
Detour torsion

This is joint work with Rod Gover.

A detour torsion is a spectral invariant of

natural elliptic complexes. It generalizes the

only previously known special case,

Cheeger’s half-torsion for the de Rham

complex.

All manifolds are compact, Riemannian (or

conformal), and even-dim. The goal is to get

a quantity that has a Polyakov-type formula

as we move within a conformal class, much

like the formulas for Y and other individual

conformal operators.
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These detour torsions are products and

quotients of functional determinants which

individually behave badly under conformal

change, but which behave well in the

well-chosen aggregate.

Let dk, δk, and

∆k = δk+1dk + dk−1δk

be the usual Hodge-de Rham operators. The

Hodge decomposition is

Ek = R(δ)⊕R(d)︸ ︷︷ ︸
R(∆)

⊕ (N (d) ∩N (δ))︸ ︷︷ ︸
=:Hk

,

where N is the null space and R the range.

The zeta functions of the complex are

ζ(s,∆k) := TrL2(∆k|R(∆k))−s.
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These converge absolutely, and uniformly on

compacts, in Re(s) > n/2, and analytically

continue via the heat expansion, much like

the Yamabe op. for which we worked this out

in detail earlier. (That is, only the analytic

properties, and not the conformal props., are

important so far.) As before, we have a

functional determinant

det ∆k = exp
(
−ζ′(0,∆k)

)
.

In terms of eigenvalues,

ζ(s,∆k) =
∑
λj 6=0

λ−sj

for sufficiently large Re(s).
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The nonzero form eigenvalues split into a list
of δd eigenvalues, say µa, and a list of dδ
eigenvalues, say νb. A key point in all
discussions of index and torsion quantities is
that much information is repeated in
considering these lists for various k.
Specifically, the nonzero δd eigenvalue list for
k-forms is repeated as the nonzero dδ

eigenvalue list for (k + 1)-forms, since d and δ

commute with ∆. This offers some scope for
achieving interaction among the spectral
invariants of the various ∆k.

To enrich our supply of zeta fcns., note that
since d0 and δ1 are formal adjoints, the
Hodge decomposition shows that

d0 : R(δ1)↔ R(d0) : δ1 bijectively.

Thus

ζ(s, d0δ1) := Tr(d0δ1|R(d0))−s

= Tr(δ1d0|R(δ1))−s = ζ(s,∆0).
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With this in place, we may take

ζ(s, δ2d1) = Tr
(
δ2d1|R(δ2)

)−s
= ζ(s,∆1)− ζ(s,∆0).

Continuing in this way, we may define

ζ(s, δk+1dk) and ζ(s, dk−1δk),

regular at s = 0, with

ζ(s, δk+1dk) = ζ(s, dkδk+1).

Caution 1: Differential operators without

appropriate ellipticity or sub-ellipticity

properties will generally not have zeta

functions regular at s = 0. Here, only the

status of δd and dδ as partial Laplacians of an

elliptic complex allows us to define good zeta

functions for them.
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As before, we can get the (very useful)

local zeta fcn. by inserting a multiplication

operator just before tracing:

ζ(s,∆k, ω) := Tr
(
ω(∆k|R(∆k))−s

)
.

Caution 2: Partial ζ fcns. and local ζ fcns.

are both OK, but local partial zetas are not.

Let us abbrevate restriction to the correct

range by an underline, as in

(δd)−s = (δd|R(δ))−s.

Because this op. is of trace class for large

Re(s), the op. ω(δd)−s will be too. But there

is no reason to expect regularity of this

function at s = 0. (In fact, we’ll be able to

see that it generally isn’t regular.)
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As an operator from Ek to Ek+1, the exterior

derivative dk is of course independent of the

metric. The coderivative

δk : Ek[2k − n]→ Ek−1[2k − 2− n]

is conformally invariant. Thus viewed as an

operator Ek → Ek−1,

δ̂kϕ = e(2k−2−n)ωδk(e−(2k−n)ωϕ)

for any ϕ ∈ Ek. Choose a scale g0 within our

conformal class and take the conformal curve

of metrics

gε := e2εωg0.

Then

δ•kϕ = −(n− 2k + 2)ωδkϕ+ (n− 2k)δk(ωϕ).

