October 29, 2006 Master Review Vol. 9in x 6in — (for Lecture Note Series, IMS, NUS) Branch

BRANCHING PROCESSES

Paul Balister
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, USA
E-mail: pbalistr@memphis.edu

We introduce the basic theory of Galton-Watson branching processes,
and the probabilistic tools needed to analyse them. The aim is to give
a basic treatment of branching processes, including results on the lim-
iting behaviour for subcritical, critical, and supercritical processes. We
introduce just enough probabilistic theory to make the results rigourous,
but avoid unnecessary technicalities as far as possible. We also include
some results on multi-type processes, and an elegant connection with
branching numbers of trees.

1. Notation and Preliminaries

In this article we shall be dealing with random processes, and so will be
relying heavily on notation and results from probability theory. We shall
start by summarising some probabilistic notation and tools in this section,
while in Section 2 we shall define and begin the study of branching pro-
cesses. Readers familiar with probability theory may therefore safely skip
this section.

1.1. Probability models

In general, we describe random processes by use of a probability model. This
consists of a (typically very large) set Q of outcomes, one element w €
of which we assume has been picked by “fate”. Every detail of our random
process is determined by the choice of w. When we ask questions about our
process we are asking for some information about w. The simplest type of
question is a Yes/No type question, which we shall call an event. Mathe-
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matically we describe an event as a subset F of the set of all outcomes ().
Informally F is the set of outcomes for which the answer to our question is
“Yes”. Thus if w € F then we say that the event E occurred, while if w ¢ FE
then we say that E did not occur. For example, if we toss a coin, we can
obtain either heads (H) or tails (T). If we toss two coins, then there are four
possible outcomes: @ = {HH,HT,TH,TT}. One possible event is E = {we
have at least one head} = {HH,HT,TH}, another event is E = {the coins
showed the same face} = {HH,TT}.

More general questions may result in a value, say a real number. These
we can describe as a function X: Q — R, which for each outcome w gives
a value X (w). For example, in the case of the two coin tosses above, X (w)
might be the number of heads. The function X is called a random variable.
We usually denote random variables by capital letters X, Y, Z, and omit
the dependence on w when writing, for example, X + Y = X(w) + Y (w).
Given a random variable X, one can construct events such as {X < 5} =
{w € Q| X(w) < 5} etc.. Once again, we usually omit the reference to w.
For example, in the above example of two coin tosses, and with X denoting
the number of heads, we have {X < 2} = {HT,TH,TT}. Conversely, given
an event F/ we can define a random variable, called the indicator function
of F by

E =

_J1 if E occurs;
0 if F does not occur.

Or, more formally, 1g(w) =1ifw € F and 1g(w) =0ifw ¢ E.

Finally, we specify the probability of each event E, denoted by P(E), as
a real number between 0 and 1. Heuristically, this represents the proportion
of times the event should occur in many occurrences of the model. These
probabilities satisfy the following laws:

P1.
P(®) =0, and P(Q)=1.

P2. If Ey and Es are events with Ey C FEs (i.e., if Ey occurs then so
does Es), then

P(E;) < P(Es).

P3. If Ey and By are disjoint, E; N Ey = 0 (so E; and F5 can’t both
occur simultaneously), then

P(either Ey or FEy occurs) = P(Fy U Ey) = P(E;) + P(Es).
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P4. If E; C E, C E3 C ... is a increasing nested sequence of events
then

P(at least one E,, occurs) = P(U,—, Ey) = lim, .o P(Ey,).

P5. If E1 D E5 D E3 D ... is a decreasing nested sequence of events
then

P(all E, occur) =P, Ey) = lim, oo P(E,).

n=1-"—""

As a consequence of P3 and P4 one can show

P6. If Ey, B, ... are pairwise disjoint events, E; N E; = for all ¢ # j,
then

P(Uzo; Ez) = 221 P(Ez)

Properties P4, P5 and P6 are sometimes referred to as continuity of
probability. Note that in P4 and P5, P(E,,) is a bounded monotonic sequence
of real numbers, so the limits on the right do indeed exist.

Technical Note: If €2 is finite (or countably infinite), then one can just
define P(E) as the sum of the probabilities P({w}) of each outcome w € E.
For uncountably infinite 2 this is in general not possible. Moreover, it
is generally not possible to satisfactorily define the probability for every
subset E of ). Instead we restrict our events to only some subsets of 2.
The collection F of these valid events will form a o-field: it will be closed
under any finite number of set operations, as well as countable unions and
intersections. In all our examples, essentially any property one can write
down about w will be in F, so we usually ignore this technicality. To make
everything precise in full generality needs knowledge of measure theory,
which we will try to avoid as much as possible in these notes. See [6] for
more details.

We say an event F occurs almost surely if P(E) = 1. This is not quite
the same as saying E always happens (E = ), but as the probability of it
not happening is zero, P(Q\ E) = 0, it is the next best thing.

1.2. Expectation

For a random variable X that is discrete, i.e., takes only finitely or countably
many real values {t1,ts, ... }, we can define the expectation or average value
of X by

E(X) =Y tP(X =t;), (1.1)
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in other words, E(X) is the average of the values taken weighted by the
probability that they occur. If infinitely many values are possible then we
must be careful about convergence of this sum. In the case when X >
0 (always, i.e., all t; > 0), then the sum either converges to some ¢ €
R or tends to infinity. In these cases we write E(X) = ¢ or E(X) = oo
respectively. If X can be negative then we need the sum to be absolutely
convergent (E(]X|) < oo0) to make the sum independent of the order of
summation. If E(]X|) = oo then we say E(X) diverges.

Sometimes we allow oo as a value for X, in which case we use the
convention that co -0 = 0 in (1.1). In this case E(X) will diverge unless
P(X = t+o00) = 0. It is worth remembering though that even if X is almost
surely finite, E(X) can still diverge.

For random variables that take a continuous range of values the defini-
tion of the expectation is a bit more technical. One can often represent the
expected value as some type of integral, but perhaps the simplest definition
is to define it as the limit of approximate expectations

oo

E(X)= lim Y £LP(L<X <)
,—>ooi=_OO

We have the following properties of expectation.

El. For any event F, P(F) = E(1g).

E2. E(X+Y)=E(X)+E().

E3. E(AX) = AE(X) for any (non-random) constant \.
E4. If X <Y then E(X) < E(Y).

E5. E(|X]|) = 0 if and only if X = 0 almost surely.

Using E2 and induction one can swap any finite sum with expectations:

E(ZZL:I X”) = Z?:l E(Xn)v

however, for infinite sums we have > 2 | E(X,,) # E(}_,2, X,,) in general.
Indeed, in general lim, ., E(X,) # E(lim,_. X,). There are however
some important cases when we can swap limits or infinite sums with expec-
tations (see [6] for more details).

Monotone Convergence Theorem (MCT): If X,, n € N, are random
variables such that 0 < X; < X, < ..., then

E( lim X,) = lim E(X,). (1.2)

n—o0 n—00
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Tonelli’s Theorem?: If X,, > 0 then
E( a1 Xn) = 2021 E(Xy). (1.3)
Proof that MCT=-Tonelli: Apply MCT to Y,, = Z:Zl X, (]

Note that the limits and sums in MCT and Tonelli may be non-negative
real numbers or +o0.

Dominated Convergence Theorem (DCT): If X,,n € N, and Y are
random variables such that | X,,| <Y, E(Y) < oo, and lim,_,o X,, exists
almost surely, then

E( lim X,)= lim E(Xp,). (1.4)

Fubini’s Theorem®: If Y ° E(|X,|) < co then
E( o1 Xn) = 302 E(Xn). (1.5)

Proof that DCT=-Fubini: Apply DCT to Y,, = >/ | X, and ¥ =
>0 | Xn|, using Tonelli to show that E(Y) < oo, and noting that
P(lim,, o Y, exists) > P(3°07 ;| X,| < oo) = 1 since E(Y) < oo. O

Note that the limits and sums in DCT and Fubini will be necessarily
finite.

One can also easily generalise both the MCT and DCT to the case of
a parameterised collection of random variables indexed by real numbers
{X;:teR, t>0}.

The following observation is often very useful.

Markov’s Inequality: If X > 0 and ¢ > 0 then

E(X)

P(X >¢) <
c

(1.6)

Proof: If X > 0 then cljx>, < X, so E(cllix>c) < E(X). But
E(cll{x>c) = cP(X > ¢),s0 P(X > ¢) < @. O

1.3. Conditional Probability

Often we talk about conditioning on some event E (which we shall assume
has non-zero probability). Intuitively, this means we are assuming that F

aActually, just a very special case of Tonelli’s/Fubini’s Theorem.
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occurs and rescaling our probability to this part of 2. We define the condi-
tional probability of A conditioned on E by
P(ANE)
P(E)

It can be easily checked that P(A | E) gives a probability model on the set
of outcomes Q) = E, where we ignore any outcomes that don’t lie in E. If
we have a partition of = F1UE>U. .. into (finitely or countably infinitely
many) disjoint events E,, then one can recover the probability of any event
A by taking a weighted average of the conditional probabilities

P(A| E) = (L.7)

(To see this, use P6 to write P(A) = >, P(AN E,) and then use (1.7).)
Similarly we can define conditional expectation as expectation in the new

model P(- | E):
E(X1p)
E(X|FE)= ——-—-2
(X1 B) = “55;
Once again, if @ = FyUFE5U. .. is a partition of €2 into disjoint events then
E(X) = Y E(X | B.)B(E,). (18)

We can also define the idea of conditioning on a random variable Y, by
defining E(X | Y') as a random variable that for each y € R takes the (non-
random) value E(X | Y = y) whenever Y = y. There are some technical
issues here, since this is undefined whenever P(Y = y) = 0. However, this
does not cause problems as long as Y is discrete, i.e., when Y takes only
finitely or countably many distinct values. Using this notation, we have the
following terse (but somewhat cryptic) reformulation of (1.8):

E(X) = E(E(X | Y)). (1.9)

Even when Y is not discrete, it is possible to define a random variable
E(X | Y) so that it is a function of Y and (1.9) holds. However, the proof
of this belongs to a course on measure theory, so we omit the details here
(see for example [6]).

