## Connectivity of Random Geometric Graphs

Paul Balister, Béla Bollobás, Amites Sarkar* (University of Memphis) and Mark Walters (Trinity College, Cambridge).

Let $\mathcal{P}$ be a Poisson process of intensity one in a square $S_{n}$ of area $n$. We construct a random geometric graph $G_{n, k}$ by joining each point of $\mathcal{P}$ to its $k$ nearest neighbors. Recently, Xue and Kumar proved that if $k=0.074 \log n$ then the probability that $G_{n, k}$ is connected tends to zero as $n \rightarrow \infty$, while if $k=5.1774 \log n$ then the probability that $G_{n, k}$ is connected tends to one as $n \rightarrow \infty$. They conjectured that the threshold for connectivity is $k=$ $\log n$. We improve these lower and upper bounds to $k=0.3043 \log n$ and $k=0.5139 \log n$ respectively, disproving this conjecture. We also establish lower and upper bounds of $k=0.7209 \log n$ and $k=0.9967 \log n$ for the directed version of the problem.