We’ll compute the conformal variation of

each term in

Tr∆−sk = Tr(δd−sk ) + Tr(dδ−sk ).
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For the 1st term,

Tr((δd)−sk )• = −sTr (δk+1dk)•︸ ︷︷ ︸
δ•k+1dk

(δd)−s−1
k

= −sTr
(
{−(n− 2k)ωδk+1

+(n− 2k − 2)δk+1ω}dk(δd)−s−1
k

)
= (n− 2k)sTr

(
ω(δd)−sk

)
−(n− 2k − 2)sTr

(
ω(dδ)−sk+1

)
.

In rewriting the last term, we took advantage

of the fact that δk+1 : R(dk)→ R(δk+1) is

bijective.

This last step is a key point: the variation of

δd on k-forms leads to terms in δd on

k-forms , and in dδ on (k + 1)-forms . This

is how the different form orders interact.
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Restating in terms of zetas,

ζ(s, (δd)k)• = (n− 2k)sζ(s, (δd)k, ω)

−(n− 2k − 2)sζ(s, (dδ)k+1, ω).

Similarly,

ζ(s, (dδ)k)• = (n− 2k + 2)sζ(s, (δd)k−1, ω)

−(n− 2k)sζ(s, (dδ)k, ω).

Caution: At first glance, seems as though

the right sides of the boxed equations vanish

at s = 0. But remember the perils of local

partial zetas. In fact, these expressions make

elementary sense only for large Re(s). We

only try to analytically continue certain

well-chosen combinations.
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Speaking of these, let

κ(s) := c0ζ(s,∆0)+c1ζ(s,∆1)+· · ·+cnζ(s,∆n).

We’d like make a good choice of the ck.

Modelling our expectations on what we had

for a single good operator, like Yamabe, we’d

like κ(0) conformally invariant and κ′(0) with

computable differences for 2 metrics in a

conformal class.

The coef. in κ(s)• of sζ(s, (δd)k, ω) is

(n− 2k)(ck + ck+1),

while the coef. of sζ(s, (dδ)k, ω) is

−(n− 2k)(ck + ck−1).

One distinguished choice for the coefficient

list will thus be 1,−1,1,−1, · · ·. This just

detects the conformal invariance of the index

of the de Rham complex (which has much

more than just conformal invariance of

course).
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We could ask just that the variation only

produce full Laplacians – that is, that the

coefficients of

sζ(s, (δd)k, ω) and sζ(s, (dδ)k, ω)

agree. This leads to

ck+1 = −ck−1 − 2ck, k ≥ 1,

which doesn’t produce a unique coupling. In

fact we’d like more – that the

(sζ(s, (δd)k, ω), sζ(s, (dδ)k, ω))

coefficient pair in the variation be

proportional to the

(ζ(s, (δd)k), ζ(s, (dδ)k))

coefficient pair in the original quantity:

(n− 2k)(ck + ck+1,−ck − ck−1) = λ(ck, ck)

for some λ.
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Shifting k in the equality of second

components, we get the system

(n− 2k − λ)ck + (n− 2k)ck+1 = 0,

(n− 2k − 2)ck + (n− 2k − 2 + λ)ck+1 = 0,

the determinant of which is λ(2− λ). The

choice λ = 0 gives us the coefficient list

1,−1,1,−1, · · · associated with the index

calculation. The choice λ = 2 gives the

recursion

(n− 2(k − 1))ck = −(n− 2k)ck−1.

A key point is that

for this choice, ck may be

taken to vanish for k ≥ n/2.
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If we set cn/2 = · · · = cn = 0, only the first

half of the complex will be noticed by the

calculation. This is the origin of the term

half-torsion.

One normalization of the coefficient list is

then

n,−(n− 2), n− 4, · · · ,∓4,±2,0;

that is,

ck = (−1)k
(
(n− 2k)+

)
.

Make this choice, and define the local kappa

function by

κ(s, ω) := c0ζ(s,∆0, ω) + c1ζ(s,∆1, ω)

+ · · ·+ cnζ(s,∆n, ω).

Then

κ(s)• = 2sκ(s, ω).
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Only full Laplacians appear above, so κ(s, ω)

is regular at s = 0, and

κ(0) is a conformal invariant.

The Cheeger half-torsion is (exp of minus)

κ′(0). We get Polyakov-type formulas for the

local part of the infinitesimal conformal

variation of this. We have to face up to the

global part too, as it comes from null spaces;

that is, cohomology.