1.4. Independence
We say two events E7 and Fs are independent if

P(E; and Ej both occur) = P(Ey N Ey) = P(E,)P(E2).
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More intuitively, this is equivalent to P(E; | Ey) = P(E;) and P(Esy | E) =
P(Es), i.e., knowing one event has occurred does not make it any more
or less likely that the other has occurred. We say a random variable X
is independent of an event F if every event constructed from X (such as
{X < 1}, {X € (2,5)}, etc.) is independent of E. Similarly, two random
variables X and Y are independent if every event constructed from X is
independent of every event constructed from Y. More generally, a collection
of events and/or random variables is independent of another collection of
events and/or random variables, if every event constructed using informa-
tion from the first collection is independent of any event constructed using
information from the second collection.
For independent random variables X and Y we have
E(XY) =E(X)E(Y)

provided the right hand side is well defined. Note that this does not hold
in general for non-independent random variables. As a particular example
E(X?) # (E(X))? unless X is almost surely a constant. Indeed, if one
defines the variance of X by

Var(X) = E((X — 1)?)
where p = E(X) then Var(X) is clearly non-negative, and (by property E5)
it is strictly positive unless X = p almost surely. However,
E(X — p)?) = E(X? = 2uX + %)

= E(X?) = 2uE(X) + p?

= E(X2) - u’za
SO

Var(X) = E(X?) — (E(X))?
is the difference between E(X?) and (E(X))?2.
In general for any (not necessarily independent) X and Y, we have at

least the following useful bound on E(XY).
Cauchy-Schwarz Inequality:

(E(XY))? <E(X?)E(Y?). (1.10)

Proof: For any constants «, 3, we have (X — 8Y)? > 0. Thus
0 <E((aX — BY)?) =E(a*X? + 3*Y? — 2aXY)
= o’E(X?) + B*E(Y?) — 2a8E(XY).
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Hence
208E(XY) < o®E(X?) + BE(Y?).

If 0 < E(X?),E(Y?) < o0, set a = (E(X?))"Y2 and g = (E(Y?))"V/2.
Then

2E(XY)
<141=2
EX2)2EY) 2 =
or BE(XY) < (E(X?))2(E(Y?))'/2. Squaring both sides gives the result.
If E(X?) = 0 then X = 0 almost surely, so E(XY) = 0 and the inequality

still holds. Similarly for E(Y?) = 0. If E(X?) = oo or E(Y?) = oo then the
result is automatic. D

Finally, we show that for independent random variables, the variance is
additive.

Lemma 1.1: If X and Y are independent then
Var(X +Y) = Var(X) + Var(Y).

Proof: If X and Y are independent then E(XY) = E(X)E(Y). Thus
Var(X+Y) =E(X+Y)?) — (E(X+Y))?
=E(X?+2XY+Y?) — (BE(X)+E(Y))?
=E(X?4+Y?)42E(XY) —(E(X))? —2E(X)E(Y)—(E(Y))?
=E(X?) +E(Y?) - (E(X))? - (E(Y))?
= Var(X) + Var(Y). O

1.5. Probability Distributions

Suppose X is a discrete random variable, so X takes only finitely or count-
ably infinitely many values {t1,to,...}. Then one can describe the proba-
bility of any event depending only on X just by specifying the probabilities
pt, = P(X =1t;) for each t;. We say that the probability distribution of X is
given by the real numbers py,, ¢ = 1,2,.... If X takes uncountably many
values then this approach is not sufficient, since it may be the case that
P(X =t) = 0 for every t € R. One can however describe the probability
of any event depending only on X in terms of the cumulative probability
distribution function

F(c) =P(X < o).
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The function F'(c) is not arbitrary, for example it is clear that F'(c) is an
increasing function of ¢. Moreover, by continuity of probability
lim F(z) = lim F(c+ 1)
z—ct n— o0 n
=P(N{X <c+3})
=P(X <e¢),

SO

lim F(z) = F(c), (1.11)

r—ct

i.e., F'(c) is right-continuous. Now

lim F(z) = lim F(c— 1)

T—c— n— o0

=P {X <c—3})
=P(X < o).

Thus
P(X=c¢)=P(X <¢)-P(X <¢)=Fl(c)— lim F(z),

r—c—

so F' is continuous at z = ¢ if and only if P(X = ¢) = 0. Similarly, one has

lim F(z)=0 and lim F(z) =1. (1.12)

T— —00 r——+00

Indeed, it can be shown that any function F(z) satisfying (1.11) and (1.12)
is the cumulative probability function of some random variable. Sometimes
F(z) is differentiable, in which case we call the derivative f(z) = F'(x)
the probability density function of X. If f(x) exists then we can recover the
probability of events depending of X by integration. For example

b
Pla < X < b) = / F(@)dz = F(b) — Fla).

It is worth noting however, that even if P(X = ¢) = 0 for all ¢, it does not
necessarily follow that the probability density function exists. It is possible
that F'(c) is continuous, but not differentiable.

2. Galton-Watson Processes

Suppose at time 0 we have a single bacterium, and at each time step a
bacterium randomly either divides or dies. How would we expect the pop-
ulation of bacteria to grow? Similarly, imagine an outbreak of an infectious
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disease in a large population. Initially there is just one infected individual,
and each infected individual infects a random number of other individuals.
Would the disease spread, and if so, how quickly?

We can model the above questions with a Galton- Watson branching pro-
cess: we specify some probability distribution (pg)32, on N={0,1,2,...},
so pr, > 0 and > .- pr = 1. Now define random variables Z,, by setting
Zo = 1 and for n > 0 letting Z,,11 be a sum of Z, independent random
variables &;, 1 < ¢ < Z,,, where each & has the probability distribution
given by (pr)72, i-e., P(§; = k) = pi. The variable Z,, then represents the
number of bacteria or infected individuals at time n.

Equivalently, we can represent the process as a random Galton- Watson
tree. We start with a node (vertex) vy and then inductively declare each
node to be joined to a number of child nodes. The number of such nodes is
random with probability distribution (p);2,, and the number of children
of a node is independent of the choice of the number of children of all the
other nodes. The random variable Z,, is then just the number of nodes at
level m, i.e., the number of nodes that are at graph distance n from vy (see
Figure 1).

The process (Z,)52, we have constructed is a Markov Chain: the value
of Z,,+1 depends on the previous values Zy, ..., Z, only via the value of Z,.

First we shall consider some qualitative arguments about this process
using basic probability estimates and fairly simple but general methods.

There are two distinct possibilities: either Z,, > 0 for all n, in which
case we say the process survives; or for some n, Z, = 0, in which case
Zm = 0 for all m > n. In this case we say the process dies out or becomes
extinct. The probabilities of these events obviously depend on the choice of
the distribution (pg)52 -

If we wish to estimate Z,, our first attempt should be to look at the
average, or mean E(Z,), of Z,.

Lemma 2.1: E(Z,) = p™ where p =Y ;- kp is the mean of the distri-
bution (pr)7o-

Proof: If we condition on the event Z,, 1 = k then Z,, is the sum &; +
-+ + & of k random variables, each with mean . Hence,

E(Zp | Zpny=k) =R+ +&) =E&) + - +E(&) = kp.
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Vo Zo=1
Z1=2 (=2)
Zy=4 (=143)

Z3=3 (=042+0+1)

Z4=3 (=241+0)

Fig. 1. A Galton-Watson tree.

Thus

E(Zn) =Y B(Zy | Zn-1 = k)P(Zn_1 = k)
k=0

= pkP(Z,_y =k)
k=0

= /,LE(Zn_l)

The result follows by induction on n since E(Zy) = 1. O
Corollary 2.2: If u <1 then the process (Z,)22, almost surely dies out.

Proof: If (Z,,)22, survives then Z,, > 0 for all n, and for any value of Z,,
Iyz,>0y < Zy,. Hence, for all n,
P(survives) < P(Z, > 0) = E(1{z,>0) < E(Z,) = u".
But ™ — 0 as n — 00, so P(survives) = 0. O
Let T = inf{n : Z, = 0} € [0, 0] be the time to extinction. Corollary 2.2

says that if 4 < 1 then T' < oo almost surely. In fact we can strengthen this
to the following.

Corollary 2.3: If u <1 then E(T) < oc.

Proof: Note that Zy, Z1,...,Z7—1 > 0 and Zr, Zr41,--- =0, so
T=1izy50y +t Liz;50y + < Zo+Z1+Za+--.
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Since all the Z; are non-negative, E(}_, Z;) = >, E(Z;) (by (1.3)). Thus

ET)<E(Zy+Z1+...)
=E(Zy)+E(Z1)+ ...
=14p+p+...

_ 1
—17#<oo. -

Now consider the case when p > 1. Then E(Z,,) / 0. However this does
not imply that Z,, /4 0. Indeed, in the case when g = 1 we shall show that
the process still dies out almost surely.

Lemma 2.4: If p; < 1 then almost surely either (Z,)22, dies out or
Zp — 00 aS N — 00.

Note: if p; = 1 then each node in the Galton-Watson tree has exactly one
child, so Z,, =1 for all n. We shall usually exclude this trivial case.

Proof: Fix k£ > 0 and condition on the event Z,, = k. If pg > 0 then with
probability p§ we will have Z,,+1 = 0, and so Z,, = 0 # k for all m > n.
If pg = 0 then Z,, is non-decreasing in n, since every vertex in the Galton-
Watson tree necessarily has at least one child. But with probability 1 — pq,
the first vertex at level n will have more than one child, so Z,,+1 > Z,. But
in this case Z,, # k for all m > n. Thus in general there exists a v > 0
such that

PYm>n:Zy, #k|Z,=k) > 1. (2.1)

Fix k£ > 0. Let E; be the event that Z, = k occurs at least i times and
E the event that Z,, = k occurs infinitely often. Intuitively, (2.1) suggests
that for any ¢ > 0, if we have seen a value ¢ times, then with probability
at most 1 — v will we ever see it again. Equivalently, P(E;11 | E;) <1 —1.
Let us check this more rigourously.

