Algorithms and Score Functions Used in PEAKS *De Novo* Sequencing Software

Bin Ma Dept. of Computer Science University of Western Ontario London, Ontario, Canada

Background

Procedure

<u>PEAKS (Bioinformatics Solutions)</u> <u>Lutefisk (free software)</u> <u>Mascot (Matrix Science)</u> <u>Sequest (Thermo)</u> Score function! Score function! Score function!

- A score function evaluates how well a sequence fits the spectrum
- An *ideal* score function gives the highest score to the real sequence
- Database search can be done
 - by scoring every peptide in the database
- *De novo* sequencing can be done
 by scoring every possible sequence (brute-force)

Algorithm! Algorithm! Algorithm!

the brute-force algorithm

Sequence length	# possible sequences	Time (1 billion per sec)
10	2010	3 hours
15	2015	1000 years
20	20 ²⁰	100000000 0 years

- Efficient algorithms exist to compute the sequence with highest score without enumerating all sequences.
- For some scoring functions at least

You need not only statisticians, but also computer scientists.

Dilemma! Dilemma! Dilemma!

- Simple score functions
 - efficient algorithms to compute the best-scoring sequence
 - the best-scoring sequence may not be the real sequence.
- Sophisticated score function
 - the best-scoring sequence is more likely the real sequence
 - no efficient algorithms to compute the best-scoring sequence

Our Solution

- Use a simple score function to compute 10000 best-scoring candidate sequences
- 2. Use a sophisticated score function to evaluate each of the 10000 candidates

PEAKS algorithm

- A novel algorithm based on dynamic programming.
 - B. Ma, K. Zhang, C. Liang, Journal of Computer and System Sciences. (main algorithm)
 - B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li, A.
 Doherty-Kirby, G. Lajoie, Rapid Comm. Mass Spec.
 (software feature, score function, experiments)
 - Downloadable from my home page.

How MS/MS corresponds to peptide

Put both together

In practice, there are many more peaks other than b and y peaks Many b and y peaks may disappear.

PEAKS' score function basic

• Score of one y-type matching

• PEAKS score is equal to the weighted sum of all peaks in consideration.

PEAKS' score

- The "simple" score is called raw score, it uses all the "terminal" ions
 - a, b, c, x, y, z ions.
 - y, b losing H2O and NH3 ions
- The "sophisticated" score is called fine score, which uses
 - the terminal ions
 - internal cleavage ions, and losing H2O and NH3 forms
 - immonium ions

Better scoring since PEAKS 2.4

100

754.42 b6

- Fragmentation is usually not perfect.
- Some signal peaks are low
 But still higher than most peaks.

A Second Independent Score Function

- We propose to use the "rank" of the peak instead of intensity.
- Statistics were done on the rank distribution of different types of ions.
- Scores were given for a y-ion being ranked at 1st, 2nd, 3rd,
- The summation of all the y,b, internal,... ions is the total "rank score".
- PEAKS 2.4 adds this "rank score" with the original score.

Comparison

• Testing data: 61 spectra/sequences, total 764 amino acids.

	Typical other software	PEAKS 2.3	PEAKS 2.4
Correct sequence	7	13	23
Correct tags of length >= 5	24	38	50
Correct AA	233	457	559

Absolute score v.s. confidence score

- An absolute score is meaningless to a human.
 - E.g. longer peptides have larger score even if the sequence is incorrect.
- For each spectrum, PEAKS compares the scores of its best 1000 sequences, and estimate a confidence value for each of them.
 - The summation of the confidence is equal to 1.
 - The bigger the difference between the first and the second sequences, the larger the confidence for the first sequence.

PEAKS' positional confidence

Protein identification since PEAKS 2.0

Advantages

- Compare score of best DB sequence with best de novo sequence
 - If the DB sequence's score is much smaller than the de novo sequence, then it is no good.
- Smaller protein "database" allows to spend more time to try different PTMs.

Clustering proteins

- A protein has many homologues in a database.
- If protein X has many peptides matched, then its homologues also have some/many peptides matched.
- PEAKS clusters all the proteins into groups of homologous proteins.

Other important factors to consider

- Preprocess the MS/MS spectra
 - Deconvolution, noise reduction, and signal enhancement.
- Recalibration
 - compress/stretch the spectrum for calibration error
- File formats
 - pkl, mgf, dta, mzxml,wiff, raw,

Acknowledgement

Bin Ma Kaizhong Zhang

Gilles Lajoie Amanda Doherty-Kirby Cunjie Zhang

Ming Li

L. Guo, C. Hendrie, C. Liang, Z. Wang, W. Zhang, W. Yang, W. Chen, I. Rogers, C. Wigmore.