Since the functional determinants of the

Laplacians are defined as their e−ζ
′(0)

quantities, the half-torsion is

κ′(0) = − log
(det ∆0)n(det ∆2)n−4 · · ·

(det ∆1)n−2(det ∆3)n−6 · · ·
,

where the terms abbeviated by · · · involve

only the ∆k for k < n/2.
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To see where the global term comes from,

recall that the analytic continuation is

accomplished via the heat trace asymptotics

on the other side of the Mellin transform

(Mf)(s) =
1

Γ(s)

∫ ∞
0

ts−1f(t)dt.

which takes

exp(−tλ) 7→ λ−s.

for positive real λ. Thus it carries

Tr(ω exp(−t∆k)) 7→ ζ(s,∆k, ω).

The L2 trace on the left is closely related to

the localized heat operator trace

Z(t,∆k, ω) := Tr(ω exp(−t∆k))

∼
∑

even i≥0

t(i−n)/2
∫
ωUi as t ↓ 0,

in which the ∆ is not underlined.
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The kernel functions involved are

∆ : ω(x)
∑
λj 6=0

e−λjtϕj(x)⊗ ϕ∗j(y),

∆ : ω(x)
∑
λj

e−λjtϕj(x)⊗ ϕ∗j(y)

for {(λj, ϕj)} an orthonormal spectral

resolution. So the difference in L2-traces is∑
λj=0

∫
ω|ϕj|2 = TrωPk,

where Pk is the Hodge projection onto the

harmonics. (The kernel fcn. of Pk is the

difference of the kernels above.)

Thus

Trω exp(−t∆k) ∼
∑

even i≥0

t(i−n)/2Ai(∆k, ω)

as t ↓ 0,
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where

Ai(∆k, ω) :=


∫
ωUn −TrωPk if i = n,∫
ωUi otherwise.

The calculation using the heat expansion now
goes:

Γ(s)ζ(s,∆k, ω) =
m∑
i=0

(
s−

n− i
2

)−1
Ai(∆k, ω)

+
∫ 1

0
ts−1O(t(m−n+1)/2)dt

+
∫ ∞

1
ts−1(Trω exp(−t∆k))dt,

so at s = 0,

ζ(0,∆k, ω) = An(∆k, ω),

since Γ(s) has a simple pole at s = 0 with
residue 1.

Let

τ(g) := κ′(0).
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We now have

τ(g)• = 2κ(0, ω)

= 2
∑
k

An(∆k, ω)

=
∫
ω
∑
k

ckUn[∆k]︸ ︷︷ ︸
=:2τloc(g,ω)

−2
∑
k

ckTrωPk︸ ︷︷ ︸
=:2τglob(g,ω)

=: 2τ(g, ω).

In naming the τ quantities, we make explicit

the dependence on the metric g; this will be

useful in thinking of them as functionals on

the conformal class. Let

U :=
∑
k

ckUn[∆k],

so

τloc(g, ω) =
∫
ωU.

18



Recall that TrωPk is expressible in terms of

any L2-orthonormal bases

{ψkm}
bk
m=1

of the harmonic spaces Hk, so

τglob(g, ω) = −
∑
k

ck

bk∑
m=1

∫
ω|ψkm|2dvg.

We now want to find a conformal primitive

for 2τ(g, ω). Recall that this is a 2-metric

fcnl. H(ĝ, g) which is alternating and cocyclic,

H(g, ĝ) = −H(ĝ, g),

H(̂̂g, g) = H(̂̂g, ĝ) +H(ĝ, g),

and whose variation in the ĝ argument is

2τ(ĝ, ω). When we get this, we’ll have the

desired formula for

τ(ĝ)− τ(g).
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We do this by finding conformal prims. for

both the local and global parts. For the local

part, it’s covered by the previous lectures:

c
∫
ω(Q̂ + Q) +

∫
(F̂−F),

where Q is a Q-curv., and F is a natural

(−n)-density.

For the global part, we can actually find

conformal primitives for the TrωPk
individually. It goes like this. (The idea is

applicable to individual ops. like Yamabe too.)

Let h = hk be some basis of the real

cohomology Hk, and let Ψ be an ONB of the

harmonics Hkg. The de Rham map

Dg : Hkg → Hk

is a canonical isomorphism (whose inverse is

a Hodge projection).
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Let

[Ψ/h]

be the determinant of the basis change, DΨ

to h, and

[g : h] = |[Ψ/h]|.