The event E; is a disjoint union of all the events of the form

Ei,(al,...,an,l) = {Zn = kyzn—l =ap_1,.-..,241 = a1}7

where exactly i — 1 of the numbers a1, ...,a,_1 are equal to k and n ranges
over all non-negative integers. Conditioned on any one of these events, E; 11
occurs with probability at most 1 —~. Thus

]P)(Ei—l—l N Ei,(al,.“,an,l)) S (]- - ’Y)P(Ei,(al,...,an,l))
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Adding these inequalities over all the (disjoint) sub-events FEj (4, a,_,)
gives

IP(EH‘l n Un,(alp..,an,l)Ei»(al7--*7a7171))
< (1 - ’Y)]P)(Un,(al,.“,an,l) Ei,(alwwan—l))'
or more simply

P(Eit1) =P(Eip1 NE;) < (1 —7)P(E;). (22

~

Hence indeed it is true that P(E; 11 | F;) < 1 —~. But P(Fy) < 1, so
by (2.2) and induction on i, P(E;) < (1 — ). Now P(Ey) < P(E;) <
(1 —5) !t for all i > 0 and so P(E.,) = 0. Now consider liminf,, ., Z,.
If liminf,, .. Z, = k then Z,, = k occurs infinitely often, which we know
cannot happen if k > 0. Thus with probability 1, liminf, . Z, € {0, c0}.
If liminf,,_, . Z, = 0 then Z,, = 0 for some n, and so the process dies out.
If liminf, . Z, = oo then Z,, — co. The result follows. ]

Corollary 2.5: If p1 <1 and k > 0 then P(Z,, = k) — 0 as n — co.

Proof: Z, = k for infinitely many n if and only if, for all n, there is an
m > n such that Z,, = k. In terms of events this gives

{Z,, = k infinitely often} = m {Z,, =k for some m > n}.
n=0
Since P(Z,, = k infinitely often) = 0, continuity of probability gives

P(Z,, =k for some m >n) -0 as n — oo.

But {Z,, = k} C {Z,, = k for some m > n} so the result follows. O
Corollary 2.6: If pn=1 and p1 <1 then (Z,)32, dies out almost surely.

Proof: Fix k > 0. Then by Markov’s inequality, P(Z,, > k) < % =
But for each i = 1,...,k, P(Z, = i) — 0 as n — oo, so for sufficient
large n (depending on k), P(Z, = i) < 2 for each i =1,2,...,k. Then

— =

y

P(Zy >0) =Y \P(Zy=i)+P(Zy > k) < Lo+ 1 =2.
Since P(survives) < P(Z,, > 0) for all n, P(survives) < 2. Since this holds
for all k, P(survives) = 0. O

We shall see later that the expected time to extinction, E(T"), is usually
infinite when p = 1.
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In the case when p = 1 and p; < 1 we have seen that Z,, — 0 al-
most surely, while E(Z,) = 1 for all n. In particular E(lim, . Z,) #
lim,, o E(Z,). Hence we have an example where swapping limits and ex-
pectations is not valid. The question is, why did this happen? If we look at
the distribution of Z,, then it is very lopsided (see Figure 2). The probabil-
ity that Z, > 0 is very small, but when Z, > 0, Z,, is typically very large.
Thus E(Z,) = 1, even though P(Z, = 0) is close to 1.

P(Z,=k)

00 0 0 0 0

E(Zn)=1

Fig. 2. P(Z, = 0) large although E(Z,) =1 4 0.

Now consider the situation when p > 1. Of course, if pg > 0 then the
process could die out in the first step. Thus all we can hope for is that
the probability of survival is strictly positive. To show that this happens
however, we need to show that the distribution of Z,, is not too spread out
(in contrast to the u = 1 case). Write o2 for the variance of the distribution
(Pr)72y, so that if & is distributed according to (px)3>, then Var(§) =
E(¢%) — (E(€))? = o®.

Lemma 2.7: If 02 < oo then
Var(Z,) = oML+ p+p® 4+ p" ).

Hence if u # 1 then

Var(Z,) = O,Z'unfl(p«nfl)7
and if p=1 then

Var(Z,) = no?.

Proof: Conditioning on Z,,_1 = k we have Z,, = &1 + - - - + & where &; are
independent with distribution (py)$,. Thus E(§&;) = E(&)E(E;) = p? if
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i # j and E(&¢;) = E(&2) = Var(&;) + (E(&;))? = 0% + p? if i = j. Then
E(Zy | Zn-1=k) =E(L};_,&8))
= ZZj:1E(§ifj)
= Z?:j:lUZ + ZZ]’:I:LLQ

= ko? + k%2,
Thus
E(Z2) =Y (ko? + K p?)P(Zy_y = k) = 02 B(Z,—1) + 2 B(Z2_,)
k=0

Since E(Z,,) = pu™ we get
WENar(Z,) = 2R (Z2) — P (E(Z,)?
= 02 P E(Zn—) + 0P pPE(Z) ) — 1
= o2 4 p P TVE(ZE ) = p 2D (B(Z))?
=2 2 DVar(Z, ).
Using Var(Zy) = 0, we obtain by induction
pPVar(Z,) = o (p" T ).

Thus Var(Z,) = o?u" (1 + pu+ -+ + p"~1). The last part of the lemma
follows by summing the geometric series 1 4 g + - -+ 4 u™ 1. D

Lemma 2.8: If u > 1 then P(Z,, — o) > 0.

Proof: First, assume that u,0? < co. Now by Lemma 2.7

— .2
E(Z2) = Var(Zy) + (B(Z,))* = o) 2 < (s 1)
In particular, E(Z2) < C(E(Z,))? for some constant C' = M(Ziil) +1 that is
independent of n. Applying the Cauchy-Schwarz inequality (1.10) to X =

Zp and Y =17 <oy gives

(E(Zn))? = (E(Zn1z,>01))* < E(Z})E(1{z, 50y) = E(Z7)P(Zy > 0).

Hence P(Z,, > 0) > &. The events {Z, > 0} are decreasing and (), {Z, >
0} = {survives}, so by continuity of probability P(survives) > % Finally,
by Lemma 2.4, P(Z,, — oo) = P(survives) > 0.

In the case that 02 = oo or y = oo, choose a finite p/ with 1 < p’ < p.
Then, for sufficiently large N, Z,ICVZO kpr > 1. Replace the random variables
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&; in the definition of Z,, by &}, where &} = ¢&; if & < N and £} = 0 otherwise.
Equivalently, delete all the descendants of a vertex of the Galton-Watson
tree when that vertex has more than N children. Now &/ has mean at
least p/ > 1 and finite variance, so this new process survives with positive
probability. But this means that the original process must also survive with
positive probability. O

Assume that 1 < pu < oo and 02 < oo. For any ¢, 0 < ¢ < 1,
E(ZuL{z, <euny) < cp and E(Z,) = E(Zu iz, <o) + E(ZuL (7, 50m))-
Thus E(Z,1{z,>cuny) > p™(1 — ). If we replace 1yz -0y by 1iz, >cumy in
the above proof we obtain that P(Z,, > cu™) > (1253)2, so the size of Z,, is
exponential in n with positive probability. Indeed, we shall see later that
P(Vn: Z, > cu™) > 0. Note that this is stronger, since it says that often we

(1-¢)®

have Z,, > cu™ for all n, while P(Z,, > cu™) > *~z* does not exclude the

possibility that in each Galton-Watson tree, Z,, may just oscillate between

being above and below cu’™, spending on average a reasonable amount of
time above cu™. In the 02 = oo case it may not necessarily be true that
P(Z,, > cu™) is bounded away from zero, but for any p’ < p, P(Z, > cp'™)
is bounded away from zero by the same truncation argument used in the
proof of Lemma 2.8.

3. Generating Functions

For more quantitative results, the main tool we use for studying Galton-
Watson processes is the generating function of a distribution. Given any
random variable ¢ with values in N = {0, 1,2,... }, the generating function
of £ is given by

fe(@) = E(z%) = ) P(¢ = k)a".
k=0

If ¢ has the distribution (pg)32, of child nodes in the Galton-Watson pro-
cess, then we shall write f(z) for fe(x).

Since f(1) = >-p—,pr = 1 is absolutely convergent, the series for f(z)
converges for all complex x with |z| < 1. Thus for |z| < 1, f(x) is an
analytic function and we can, for example, differentiate term by term to
obtain f'(x), f”(x), etc.. We shall normally consider the function just on
the real interval [0, 1] where it is well-behaved for all z < 1. However, if £
is unbounded then f(z) may fail to be analytic, or even real-differentiable,
at x = 1.
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Table 1: Generating functions for some simple distributions.

Distribution ~ Notation | p, f(z)

“Split or die” 2B(p) p2=p, po=1—p | (1—p)+pa®
Binomial Bin(n,p) | (})p"(1—p)"F (1 =p)+px)"
Poisson Po(u) e M ‘;TT ele—Du
Geometric Geom(r) | (1 —r)rk 11__:,73

We list some simple properties of f(z).

Lemma 3.1: If f(z) is the generating function of some distribution then

Gl. f(x) and all its derivatives exist and are non-negative on [0,1);

G2. f(z) is continuous, increasing, and convez on [0,1];

G3. f(0) =po and f(1)=1;

G4. the mean p is equal to f'(1), or +oo if f'(1) does not exist;

G5. the variance o? is equal to f"(1) + pu(1 — p), or +oo if f"(1) does
not exist.

Technical Note: For G4 and G5, if f(z) does not converge for 2z > 1 then
we define the derivatives f/(1) and f”(1) as the limit of f'(x) or f”(x) as
x — 17. By G1 these functions are increasing, so the limit either exists or
is +o0. Alternatively we could define “left-derivatives” such as f'(17) =
- w By the Mean Value Theorem, this gives the same
values for f'(1) and f”(1) as taking limits z — 1.

limy, o

Proof:

G1. Follows from the fact that f(x) is analytic for |z| < 1, so all derivatives
are defined by power series f((z) =30 n(n—1)...(n —r + )p,a™~"
with all terms non-negative when x € [0, 1).
G2. By G1, f(«) is continuous on [0,1) and by the Monotone Convergence
Theorem f(z) = E(2%) — E(1%) = f(1) asz — 17, so f(z) is continuous at
2 = 1. Monotonicity and convexity follow from the fact that f/(z), f"”(z) >
0 on (0,1).

G3. Clear.

G4. f'(z) = >, peka*™t = E(&2%71) — E(€) as ¢ — 1~ by MCT.

G5. ["(x) = Yo pr(k—1)a*~2 = B(£(6—1)28~2) — B(§(€—1)) as @ — 1
by MCT, so Var(€) = E(€2) — (E(€))? = E(£(¢ — 1)) + E(€) — (E(€))* =
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F1() 4 p— D

Now we apply the idea of generating functions to the Galton-Watson
process (Z,)5 . Let f,(z) be the generating function for Z,, i.e.,

Jal2) = f2,(2) = E(@™) = Y P(Z, = k)a".
k=0

Lemma 3.2: fO(m) = and fnJrl(x) = f(fn(m))

Proof: Since Zy = 1 we have fo(x) = x. If we have k independent random
variables Yi,...,Y} each distributed according to Z,, then

E(zV1H+Ye) = B(z¥12Y2 . 2¥r)

= E(zY)E(z¥?)... E(z*) (Independence)
= fu(@)fulz) ... frn(z) (Distributed according to Z,,)
= (fal2))".

