Connectivity of Random Geometric Graphs

Paul Balister, Béla Bollobás, Amites Sarkar^{*} (University of Memphis) and Mark Walters (Trinity College, Cambridge).

Let \mathcal{P} be a Poisson process of intensity one in a square S_n of area n. We construct a random geometric graph $G_{n,k}$ by joining each point of \mathcal{P} to its k nearest neighbors. Recently, Xue and Kumar proved that if $k = 0.074 \log n$ then the probability that $G_{n,k}$ is connected tends to zero as $n \to \infty$, while if $k = 5.1774 \log n$ then the probability that $G_{n,k}$ is connected tends to one as $n \to \infty$. They conjectured that the threshold for connectivity is $k = \log n$. We improve these lower and upper bounds to $k = 0.3043 \log n$ and $k = 0.5139 \log n$ respectively, disproving this conjecture. We also establish lower and upper bounds of $k = 0.7209 \log n$ and $k = 0.9967 \log n$ for the directed version of the problem.