Workshop on Data Analysis and Data Mining in Proteomics

Detecting False Positives and False Negatives in Protein Interactome using Network Topology

See-Kiong Ng Knowledge Discovery Department, I²R 12 May 2005

Are we there yet?

	Coverage	Data quality
DNA genome sequence	99% of genome sequence	99.9% correct
mRNA profiling	80-90% of transcripts represented	90% of spots are good data
Protein interaction data	10-30% of interactions catalogued	50-70% of interactions are spurious

False Positives

Unravelling the Protein-Protein Interactome

Part I:

The False Positive Challenge

How reliable are experimentally-derived protein interactions?

Some high-throughput protein interaction experiments, such as the popular Y2H method, have as much as <u>50%</u> false positives.

Sprinzak et al., JMB, 327:919-923, 2003

Interaction Pathway Reliability

Conjecture:

"An interaction that is associated with an alternate path of reliable interactions is likely to be reliable."

- Biological functions are typically performed by highly interconnected networks of interactions
- Circular contigs are frequently observed in protein interaction and complex data
- Alternate paths are also observed in many real-world networks

Use alternative interaction paths as a measure to indicate functional linkage between the two proteins

Interaction Pathway Reliability

IRAP: Interaction Reliability by Alternate Pathway

A novel **global topology** measure for assessing interaction reliability computationally

$$I\!RAP^{\emptyset}(X\leftrightarrow Y) = \max_{\phi\in\Phi^{\varphi}(X,Y)} \prod_{\{U\leftrightarrow V\}\in\phi} \left(1-\frac{ig^{\emptyset}(U\leftrightarrow V)}{ig^{\varphi}_{\max}}\right)$$

where $ig_{\max}^{\mathcal{G}} = \max\{ig^{\mathcal{G}}(X \leftrightarrow Y) \mid (X \leftrightarrow Y) \in \mathcal{G}\}$ is the maximum *IG1* value in *G*, and $\Phi^{\mathcal{G}}(X, Y)$ is the set of all possible non-reproducible paths between *X* and *Y*, but excluding the direct path *X*« *Y*.

Discovering Biologically Interacting "Cross-Talkers"

- From our co-localization experiment, we also observed that there are 257 non-co-localized protein pairs with high IRAP (>0.95)
- A large proportion (53%) of these cross-talking pairs have the same MIPS functional annotation, suggesting that they could be *biologically interacting cross-talkers* such as those in signal tranduction pathways

ProteinA	Cellular Localization	ProteinB	Cellular Localization	Functional Pathway	
YDR299w	nucleolus-protein	YLR208w	cytoplasm-release of	Vesicular transport	
	transport		transport vesicles from ER	(Golgi network)	
YOL018c	endosome, ER-	YMR117c	spindle pole body-	Cellular import	
	syntaxin SNARE		spindle pole component		
YDL154w	nucleus-recombination	YBR133c	cytoplasm- neg.	Meiosis	
			regulator of kinase	and budding	
YGL192w	nucleus-put. Adenosine	YBR057c	cytoplasm-meiosis	Development of	
	methyltransferase		potentially in premeiosis	asco-basido	
	for sporulation		DNA synth	-zygo spore	
YDR299w	nucleolous- protein	YPL085w	cytoplasm,ER-veiscle coat	both in vesicular	
	transport		protein interacts cytoplasm,	transport	
			with sec23p		
YEL013w	vacuole-phosphorylated	YFL039c	cytoskeleton-actin	Protein targeting	
	protein which interacts with			and budding	
	Atg13p for cyto to vacuole				
	targeting vacuole targeting				

Examples of interactions with high IRAP values (≥ 0.95) between non-co-localized proteins ("cross-talkers") involved in the same cellular pathway

False Negatives

Unravelling the Protein-Protein Interactome

Part II:

The False Negative Challenge

Approach

- Use the Alternative Path Model to detect false negatives in an experimental PPI network:
 - Compute an IRAP value for each *unlinked* protein pair in the network
 - If it has a high IRAP value, then it may be a false negative

Experiment

Dataset

- 10,199 non-redundant interactions between 4,336 yeast proteins from MIPS with date Jan. 18, 2005
- "Verified true" interactions in PPI network
 - Ito. core set (833 interactions)
- Apply IRAP on dataset with the 833 true interactions hidden from the program
- IRAP program re-discovered 730 interactions

Results

Subcellular Localization	Protein Pairs										
		YDL1S0W	YL R287 C	YPR173C	YOR275C	YDR259C	YDR311W	YGL 153W	YOR180C	YOR327C	YDL
725	YDL130W		0.97403			0.97403					
	YL R287C										
72.6/7.60	YPR173C				0.97419						
	YOR276C									••	
750	YDR259C						0.97403	0.96154		0.98701	0.9
	YDR311W							0.96138		0.96138	
760	YGL153W								0.98701	0.97419	0.5
	YOR180C										
750	YOR327C										0.5
	YDL226C										

Conclusions

- There are latent local & global network "motifs" that indicate the likelihood of protein interactions
- These network "motifs" can be exploited in computation elimination of *false positives* and *false negatives* from high-throughput Y2H experiments and possibly other highly erroneous interaction data
- IRAP is so far the most effective topologically-based computational measure for assessing the reliability (false positives) of proteinprotein interactions detected by high-throughput methods
- IRAP can also discover new interactions (false negatives) not detected in the experimental PPI network

References

J. Chen, W. Hsu, M.L. Lee, S.-K. Ng (2004) "Systematic Assessment of High-Throughput Experimental Data for Reliable Protein Interactions using Network Topology", in Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004), November 15-17, Florida, pages 368-372.

J. Chen, W. Hsu, M.L. Lee, and S.-K. Ng (2005) "Discovering Reliable Protein Interactions from High-Throughput Experimental Data using Network Topology", accepted for publication in *Artificial Intelligence in Medicine*.