We can consider Z,,11 as the sum of Z; independent copies of Z,, since each
of the Z; children of vy starts its own independent Galton-Watson process
which we need to run for another n steps. Thus

fani(@) = B(@?) = S B(@? 4 | Zy = k)P(Z = k)
k=0
=3 (@) rpr
k=0

f(fala)). -

Note that Lemma 3.2 provides quick proofs of the mean and variance
formulae for Z,, that we obtained in Section 2. For example, f; (x) =

& (fa(@)) = £/ (ful(2)) i (@), s0

E(Zas1) = Foon(1) = F (D)) 4(1) = F L) = pE(Zy),
giving E(Z,) = p™ by induction. Similarly one can calculate the variance
(Lemma 2.7) using f/(z).

The following theorem allows us to calculate the ezact probability that
(Zn)22, survives.

Theorem 3.1: The probability p. = P((Z,)32, dies out) is the smallest
solution p. € [0,1] of the equation f(pe) = pe.



October 29, 2006 Master Review Vol. 9in x 6in — (for Lecture Note Series, IMS, NUS) Branch

Branching Processes 19
Subcritical Critical
f(z)
f(z)
0 £(0)  f(0) T Tpe O £0) 007 T pe
p=r(1)<1 p=f"(1)=1
Supercritical
f(z)
0 A0S0 P 1
p=f(1)>1

Fig. 3. Examples of subcritical, critical and supercritical generating functions.

Proof: Let E, be the event that Z,, = 0. Then E; C Ey C ... and the
event that the process dies out is | J,2, E,. Since P(E,,) = f,,(0), continuity
of probability implies that the probability that (Z,,)22, dies out is p. =
lim;, o0 frn(0) (see Figure 3). Let p, be the smallest solution to f(p,) = p-.
This exists by the Intermediate Value Theorem since f(z) is continuous,
f(0) > 0 and f(1) < 1. We now show that f,,(0) < p, by induction on n.
Clearly fo(0) =0 < p,, and f(x) is an increasing function, so if f,(0) < p,
then fn—i—l(o) - f(fn(o)) < f(p'r) = p,. Taking limits gives p. < p,. By
continuity of f(z), f(pe) = f(lim, f,(0)) = lim,, f(fn(0)) = lim, f,+1(0) =
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Pe. Thus p, is a solution of f(p) = p. Since p, was the smallest such solution
and p. < p,, we must have p. = p,. O

Theorem 3.2: P((Z,,)2%, survives) > 0 if and only if 1> 1 (or p1 =1).

Proof: If 4 = f'(1) > 1 then for some ¢ > 0, f(1 —¢) < 1 —¢ (even if
i = 00). But f(0) > 0so, by the Intermediate Value Theorem, there is some
x € [0,1—¢) with f(z) = x. Thus by Theorem 3.1, p. = P(dies out) < 1—e,
and so P(survives) = 1 —p, > 0. If p; =1 then Z,, = 1 for all n, so (Z,,)22,
survives. Conversely, suppose 1 < 1 and p. < 1. Then f(p.) = p. and
f(1) = 1. But f'(x) < f'(1) < 1for z € (pe,1). If f(z) < x for any
x € (pe,1) then by the Mean Value Theorem, f/(y) > 1 for some y € (z,1),
while if f(x) > x for any x € (p., 1) then f'(y) > 1 for some y € (pe, ).
Hence we must have f(z) = « for all z € (p.,1). But then f’(z) =1 and
(@) = Y02, k(k — )ppa®=2 = 0 for all z € (p,1). Thus p, = 0 for all
kE>2and py=p=f'(1)=1. O

4. Decomposing the supercritical process

Suppose we have a supercritical Galton-Watson process with pg > 0, so
that the extinction probability p. lies strictly between 0 and 1. Colour the
vertices of the Galton-Watson tree red if they have an infinite number of
descendants, and blue if they only have a finite number of descendants. If
nothing is known about the descendants of a vertex v then it will be blue
with probability p. and red with probability 1 — p.. Hence if the colour and
descendants of a vertex v are unknown, then the probability that there are
r red and b blue children is given by

p(r,b) = prys (7T P21 = pe)”.

(There are r + b children with probability p,p, and conditioning on this,
the probability that a fixed subset of size r of these are red is p2(1 —p.)" by
independence. But there are (ij) choices for which subset should be red.)

Suppose we condition on the event that Z,, — 0, i.e., on the event that
vg is blue. Then the distribution of the number of children of a vertex v
can be found simply by conditioning on the event that all these children
are blue. (The event that vy is blue is the intersection of the event that the
children of v are blue, and another event depending on other nodes of the
tree that are independent of the subtree starting at v.) Thus the conditional

k
probability of & children is % =2 ’;p e = ppp"~!, where we have used
b ) e




October 29, 2006 Master Review Vol. 9in x 6in — (for Lecture Note Series, IMS, NUS) Branch

Branching Processes 21

Z5=2
Z;=3

* red e blue

Fig. 4. Red and Blue trees.

the fact that >, p(b,0) = P(v is blue) = p.. The generating function of this
distribution is fy(z) = 3 pep*~12* = f(pex)/pe. Note that the number of
children is still independent of the rest of the tree and only depends on the
existence of a (blue) vertex v. Thus, conditioning on Z,, — 0 we obtain a
new Galton-Watson process with generating function f;(x). Graphically we
see that f,(z) is obtained by taking the graph of f(x) in [0, p.] X [0, p.] and
scaling it up to a [0, 1] x [0, 1] square (see Figure 5). Also note that the new
process is a subcritical Galton-Watson process since f7(1) = f/(p.) < 1.
Now condition on vy being red, i.e., on (Z,)22, surviving. Suppose we
now ignore all blue vertices and just look at the red subtree. Let Z* be the
number of red vertices at level n. Fix some red vertex v and consider the
number of red children it has. Conditioning on v being red is equivalent to
conditioning on it having at least one red child. The conditional probability
of having r > 0 red children is 2520 - Onee again this is independent

1_pe
of the rest of the tree, so we obtain a new Galton-Watson process with
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generating function

Fla) = 3 plrb)a”

r>0,b>0

== Y PR —pe) e
r>00>0
[eS) k

= oy Ok —pe)a”
k=0 r=1
o0

= = ok((pe + (1= pe)a)* — pf)
k=0

= 1255 (f(pe + (1 = pe)z) — f(pe))
_ fpe+ (1 —pe)x) — pe
1 — Pe .

Graphically we see that f,.(x) is obtained by taking the graph of f(x)
in [pe, 1] X [pe, 1] and scaling it up to a [0, 1] x [0, 1] square. Also note that
the new process is a supercritical Galton-Watson process with pg = 0.

fr

fo

0 Pe 1

Fig. 5. Decomposing the supercritical process.

To summarise, we can consider a supercritical Galton-Watson process
as being either a subcritical process with probability p., or a supercritical
process with pg = 1 with probability 1 — p., where in the second case we
have various subcritical trees hanging off the main supercritical tree.
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5. Subcritical Limit Law

In this section, and in Sections 7 and 8, we investigate the limiting behaviour
of a Galton-Watson process in much more detail. As a result the arguments
that we shall use are somewhat more technical in nature. Firstly we prove
a general result on the limits of generating functions.

Theorem 5.1: Suppose that for each n, f,(x) = Z,;“;Op,(cn)mk s a gen-
erating function of some probability distribution, and suppose that for
0<z<1, f(x) =limy—oeo fn(x) exists. Then provided lim, ,,- f(z) =1,
f(x) is the generating function of some probability distribution. Moreover,
if f(x) = peoprat, then for each k, lim,_ p}c") = Dg.

Proof: We shall weaken the hypothesis that the p,(cn) are probability distri-
butions. Instead we shall just assume that there is some polynomial P(k),
independent of n, such that | p,(cn)\ < P(k) for all n and k. We shall show that
all derivatives frgk)(x) converge pointwise for z € [0,1). Consider f/ (z) =
Yook + 1)p,(€1)1xk. The coefficients of f, (x) are bounded by the polyno-
mial P(k) = (k+1)P(k 4 1). Also, if 25 € (0,1) and ¢ is sufficiently small,
say zo+2¢ < 1, then |f//(z)| < C = Y32 ) P(k+2)(k+2)(k+1) (25 )F < oo
for all « € [zg, 2o + €] and all n. Thus by Taylor’s Theorem

|ful(zo +€) = ful(wo) — ef(m0)| < Ce®/2.

Hence for any n and m,

|(fu(z0+¢) = fu(wo) =€ fy.(x0)) = (fm(w0+€) = fim(wo) —ef}, (20))| < CE2,

SO

elfu(@o) = fru(@o)| < Ce® + |fu(wo+e) = fum(zote)| + |fulwo) = fn(xo)l-

But f(zo) and f,(zo + €) converge as n — oo. Thus there is an N such
that for all n,m > N,

|£) (z0) — 1, (20)] < 2Ce.

Since this holds for all sufficiently small €, f/ (zo) converges as n — oo. By
induction, for any k& > 0, fT(Lk)(x) converges pointwise for 0 < z < 1. In
particular, fT(Lk)(O) = k!pfcn) converges. Thus p, = lim,, o, p,(fn)
k>0.

Now since p,(:b) are probability distributions, we have p,(:) € [0,1], so
pr € [0,1] for all k. Let f(z) = > pe, prx®. Since the p,in) are bounded, it is
clear that f,,(z) — f(z) for 0 < 2 < 1. Moreover, lim, 1~ f(z) = >y, Pk,

exists for all
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so if this limit is 1 then f(z) is the generating function of a probability
distribution. D

Note that it is possible that lim,_,;- f(z) < 1. For example, if f,(z) =
2™, then f(z) =lim, o0 fn(z) =0for 0 <z < 1.

We now return to the Galton-Watson process. Recall that p is the mean
number of children of a given node and f,(z) is the generating function of
the number of nodes Z,, at time n.

Lemma 5.1: Suppose 0 < p < 1. Then (1— f,(t))/u™ decreases monoton-
ically to a limit K > 0 for any t with 0 < t < 1. Moreover, K is strictly
positive if and only if E(&logf) < oo.