The 2nd notation for this reflects the fact

that changes between different ONB Ψ are

orthogonal matrices, so have det. ±1.

A calculation shows

−
(
log[Ψ/h]2

)•
= (n− 2k)TrωPk.

But recall that

τglob(ω) = −
n/2−1∑
k=0

(−1)k(n− 2k)TrωPk.

So n/2−1∑
k=0

(−1)k log [g : hk]2


•

= τglob(ω).
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To get a 2-metric cocycle with the same

conformal variation, subtract the g version

from the ĝ version.

Hglob(ĝ, g) =
n/2−1∑
k=0

(−1)k log
[ĝ : hk]2

[g : hk]2
.

Since this is uniquely determined, the

apparent dependence on the coho. basis must

wash out. It does, as the quotient above is

the squared det. of the basis change between

ĝ and g ONB of the harmonic space; to coin

a notation,

[ĝ : g]2k.
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Summing up,

τ(ĝ)− τ(g) = Hloc(ĝ, g) +Hglob(ĝ, g)

= c
∫
ω(Q̂ + Q) +

∫
(F̂−F)

+
n/2−1∑
k=0

(−1)k log[ĝ : g]2k

This was the Cheeger half-torsion. In
[Branson-Gover math.DG.0309085] it’s
shown that there are universal
detour complexes

E0 d→ E1 d→ · · · d→ Ek−1 d→ Ek Lk−−−−−→ Ek
δ→ Ek−1

δ→ · · · δ→ E1
δ→ E0,

where Ep = Ep[2p− n], in which

Lk = δ
{

(dδ)n/2−k−1 + LOT
}
d.
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At the end are δ operators from the

de Rham co-complex .

No orientation is needed to do this, and no

metric – only a conformal structure.

If we do have an orientation, we can make all

the bundles true forms :

E0 d→ E1 d→ · · · d→ Ek−1 d→ Ek ?Lk−−−−−→ En−k

d→ En−k+1 d→ · · · d→ En−1 d→ En.

Fix k, and denote the coho. at Ep by H
p
L.

Note that Hk
L might have a different

dimension than Hk. Having the same

dimension is a regularity property (of the

(manifold, conformal structure) pair) in the

sense of

[Eastwood-Singer, JDG 1993].
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The coboundaries have different orders,

n− 2k for L, and 1 for everything else. We

compensate in the standard way by pumping

up the orders of the partial Laplacians –

(δd)n−2k for example. All zetas respond via

ζnew(s) = ζold((n− 2k)s).

The regularity (and in fact the value) at

s = 0 is unchanged by this device, while the

ζ′(0) quantity gets multiplied by n− 2k.

We could actually use (n− 2k)/2 powers.

This would make the Laplacian at Ek

(dδ)
(n−2k)/2
k + L

instead of

(dδ)n−2k
k + L2.
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For the kappa quantity, it turns out we need

the same relative coefficient list, truncated

earlier of course:

κk(s, ω) := (−1)k(n− 2k)ζ(s, (dδ)n−2k
k + L2, ω)

+
k−1∑
p=0

(−1)p(n− 2p)ζ(s,∆n−2k
p , ω)

What’s important is the conformal

covariance, and the precise conformal

weights. We arrive at:

τk(ĝ)− τk(g) = Hkloc(ĝ, g) +Hkglob(ĝ, g)

= ck

∫
ω(Q̂ + Q) +

∫
(F̂k −Fk)

+
k∑

p=0

(−1)p log[ĝ : g]2p,k.
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For k = 0, the detour torsion is just the det.

of the critical GJMS operator. Otherwise it

may be viewed as a kind of det. of the

non-elliptic Lk (which is the Maxwell δd when

k = n/2− 1).

There are many natural elliptic complexes in

the conformally flat (CF) case – the gBGG

diagrams. For conformal geometry, these

have the shape

6666

• - • · · · • - •�
���

@
@@R

•

•

@
@@R

�
���

• - • · · · • - •

There are n+ 2 dots in all in such a

regular diagram . In the de Rham complex

the zenith and nadir of the diamond hold the

self- and anti-self-dual middle forms.
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The longest arrow in the de Rham complex is

the critical GJMS operator. All compositions

can be made (density weights match up), but

all are 0 in the CF case except one (linear

combination of the two) around the diamond

– this is also the shortest long arrow.

