee the form

c
∫
ω(Q̂ + Q) +

∫
(F̂−F)

we want for the log(det. quotient).
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The key is that Un satisfies(∫
Un

)•
= (N − n)

∫
ωUn

for each N . Q = Qn does a similar thing.

Since Pn satisfies the conformal covariance

relation

P •n = −nωPn +
N − n

2
[Pn, ω]

in dim. N ≥ n,

N − n
2

Q•n = P •n1 = −nω
N − n

2
Qn +

N − n
2

Pnω

−
(
N − n

2

)2
ωQn,

so

Q•n = −nωQn + P0
nω,

(Qndv)• = (N − n)ωQn + P0
nω.
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Integrating, the exact divergence P0
nω goes

away, so (∫
Qndv

)•
= (N − n)

∫
ωQn ,

as desired.

So, both Un and Q extend rationally (with

controlled poles) to higher dimensions. We

also make a rational (or even polynomial)

extension of the local conformal invt. L, and

add it in as part of an alternative Q, say Q.

Now ∫
Un = c

∫
Q in dim. n.

Recall that this was what we had to assume

earlier to get going on the form

c
∫
ω(Q̂ + Q) +

∫
(F̂−F).
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