Note: we consider £ log & to be zero if £ = 0.

Proof: Let u, = 1 — f,(t) so that f(1 —u,) = 1 — u,4+1. Note that by
the Mean Value Theorem, y,41/un, = f'(x) for some z € (1 — uyp, 1), so in
particular u, 1 /u, < f'(1) = p. Thus (upy1/0" )/ (u,/p™) < 1. Hence
(1= fn(t))/u™ = up/u™ is a decreasing sequence of positive real numbers,
and so has a limit K > 0. The limit K is strictly positive provided K/ug =
[ o(tn+1/pun) > 0, which occurs if and only if Y ° log(uni1/ )
converges. As n — 00, 4, — 1, so the ratio u,y1/u, = f'(x) converges to p.
In particular, w1 /pu, is bounded away from zero. In general, if z; > 0 are
real numbers with 1 —2; bounded away from zero, then x; < —log(1—=x;) <
Cz; for some constant C. Thus convergence of ), log(1 — ;) is equivalent
to the convergence of Y, z;. Thus convergence of Y log(unt1/puy) is
equivalent to the convergence of
o0 o0

_ Un41\ __ pn—(1=f(1—un))
Z(l Hup ) - HUgp

n=0 n=0

oo
— f(l_un)_(l_l”f'n) _ Un
- Z u2 (un un+1)M(U7L7U7L+1).
n=0

But Un, = L S — 0 as n — 00, so this is equiva-
p(tn —Unt1) p(l—tpy1/un) pu(l—p) a ’ !

lent to convergence of

Z f(lfun)ufi(lfﬂun) (un _ un+1)~
n=0

But f(lfun);(lfﬂun)

U

is monotonically increasing to f(1)/2 as n — oo, and

this sum is a Riemann sum of the integral fouo W du obtained
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by taking w,, as division points of the interval [0, ug]. Thus convergence of
the sum is equivalent to convergence of this integral. (The upper limit ug

is unimportant for convergence, the question is what happens near u = 0.)
Now f(1—u)— (1 —pu) =Y 7o, pr((1 —u)¥ — (1 — ku)) and all the terms
(1 — u)* — (1 — ku) are non-negative (and zero for k = 0,1). Thus

1 o0 1
—u)—(1l—pu —u)f—(1—ku
/0 f0-w)-(-n >du:2pk/0 (-wt—-ku) g,

k=2

We estimate the inner integral by

1 & 1/k & 1 &
/ (1—w) u—2(1—ku) du:/ (1—w) u—z(l—ku) du—l—/ (1—w) u—2(1—ku) du
0 0 1/k

1/k 1
:/O (’;)—(’g)u+...du+/ (E 4+ 0(%))du

1/k

1 1/k 1
:/ Edu+ O(k?) du + O(%) du
1

/k 0 1/k

= klogk + O(k).
Since Y 72 pkk = p converges, the integral converges if and only if
Yoo pi(klogk) = E(£log &) converges. 0

Theorem 5.2: (Yaglom [7]) If u <1 thenP(Z, =k | Z, > 0) converges
as n — oo to a probability distribution (pr)3e,. Moreover, P(Z, > 0)/u"
decreases monotonically to 1/ as n — oo, where i = Y po o kpr, € [1,00]
is the mean of this limiting distribution. Also, i < oo if and only if
E(¢logé) < oo.

Proof: The generating function of P(Z, =k | Z, > 0) = % is given
by
fn(z) — fn(0) 1 — fo(x)
(z) = Im 2 Int) g 2T I
g ( ) 1_fn(0) 1_fn(0)
Define h(z) by
he) = 22
1—2z

Then by convexity of f(x), h(x) increases monotonically to f'(1) = p at
z = 1. Now
L= gnr1(@) _ 1= foni(2) 1= fa(0) _ h(fal2)) _
1—97:,(1”) l_fn-‘rl(o) l_fn(x) h(fn(o)) N
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Thus g, (z) is a decreasing function of n, and so has a limit, say g(x), for
all 0 <z <1. Now

1 - gu(f(a) = L fmn(@)

Taking limits as n — oo gives

L—g(f(z)) = p(1 - g(z)).

But g(z) is increasing, so if ¢ = lim, ;- g(z) then 1 — ¢ = p(1 — ¢). Since
u < 1, ¢ = 1, so applying Theorem 5.1 we see that P(Z,, = k | Z, > 0)
converges to a distribution (p)3, with generating function g(z). We now
estimate the mean of this distribution. By Lemma 5.1, ¢/,(1) = p™/(1 —
frn(0)) increases monotonically to 1/K. But by Theorem 5.1,

= h(fn(0))(1 = gns1(2)).

N N

> kpr = 7}32021611»(2“ =k | Zy > 0) < liminf g7, (1),

k=1 k=1
so letting N — oo, ¢’(1) < liminf,,_,« g,,(1). However, g,(x) is decreasing
inn for all z <1 and g,(1) =1, so

/= tim I > b I g

for all n. Hence ¢’(1) > limsup,,_, ., g, (z) and so ¢'(1) = lim,, . g,,(z) =
1/K. The last part now follows from the last part of Lemma 5.1 O

6. Moment Generating Functions

Before we examine the critical and supercritical cases in more detail, it
will help to introduce the concept of the moment generating function of a
distribution. This is very similar to the generating functions defined above,
but applies more generally to random variables which take arbitrary real
values, rather than just integer values. If X is a random variable that takes
values in [0, 00), the moment generating function is defined by

Lx(A\) =E(e )
for all A > 0. We note that for integer valued X,
Lx(N) = fx(e™)

where fx is the usual generating function of X. Also, Lx () € (0,1] for
all A >0, Lx(0) =1, and Lx(A) is a decreasing function of A. If X has a
probability density function, then Lx is just the Laplace transform of this
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density function. Theorem 6.1 below is therefore essentially a result about
the inverse Laplace transform of a function. First we prove that we can
approximate a step function with a polynomial.

Lemma 6.1: For anye > 0 and 0 < « < 1 there exists a polynomial P(x)
such that
0<P(z)<e for 0<z<a-—¢, and
1—-e<Plx)<1 for a+e<ax<1.

Proof: Define for any n > 0,

= n
P _ r(1 _ . \n—r
o= 3 (M)
r=[an]
soif X = X7+ ---+ X,, is a binomial variable which is the sum of n
independent 0-1 random variables X; with P(X; = 1) = z, then

P,(z) =P(X > an).
Now E(X) =3, E(X;) = nz and Var(X) = >, Var(X;) = nz(l — z) < n.
Thus by Markov’s inequality
Var(X) 1
Bk A
e2n? T ne?
0 Py(z) =P(X > an) < L for 2 < a—e and 1 — P, (z) = P(X < an)

—L for > o+ e. Hence we can take P(z) = P,(z) for any n > 1/e3.

P(|X — nz| > en) = P((X — E(X))? > &%n?) <

<
O

Theorem 6.1: Suppose X,,, and X are non-negative random variables and

lim E(e ) = E(e=?¥)

n—oo

for all A > 0. Suppose further that X is continuous, i.e., P(X < ¢) is a
continuous function of c. Then for all ¢ >0,

lim P(X,, <c¢)=P(X <c¢).

Proof: For any polynomial P(x) = Zivzo a,x" and any A > 0 we have

N
lim E(P(e ")) = lim ZGTIE(e_T’\X")
r=0

n—oo

N
= Z a,E(e™™X)
r=0

= E(P(e ).
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Now for any « € (0,1) and sufficiently small € > 0, we can choose P(z) as
in Lemma 6.1. Then for any random variable Y € [0, 1] we have

Iiysarey e < PY) < liysqc +e,
so by taking expectations
PY>a+e)—e<EPY)<PY >a—c¢)+e.

Hence for sufficiently large n and A =1

(&

Setting o = e~ ¢ — ¢ gives
P(X, <c¢) <P(X < —log(e”°®— 2¢)) + 3e.

Similarly, taking & = e~ + ¢ and A = 1 we have for sufficiently large n

S0
P(X, <c)>P(X < —log(e ¢+ 2¢)) — 3e.
Letting ¢ tend to 0 and by continuity of P(X < ¢) we have

lim P(X, <c¢)=P(X <¢). O

n—oo

7. Critical Limit Law

Theorem 7.1: If =1 and 0 < 02 < oo then P(Z, > 0) = -23(1+o(1))
and hence E(Z, | Z, > 0) = "%2(1 +o(1)). Moreover

P(Z,/n>z|Z,>0)— e 27" s n— oo,

i.e., conditioned on Z, > 0, Z, s approximately exponentially distributed

. 2
with mean “g—.
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Proof: Since 0% < oo we have f”(1) = 0% — pu(1 — u) = o2. Thus by
Taylor’s theorem,

fl—u) :1—u+”—;u2—o(u2).

Indeed, since f”(z) is increasing on [0, 1], the o(u?) term above is non-
negative. Fixt,0 < t < 1, and let u, = 1—f,,(¢). Then f(1—u,) = 1—tpi1,
0

Upgl = Up — %Zui + o(u2).

By comparing with the differential equation

du o2, 2

dn — 2
which has solution u = ﬁ, one would expect that 1/u, would grow like
0'271

75+, i.e., linearly in n. To prove this we estimate

1 1 Uy — Upt o?u2 /2 — o(u?) o?
I =— o = — +o(1),
Uptl  Up UnUp 11 u2 (1 — o2u, /2 + o(uy)) 2

where the o(1) term tends to zero as u, — 0, or equivalently (since wu,, <
1— fn(0) =P(Z, > 0)), as n — oo, uniformly in ug. Hence

2 2

n—1
! 1 1 1 o o°n
un ug T w) 2 = 1 1)), 7.1
Up Uy §<Uz‘+1 Uz> 2n+o(n) 5 (1+0(1)) (7.1)

where the o(1) term tends to zero as n — oo, uniformly in ug. Letting ¢ = 0
we get P(Z,, > 0) = u,, = —25(1 + o(1)). Thus

no?
E(Zuliz >0y) E(Z, 1 on
E(Zy | Zn > 0) = P(Z{>S)} = Eﬁ ):;:7(1“(1)).

Now let t = e=*/™ for some fixed A > 0. Then

1 1
%:m:g+0(l) as n — oo,

TLO'2 2

=" (1 +0(1)) + 5 +0(1) = n(% + )1 +0(1)).