Sometimes the behavior of a complex can be

concluded by an assumption weaker than

conformal flatness.

In the flat (Sn) case, the arrows are

differential intertwining operators for

representations of the conformal group

SO0(n+ 1,1), or its cover Spin0(n+ 1,1).

The representations involved are induced

from representations of the maximal parabolic

subgroup MAN for which the nilpotent part

N acts trivially.
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The representations are parameterized by an

M weight and an A weight. Since m = so(n),

the M parameter takes the form

[λ1, · · · , λn/2], where all λa are integral, or all

are properly half-integral, and

λ1 ≥ λ2 ≥ · · · ≥ λn/2−1 ≥ |λn/2|.

Such a the tuple λ is dominant ; it gives the

coefficients when the highest weight of the m
module is expanded in the positive weights of

the defining representation of so(n). The

a-weight can be any complex number; but

according to the classification of invariant

differential operators

[Boe-Collingwood, J. Algebra and Math. Z. 1985],

only values in 1
2Z can occur in the source or

target for invariant differential operators.

Furthermore, the (a,m) weight

[λ0|λ1, · · · , λn/2] cannot occur for a differential

operator unless λ0 − λ1 ∈ Z.
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The (a,m) weights are partitioned into orbits

under the affine Weyl group . The rho-shift

of [λ0|λ1, · · · , λn/2] is(
λ0 +

n

2
|λ1 +

n− 2

2
, λ2 +

n− 4

2
, · · · , λn/2 + 1, λn/2

)
.

We shall use round vs. square parentheses to

distinguish rho-shifted vs. not.

(µ0|µ) ∼ (ν0|ν)

iff the (n/2 + 1)-tuples involved differ by a

permutation and an even number of sign

changes. An affine Weyl orbit is regular iff

the absolute values of the n/2 + 1 entries are

distinct.
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All regular affine Weyl orbits have n+ 2

elements which may be arranged as in the

diagram,

6666

• - • · · · • - •�
���

@
@@R

•

•

@
@@R

�
���

• - • · · · • - •

in a unique way so that the weights (µ0|µ),

are lexicographically decreasing as we move

to the right or down, and all tuples to the

right of the bar are strictly dominant

(dominant with > signs).

By a theorem of Harish-Chandra, all

intertwining operators (for principal series

representations of Spin0(n+ 1,1)) must pass

between bundles in the same affine Weyl

orbit.
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The Boe-Collingwood classification says that

all differential intertwinors in a regular orbit

pass between the bundles in the positions

indicated in the picture above, and

furthermore, there is a unique (up to constant

multiples) nonzero differential intertwinor on

Sn corresponding to each arrow.

In addition, still in the flat case, any

composition of two arrows (with the

exception of one linear combination of the

arrows around the diamond, corresponding to

the shortest long operator ) vanishes, and

the leading symbol complex at any such

composition (including a the composition of a

long and short operator) is exact.
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For the complex of short arrows or for any

detour complex, in any conformal class where

they are complexes (in particular flat

conformal classes), one gets a detour torsion

with the coefficient list

cp =


(−1)p2µ(p)

0 , p < k,

0, p ≥ k.

Again the detour torsion quotients

(differences) are of the form

τk(ĝ)− τk(g) = Hkloc(ĝ, g) +Hkglob(ĝ, g)

= ck

∫
ω(Q̂ + Q) +

∫
(F̂k −Fk)

+
k∑

p=0

(−1)p log[ĝ : g]2p,k.
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where now the U giving the variation of the

local term is built from the kappa with these

coefs. The correct coefs. (conformal weights)

emerge from the global calc. so the coefs.

above on the global term again become ±1.

Some things that have not been noted in this

quick summary are:

• The problem with orders of operators

appears again, even if we don’t take a

long detour – the coboundaries may have

all kinds of different orders. To get

elliptic Laplacians, we level the orders by

taking a common multiple.
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• Some of these gBGG are not amenable to

this because the duals of the bundles in

the beginning of the complex are not the

bundles at the end – the duals live in a

different gBGG. The “bad” gBGG in this

sense are those in dim. 4k with no 0 entry

in the weight. This other gBGG has the

same |weights|, but with the other parity

of negative ones – so the bad ones come

in pairs. We get these into the detour

torsion game anyway by ⊕ing the pair of

gBGGs involved.
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