But u, = 1—f,(t) = 1— f,(e7M™) = B(1—e~ /™). Also, 1 —e~An/" = ()
when Z,, =0, so

so by (7.1)
1
Uy,

E(1 — —AZn/n 1 2. -1 2
]E(l—e_’\Z"/"|Zn>0):L:( U) g

P(Z, > 0) yto) el
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Hence
2/2 1
li E —XZn/n Z >0)=1-— 0/ _
A (e [ Zn > 0) 1A+02/2 1+ ro2/2’
but this last expression is equal to ]E(e*A"QX/ 2) where X is an exponential

random variable with mean 1: P(X > ¢) = e~ ¢. Hence by Theorem 6.1,

P(Zn/nzf)—>P(O'2X/22x):6*21’/02' O

Corollary 7.1: If p =1 and 0® < oo then E(T) = oo, where T = inf{n :
Z, = 0} is the time to extinction.

Proof: If 02 = 0 then p; = 1, so T = oo almost surely. Hence we may
assume o2 > 0. Recall that T' = 1{z,501 + L{z,50} + ... 50

E(T) = ip(zn > 0).

n=0

But by Theorem 7.1,
2

But then E(T') =", P(Z, > 0) diverges, so E(T) = oco. 0O

It is possible to construct distributions with g = 1 and E(T) < oo,
however, by Corollary 7.1, all such distributions have infinite variance. For
example, if we set pyr = 87" for r > 1, and pg =1 —> 72 87" = &. Then

w= ikjpk = i4r8_7" = iQ‘r =1.
k=0 r=1 r=1

Write u, =1 — f,(0) = P(Z,, > 0). Then f(1 —u,) =1— up41, so (since
p=1),

Un — Unt1 = f(1—up) — (1= pup) = Zpk((l —un)® = (1 = kuy)).
k=0

Since all the terms (1 — u,)* — (1 — ku,,) are positive,

Up — Upy1 > Z (kun—l)z% Z ku,.

n: kup>1 n: kuy,>2

Up — Upt1 > % Z 874 Uy, = 270Uy, > AU /8 Uy = 8_1/2u;9’1/2,
r
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where 7o is chosen so that ul < 4" <L ui. However, one can prove by

induction that u,, < % Indeend7 this clearlynholds for n < 4, and
32 32 _32(2n+1) <%
n2  (n+1)2 n2(n+1)2 = nd

Now z — 8 1/243/2 ig increasing for 0 < x < 2, so

—1/2, 3/2 32 —1/2,32\3/2 32 64 32
Unsr S up =87 VANP < BB TR = B 0 < SR

But then

E(T) = P(Zy>0)=ug+ » _up < 1+Zﬁ < 0.
n=0 n=1 n=1

8. Supercritical Limit Law

Now assume p > 1. For simplicity we shall just consider the case when
u < 00.
Let W,, = Z,,/u™. Then E(W,,) =1 for all n, and

2 2

Var(W,) = (1—p™) = —2

p(p—1) p(p—1)

provided 02 < co. Indeed, we can say more. If W,,_; (and hence Z,,_1) is
given, then E(W,, | W,,_1) = W,,_1. Since Z,,, and hence W,,, depends on
Zin—1yLn_2,-.., 29 only via the value of Z,,_1, one can write

E(Wn ‘ anla Wn72; ey WO) = Wn71~

This says that W, is a martingale. The Martingale Convergence Theorem
(see [6]) says that if W, is a non-negative martingale then W,, converges,
i.e., there is a random variable W taking values in [0, 00) such that W,, — W
almost surely. Note that this is a very strong condition analogous to the
Strong Law of Large Numbers: if we look at any instance of the sequence
Z, /1™ then this almost surely converges, so Z,, is almost surely of the form
(¢ +o(1))u™ for some (random) ¢ > 0.

Unfortunately, this leaves many questions unanswered. For example it
is entirely possible that W is identically zero. Indeed this can happen.

Theorem 8.1: (Kesten-Stigum [2,3]) If u > 1 and E({log&) < oo then
E(W) =1 and P(W = 0) = P(Z,, — 0) < 1. If in addition py # 1 for all
k then W has a continuous and strictly positive density function for all
W > 0. Conversely, if E({log&) = oo then W =0 almost surely.



October 29, 2006 Master Review Vol. 9in x 6in — (for Lecture Note Series, IMS, NUS) Branch

32 P.N. Balister
The situation when E(£log€) = oo indicates that the normalisation
u™ in W, = Z,/u™ was not a good choice. In fact it can be shown that

there is always a normalising sequence C,, such that Z,, /C,, converges to a
non-trivial random variable.

2 < oo one can give the following heuristic argu-
ment for Theorem 8.1. If Z,_1 = k then Z, is a sum of k independent
identically distributed random variables. By the Central Limit Theorem,
we expect that Z, is approximately normal N (ku,ko?), with mean ku
and variance ko?. Normalising, we get that, conditional on W,_; = c,
W,, ~ N(c,co?/pu™), so that W,, ~ W, _1 + N(0,co?/u™). But co?/u™ is
decreasing very rapidly and so one expects that |W,, — W,,_1]| is exponen-
tially small. Thus W, converges to some W. Moreover, the distribution
of W should be very smooth, since at each step we are convoluting the
distribution of W, _; with something that looks very much like a normal
distribution.

In the case when o

We shall not give a complete proof Theorem 8.1 here. In particular we
shall not show that W has a strictly positive density function. But we will
show how the E(£log¢) condition appears. Indeed, it appears for much the
same reason as it did in the subcritical case, by looking at a limiting ratio
uy /™. In this case ug should be taken very close to 0 since u,, is increasing
geometrically. Let

Ln(A) =E(e ")

be the moment generating function of W,. Fix A > 0 and N > 0 and let
Up =1— fn(e_/\/“N) so that

uozl—e_k/“N SOYITAR and 1 —uy =E(e™ ™) = Ly(\).
We wish to estimate uy, or equivalently the ratio

R = (un/p™)/(uo/p°) = un /.

To do this we consider the product R = 1—[71:(:—01 (Un41/puy). As in the sub-
critical case, up41/pu, < 1, so as N — oo either R tends to a positive
limit, or it tends to 0. Now

N-—1
log(R) = _ log(unt1/py),
n=0

which given w,11/pu, is bounded away from zero is within a constant
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factor of

N-1

Z (1 — wun+1/pug).

n=0

As in Lemma 5.1, this can be estimated in terms of the integral

uN
/ - g
uQ

u

If we let N — oo then ug = 1 — e=*#" tends to 0. Hence log(R) con-
verges if and only if the integral [ W du converges, which by
the same argument as in Lemma 5.1 is if and only if E(£log&) < oo. Thus
if E(£log) < oo then as N — oo, uy is bounded away from zero and
so E(e *W~) converges to some value less than 1. On the other hand, if
E(¢logé) = oo then uy — 0 and so E(e AW~) — 1.

Now using the Martingale Convergence Theorem, W,, — W almost
surely. Hence e — e=AW almost surely. But e=*"» € [0, 1] so by the
Dominated Convergence Theorem (dominated by the constant 1),

lim L,(\) = lim E(e™*") =E(e ™) = L(\)

where L(\) is the moment generating function of W. Thus if E(¢ log &) = oo,
E(e=*") = 1, and so by Theorem 6.1, W = 0 almost surely. On the other
hand, if E(¢logé) < oo, then E(e™*") < 1 for A > 0. Hence W is not
identically zero. But

FLnN) = F(fa(e 1) = fasr(eMH) = Lyga ().

Letting n — oo and using continuity of f(z) we get

FLON) = L(u). (8.1)

If we let A — 400, L(\) = E(e=*") decreases monotonically to a limit,
which by the Dominated Convergence Theorem is just E(llw—oy) =
P(W = 0). But by (8.1), this limit must be a solution to f(z) = x. Thus
P(W = 0) is either 1 or the extinction probability p.. In the case that
E(¢logé) < oo we know P(W =0) # 1, so P(W =0) = p. = P(Z,, — 0).

9. Total Number of Nodes

In this section we consider the critical and subcritical cases p <1, p; < 1,
and ask about the distribution of the total number of nodes in the Galton-
Watson tree. Write S =" Z,, for the total number of nodes. We know



October 29, 2006 Master Review Vol. 9in x 6in — (for Lecture Note Series, IMS, NUS) Branch

34 P.N. Balister

that P(S < oo) = 1 when g < 1, so S gives a probability distribution on
N={0,1,...}.

Lemma 9.1: For u < 1, the generating function fs(zx) of the total number
of nodes S =% Z, satisfies the following equation:

fs(@) = xf(fs(x)).

Proof: Let vg be the root node of the Galton-Watson tree and consider
each child node vy,...,vg. If we let S; be the total number of nodes in
the tree starting at v; then S = 1+ 51 4+ Sy + --- 4+ Sk. Moreover, the
S; are independent and have the same distribution as S. Thus in terms of
generating functions

E(z% | Zy = k) = E(z!H5++9) = gB(25)E(25?) - - = zfg(x)*.

Hence

O

fs@) =) E@® | Z1 =k)P(Zr=k) =2 prfs(z)" = zf(fs(x)).
k=0 k=0

Thus fs(x) is a solution to the equation y = xf(y). Put more simply,
let f5'(y) be the inverse function of fs(z) on [0,1]. Then

fs' W) =v/f).

Note that since py > 0, and by convexity of f(z), the function y/f(y)
increases from 0 at y =0to 1 at y = 1.

Lemma 9.2: For p < 1, E(S) = ﬁ If in addition we have 0 < o0,

then Var(S) = iR

Proof: Implicitly differentiating the equation y = zf(y) gives
v =af' Wy + fy)
y' = af"()y? +af )y +2f )y
Setting x =y =1, f'(1) = p, givesy' = py’ +1,s0y = ﬁ In addition,
setting f/(1) = 02 — u(1 — p) gives
y' = (0" —p(l = )y + py" + 2py'.
Substituting ¢y’ = ﬁ gives

2 2 2
(I—wy" = g%y — 5+ 10 = ol +
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hence

0_2

0_2
Var($) =¢" +y'(1 =) = o2 + i — @ = o O

For ;1 = 1 we see that E(S) = co. But S < oo almost surely. So what
does the asymptotic distribution of S look like?

As an example, suppose the number of child nodes is Poisson with
mean p, so the generating function for the process is f(z) = et =1 We
shall calculate the exact distribution of S in this case. By Lemma 9.1, the
generating function for S is the solution to the equation z = yet*(1=%). We
shall find an explicit form of this function.

Lemma 9.3: Suppose P(k) is a polynomial in k of degree less than n. Then

Si—o(=D)*(R) P(k) = 0.

Proof: If n = 1 then P(k) = c is a constant and Y, _o(—=1)*(})P(k) =

¢ —c=0.For n > 1 we use the identity (}) = (77;) + (") to get

SR PR = S (DR P + S (1 (1) (k)
k=0 k=0 k=1
=S (DR PR) = D (=17 (Y PG+ 1)
k=0 3=0
n—1
= (DR (P (R) = Pk + 1))
k=0

But P(k)—P(k+1) is a polynomial of degree less than n—1 so, by induction
on n, the last expression above is zero. O

Lemma 9.4: The solution to x = ye™Y, y € [0,1], z € [0,e71], is given by
k: 1
k.

the power series y =Y, | *—=x

T k-1
Proof: By Stirling’s formula, k! ~ (k/e)fv2rk, so L~ ~ eby /515,
Hence the power series converges for all z € [0, e~1]. Substituting z = ye ™
into the power series gives

(=
< (n—
=3 (-1 ikz_: mEnl (9.1)
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(The interchange of summation is justified by absolute convergence
of the double sum when ye¥ < e~ ') However, by Lemma 9.3,
Sreo(=D)F(R)k"t = 0 for all n > 1, and the k = 0 term is zero for
n > 1. Thus the inner sum in (9.1) vanishes for all n # 1. Hence

o0

kk—l
k! yre M =y

k=1
for sufficiently small y. Thus the power series gives the solution to z = ye™¥
for small y. Since both the power series and the inverse function y = y(x)
are analytic for = € [0,e7 1), they agree for z € [0,e~!). Continuity of both
functions imply that they also agree at z = e™*. O

Corollary 9.5: For the branching process with child distribution given by
a Poisson distribution with mean p < 1, the probability that ZZOZO Zn =k
is given exactly for k > 1 by

P(S = k) = (’“"Zk_le-uk.

Proof: If y = fg(x) is the generating function for S = > °° / Z, then
z = ye'(=¥). Thus pe #z = pye "¥. Hence py = > po %(ue*“:ﬁ)k.

Taking the coefficient of z* gives the result. O

V2mk, we can approximate

(R e (pelT)™
k! V2rk3

For p = 1 this simplifies to \/Z;T In particular it is now clear why E(S) =

oo. Indeed, this is due to the fact that the sum ), k’ﬁ =3, ck™1/?
diverges.

Using Stirling’s Formula, k! ~ (g)’C

10. Trees and Branching numbers

Let T be a locally finite tree, i.e., a (possibly infinite) connected graph with
no cycles and for which each vertex has finite degree. Note that the degrees
of the vertices need not be bounded over the whole tree. Fix a root vertex
vg € V(T'). We define the level £(v) of a vertex v € V(T) to be the graph
distance in T from v to vg. For any vertex v € V(T'), the children of v are
the vertices u such that ¢(u) = £(v) + 1 and wv € E(T). For any node v,
define T, to be the subtree of T' consisting of v and all of its descendants,
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i.e., all nodes u such that the unique path from u to vy contains v. We
consider v to be the root of T,,.

Definition 10.1: A flow on an infinite (but locally finite) tree T' is a non-
negative function on the vertices, f: V(T) — R, such that if vq,..., v, are
the children of a node v then f(v) = Y_;_; f(v;). We call the flow non-
trivial if f is not identically zero. Equivalently f is non-trivial if and only

if f(vo) # 0.

Definition 10.2: A cut of T is a finite subset Vo C V(T') of vertices whose
removal makes the root vy part of a finite component (or such that vy € Vp).
If b > 0 then we define the b-weight w; (Vo) of a cut Vo to be >°, -y, b=,

Lemma 10.1: For all b > 0, the following are equivalent.

1. There exists a non-trivial flow with b*™) f(v) bounded on T.
2. There is a constant ¢ > 0 such that all cuts have b-weight at least c.

Proof:

1 = 2: Fix a non-trivial flow such that v*®") f(v) < C for all vertices v. We
claim that for any cut Vo, >, ¢y, f(v) = f(vo) > 0. We prove this by induc-
tion on the maximum level of any node in Vj. If vg € Vj then the result is
clear. Otherwise let v1, . .., v; be the children of vg. Then we can decompose
Vo =ViU---UV, where V;, i = 1,...,k, are cuts of the subtrees T,,. By
induction 3, ey, f(v) > f(vi), and s0 3,0y, F(v) > X0 f(vi) = f(vo).
Now f(v) < Cb~*)| so Yovevy f(0) SO ey, b= = Cwy(Vp). Hence
U}b(Vo) > f(vo)/C > 0.

2 = 1: Let g(v) = infy, wp(V,) where V,, runs over all cuts of the subtree T,.
If vq,..., v are the children of v, and Vi,..., V) are cuts of Ty,,,..., T,
respectively, then V3 U--- UV} is a cut of T,,. Hence

k
9(0) <3 glvy).
i=1

The inequality may be strict, since {v} cuts T;, and may give a lower weight
than any cut obtained as a union V3 U --- U Vj. However, we can define a
flow bounded by g(v) by setting f(vo) = g(vo) and inductively defining f
on the children of a node v by

J(v) _ g(v;)

f(v) Zle g(vi)
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(or f(v;) = 01if f(v) =0). Then f(v;)/f(v) < g(v;)/g(v), so by induction
on £(v), f(v) < g(v) for all v. Clearly f is a flow and f(vg) = g(vg) > ¢ > 0.
But V, = {v} is a cut of T},. Hence f(v) < g(v) < wy({v}) = b~*® and so
b f(v) < 1. ]

Definition 10.3: The branching number of T is given by

br(T) = sup{ b : 3 a non-trivial flow f such that b**) f(v) is bounded }
= inf{ b : 3 cuts with arbitrarily small b-weight }

Note that by Lemma 10.1, these are the same.

It is clear that br(7T") > 1 for any infinite tree, since for such a tree we
can define a flow that is 1 on some infinite path from vy and zero elsewhere.
Furthermore, br(T") is independent of the choice of the root.

If we let T = {v : £(v) = n} be the vertices of T at level n, then the
number |T"]| of such vertices may behave very erratically with n. It is clear
that

br(T) < lim inf |77}/,
n—oo

(Use the cut Vo = T™ in Definition 10.3), however this inequality may be
strict. For example, consider the T in Figure 6. At level n there are 2"+ —1
vertices which are linearly ordered. The first 2" vertices of T™ all have 3
children (making up the first 3 - 2" vertices of T"*!), but all the remain-
ing vertices of 7™ have exactly one child. Clearly liminf, . [T7|'/" = 2.
However, every vertex other than the first one in 7™ has a bounded number
of descendants at each level m > n. This is because all its descendants at
level m > n which have 3 children must have 3™~" vertices before them in
T™, and for large m 3™~™ > 2". Thus ultimately all the descendants have
one child each. Now suppose we have a flow on T with ") f(v) bounded
for some b > 1. Each vertex v € T™ other than the first must then have
f(w) = 0. But then the first vertex must have f(v) = f(vo). But since
b*™) f(v) must be bounded, we have f(vp) = 0 and the flow is trivial. Thus
br(T) = 1.

For a regular tree of degree k+1 (so each vertex has exactly k children),
we have br(T) = k. Indeed, br(T) < liminf |T"|'/" = k, while the flow
defined by f(v) = k=*®) for all v shows that br(T) > k.

We now introduce the concept of percolation on T. Fix p € [0,1]. For
each node v of T', we randomly declare v to open with probability p. Oth-
erwise v will be closed. Moreover, the choice of the state of each node is
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Fig. 6. A tree with br(T) < liminf,, 0 |T™|'/".

made independently of the states of every other node of T. A path in T is
then said to be open if all the vertices of P are open. Hence any fixed path
on n vertices will be open with probability p”.

Theorem 10.1: (Theorem 6.2 of [5]) Suppose each node of a locally
finite infinite tree T is declared to be open with probability p, independently
of all other nodes. If p < 1/br(T) there is almost surely no infinite open
path from vy, and if p > 1/br(T) then an infinite open path from vy exists
with positive probability.
Proof: Suppose first that p < ﬁ. Then % > br(T), so there exist cuts
with arbitrarily small %—weight. Fix a cut Vp with w, ,,(Vo) < €. Suppose P
is an infinite open path from vg. If v is any vertex in P then all the vertices
on the unique path from vy to v must be open, and there are ¢(v) + 1 such
vertices (including vy and v themselves). Hence

PP(3 open path P containing v) < p“®)+1,

But 1} is a cut, so any infinite path must meet some vertex of V. Hence

P(3 infinite open path from vg) < Z pl+1 = pwi (Vo) < pe.
veVy
Since this holds for all € > 0, there is almost surely no infinite open path
from vyg.
Now suppose that p > ﬁ. Choose b > br(T) and € > 0 so that

p =3 +e. Let f be a flow such that b f(v) < ¢ for all v. (By scaling,
we can assume such a flow exists). Fix N > 0 and let p, be the probability
that there exists an open path from v down to some vertex at level N. We
shall show by reverse induction on the level that p, > f(v)b'®). At level N,
po = p > e > f(v)b"®). Now suppose that the result is true if £(v) = n
and v is a node at level n — 1. Let vq,...,v; be the children of v. Then
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Do, > f(v;)b". If there is no open path to level N from v, then either v is
not open or there is no open path to level N from v; for each v;. Hence
k
1*pv/p:H pw H Uz bn
1=1 .
<exp (=D Fw") = exp(—f(0)b").
i=1

Now f(v)b™ < eb and

r x
exp(—r) S =l-f Sl-mgg=1-34

for x < eb. Hence 1 — p,/p < 1 — f(v)b"/pb. Thus p, > f(v)b" . Hence
po > f(0)b'®) for all v, and in particular p,, > f(vo). If we let Ex be the
event that there exists an open path from vy to some vertex at level N, then
P(EN) = pv, > f(vo). Thus by continuity of probability, with probability
at least f(vg) there exists open paths down to any level. However, in this
case there is an infinite open path from wvg. (If there are arbitrarily long
open paths down from v then this must also hold for at least one of the
children of v. Thus one can construct an open path by always taking the
next vertex as one such child.) D

Theorem 10.2: If T is a Galton- Watson tree with distribution (pg)3>, of
mean u > 1, then conditional on survival, br(T) = p almost surely.

Proof: Let T be a Galton-Watson tree with generating function f(x). First
we show that if P(br(T") > b) > 0, then conditional on survival, br(T) > b
almost surely. Let Ej, be the event that br(T) < b. It is easy to see that
br(T') < bif and only if br(T,) < b for every child v of vg. Thus if p = P(E}),
then

p=> oo = f(p)
k=0

If P(br(T) > b) > 0 then p = P(Ep) < 1. But p = f(p), so p = pe, the
extinction probability of the process. Since E, O {extinction}, we have
P(br(T) > b | survival) = (1 — p)/(1 — p.) = 1.

Now fix p € [0,1] and delete vertices (and all their descendants) from
T independently with probability 1 — p (and independently of the process
that gave rise to T'). The result is a new Galton-Watson process T’ with
mean pu. Indeed, the number of surviving children of a surviving node is
given by the generating function f((1 — p) + px). On the other hand, the
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deletion of vertices is equivalent to declaring vertices open with probability
p and ignoring any vertex that does not lie on an open path from vg. Thus
the pruned process T” survives if and only if there is an infinite open path
from vy in T'.

The pruned tree T’ survives with positive probability if and only if
pp > 1. But we want to know whether the pruned version survives given
a fired instance of T. For this we need the conditional probability ¥ =
P(survives | T'). Now

P(survives) = E(1 fsurvives}) = E(E(Lsurvives} | 7)) = E(P(survives | T)).

If pu < 1 then E(Y) = P(survives) = 0, so, since ¥ > 0, Y = 0 almost
surely. In other words, for almost all instances of the tree T, P(survives |
T) = 0, and so by Theorem 10.1, br(7) < 1/p. Hence br(T) < p almost
surely. Conversely, if pu > 1 then E(Y') = P(survives) > 0, so Y > 0 with
positive probability. Thus br(7") > 1/p with positive probability, and hence
br(7") > 1/p almost surely given survival. Since this holds whenever py > 1,
br(7) > p almost surely given survival. O

11. Multi-type Galton-Watson Processes

In this last section we generalise the concept of a Galton-Watson pro-
cess to include nodes of different types. More specifically we specify that
each node is one of a finite number of types {1,2,..., N} and for each
type i, a node of type ¢ has a random number sz' of child nodes of

type 7. We do not assume that 55% . ,«E%) are independent, so for ex-
ample, the number of children of type 2 may be dependent on the num-
ber of children of type 1. However, as before, the number and type of
children of distinct nodes are independent. We replace Z,,, the number
of nodes at time n, with a vector Z\ = (Zy(f)l,,Zf:)N) of the num-
ber of nodes of each type at time n, assuming that we start with just
one type i node at time 0. Define a vector-valued generating function
f(x) = (fi(z1,...,2N), fo(x1,...,2N),...) Where

fi(.’lfl, .. .,QTN) = Z ]P)(glz) = ]{,‘17 f;) = ]{32, e )xlflxgz e
k1,k2,....kN

n.j 0 place of fj(i). Let
M = (pi;) be the matrix of the average number of type j children of a

Define f,,(x) similarly using the random variables Z, ()

type 4 node, so p;; = E(fj(z))



October 29, 2006 Master Review Vol. 9in x 6in — (for Lecture Note Series, IMS, NUS) Branch

42 P.N. Balister

Example: Suppose that each type ¢ node has a Poisson Po(y;;) number
of children of type j, independently for each j. Then M = (p;;) and

fx) = Y P =k, &) =k, abal

k1,k2,....knNn

_ (1) _ (1) _ k1, ko

= Z P& =k1)P(& = ko) ... xy w5 ... (Independence)
k1,k2,....kN

=Y B = kel YR = k)it
k}l k2

= ehin(@=1) gpia(za—1) | _ exp (Z] Hij (ajj — 1)) . (POiSSOH)

So in vector notation, f(x) = eM*~1) where 1 = (1,1,...,1) and both x

and 1 are regarded as column vectors.

We wish to generalise the results of the previous sections, determining
whether or not the process becomes extinct in terms of the matrix M.

To simplify the results, lets make a few assumptions on the process.
Construct a directed graph G on vertices {1,..., N} with an edge from
to j whenever p;; > 0, i.e., whenever it is possible for a type 7 node to have
a type j child.

Example: Denoting positive entries by +,

+0+ 1
M=1[(00+ = G=
0+0

Suppose at time 0 we start with a single node of type 2. Then we can
never get a node of type 1 as a descendent. Type 1 then becomes redundant,
and can effectively be ignored.

To avoid problems such as this, we shall assume that you can get from
any type j to any type ¢ in some number of steps. In other words we shall
assume that G is strongly connected. The ij entry in M? is >, ftikftj, SO
is positive precisely when there is a trail ¢ — k — j of length 2 from ¢ to j
in G. Similarly, the 7j entry in M™ is non-zero precisely when there is a trail
of length n from 7 to j. Thus any type node can have any type of descendent
provided that for all ¢ and j, there exists an n such that (M™),;; > 0. We call
such an M irreducible. Note that if M is not irreducible then it is possible
to divide the types into two classes A and B such that it is impossible to
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ever go from type A to type B. By permuting the types, we can then put
M into the following form

M = ( 61 g ) with A and C square matrices.

An irreducible matrix M is therefore any matrix that cannot be written in
this form.

However, even ignoring type 1 in the above example, if you start with a
node of type 2, then in each generation you alternate between type 2 and
type 3. In particular, if the process survives you will have no type 2 nodes
in every odd generation, but many in every even generation. To avoid this
situation we shall insist that you can get from any type ¢ to any type j in
n steps for all sufficiently large n. Equivalently, there is some fixed n > 0
such that the matrix M™ has all entries strictly positive. If this condition
holds then we shall call the process (Z%Z )),‘;O:O positive regular.

Another pathological case is when every node has exactly one child. This
corresponds to the p; = 1 case for the single type Galton-Watson process
and occurs if and only if f(x) = Mx. In this case we say that the process
is singular.

The following result from linear algebra will be useful.

Theorem 11.1: (Perron-Frobenius) Suppose that M is a matriz with
non-negative entries, and for some n > 0, M™ has all entries strictly pos-
itive. Then there exists a unique largest eigenvalue X > 0, a left (row)
eigenvector u = (uq,...,uy), uM = Au, and a right (column) eigenvector
v = (v1,...,0Nn), Mv = Xv, with all entries in u and v strictly posi-
tive. Moreover, if we normalise the eigenvectors so that u.v = 1, then
(M™);; = Avu; + O(a™) for some o < A.

From this result we see that if x is any non-zero vector with non-negative
entries, then xM™ ~ cA\™u as n — oo, where ¢ = x.v > 0.

The main results for single-type processes have very natural generalisa-
tions to multi-type processes.

Lemma 11.1: E(Zg)) = Zgi)M”. More generally, E(Zg) | fo),l =k) =
kM.

Hence for positive regular processes, E(Zg)) ~ cA™u as n — 0o, where
c =v; > 0. We also note that if the process is singular then we must have
A =1 since the entries in E(Zsf)) must sum to 1 for all n.

Lemma 11.2: %(1) = Wij-
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Lemma 11.3: f3(x) = x and f,11(x) = £(f,(x)).

Lemma 11.4: If Zﬁf) s positive reqular and non-singular then almost
surely either eventually ZS;") =0, or, for each j, ZT(:)] — 00.
Note that for Lemma 11.4 we need both positive regularity and non-
singularity. In this case there is once again a sharp distinction between
survival and extinction of the process.

For any two vectors x = (21,...,2y) and y = (y1,...,yn), write x <
y if @; < y; for all i. Define the vector p. = (pe,1,...,Pe,N) to be the
extinction probabilities starting with one node of each type: p. ; = P(ng ),
0).

Theorem 11.2: The vector p, is the smallest solution of f(pe) = Pe.

Proof: As in Theorem 2.1, £,(0) = (]P’(Z,(Il) = O),]P’(Z%Q) = 0),...) in-
creases to a limit p., which must then satisfy f(p.) = p.. Moreover, for
any solution p, of this equation, f,,(0) < p;, so pe < p,. In particular, the
“smallest” solution is well-defined. (In fact, 1 is always one solution, and
there is at most one other, which would then be the smallest if it exists.)D

Example: For the Po(u;;) process described above, p. is the smallest
solution to p. = eM®Pe—1) or in terms of survival probabilities, ps = 1—pe,
ps =1— e Mps,

Recall that A > 0 is the largest eigenvalue of M.

Theorem 11.3: Suppose the process Zg)
singular. If A <1 then ng) becomes extinct almost surely, while if A > 1

is positive regular and non-

then ZSf) survives with positive probability.

Limit Theorems for Multi-type processes

We give (without proofs) several more precise results about the limit of the
distribution of ng). These are mostly analogous to the single type limit
theorems already described.

Suberitical case: A < 1.

Theorem 11.4: Suppose sz) is positive reqular and A < 1. Then IP’(Zg) =
k| YA # 0) converges as n — oo to a probability distribution (px). More-
over, IP’(ZS) # 0)/\" tends to a limit as n — oo, which is non-zero if and
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only if the mean of the limiting distribution (Px) is finite, which in turn
occurs if and only if E(fj(»l) log fj(.z)) < oo for all i and j.

Critical Case: X = 1.

Theorem 11.5: Suppose zﬁf) is positive reqular and non-singular, A =1,
and Var(gj(-l)) < 00 for all i and j. Then conditioned on Z(Y) # 0, ng)/n
tends in distribution to Wu where W is an exponential random variable
and u is the left eigenvector of M defined in Theorem 11.1.

Supercritical case: A > 1.

Theorem 11.6: Suppose ng) is positive reqular and X\ > 1. Then almost
surely ng)//\" — Wu, where W is a random variable and u is the left
eigenvector of M defined in Theorem 11.1. Moreover, if E(fj(.l) logfj(»z)) <
0o for all i and j, then E(W) = v; > 0, P(W = 0) = P(Z¥) — 0) < 1
and, provided the number of child nodes is not almost surely A\, W has a
continuous and strictly positive density function for all W > 0. Conversely,
if IE(EJ@ log f](i)) = oo for some i and j, then W = 0 almost surely.
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