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Background

One of the most studied random graphs is

G(n, p), which has n vertices that can be ta-

ken as the integers 1, . . . , n, and where each

pair of vertices is connected by an edge with

probability p, independently of all other ed-

ges.

We consider the case p = c/n for some con-

stant c > 0, and let n→∞. The degree of

a given vertex has a binomial distribution

Bi(n−1, c/n) ≈ Po(c). This is a strongly con-

centrated distribution with an exponentially

decreasing tail. Many graphs from “real life”

has much larger tails, for example power-law

tails, and it is therefore important to study

also random graph models with such beha-

viour.
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We will describe one class of random graphs
that generalize G(n, c/n) but also allow many
less homogeneous examples, for example na-
tural examples of ‘scale-free’ random graphs,
where the degree distribution has a power-
law tail. We believe that when it comes to
modelling real-world graphs with, for examp-
le, observed power-laws for vertex degrees,
our model provides an interesting and flexib-
le alternative to existing models.

Nevertheless, we will see that many properti-
es of G(n, c/n) extend to these random grap-
hs. In particular, we consider the question
whether there exist a giant component or
not, and we will, typically, find a phase tran-
sition similar to what happens for G(n, c/n).
There are, however, some interesting twists
for some examples.

We are interested in graphs with a large num-
ber of vertices, and in particular in asymp-
totics as the number tends to infinity. The
graphs we consider are such that the ave-
rage degree stays bounded, so they are rather
sparse.
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Reference

These lectures are based on

B. Bollobás, S. Janson & O. Riordan (2006+),

The phase transition in inhomogeneous ran-

dom graphs. Random Structures and Algo-

rithms, to appear.

arXiv:math.PR/0504589

See this paper for proofs and further details.
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Some examples

We will study random graphs where the ed-

ges appear independently, as in G(n, p), but

where the probability of an edge may differ

between different pairs of vertices. We begin

with some examples of the type of random

graph we consider.

Example. Let, as above, the vertices be the

n integers 1, . . . , n. For every pair {i, j} with

i 6= j, independently of all other pairs, con-

nect i and j by an edge with probability

pij =
κ(i/n, j/n)

n

for a given symmetric function κ on (0,1]2.

Taking κ = c constant, we obtain G(n, c/n),

but other functions κ give many other inte-

resting random graphs.
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A specific interesting example is given by the

choice κ(x, y) = c/max{x, y}; we then con-

nect i and j by an edge with probability

pij =
c

max{i, j}
.

Here c > 0 is a parameter that will be kept

constant as n varies. We assume for simpli-

city that c ≤ 2; otherwise we have to define

pij = min
(

c

max{i, j}
,1

)
.

This example is the uniformly grown ran-

dom graph, or c/j-graph, G
1/j
n (c). The graph

G
1/j
n (c) is thus the graph on {1,2, . . . , n} in

which edges are present independently, and

the probability that for i 6= j the edge ij is

present is pij = c/max{i, j}, or simply c/j if

i < j.
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Remark

In principle, we may take any symmetric non-

negative function κ on (0,1]2 in this example.

However, the function κ is evaluated only at

rational points, so in order to make sense of

having κ defined on the entire square, it is

reasonable to impose a continuity condition.

To assume that κ is continuous (and thus

bounded) on the closed unit square [0,1]2

would be convenient, but too strong for our

purposes since it excludes the example

κ(x, y) = c/max{x, y} just given.

To assume that κ is continuous on the open

unit square (0,1)2 is enough, but it turns out

that it suffices to assume that κ is continuous

almost everywhere in the unit square.
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Example. Let M ≥ 2 be a fixed integer and

divide (0,1] into the M intervals Ik = ((k −
1)/M, k/M ], k = 1, . . . ,M . Let κ be constant

on each square Ik × Il.

This means that the vertices are of M dif-

ferent types, and that the probability of an

edge ij depends on the types of i and j. If n

is a multiple of M , there are n/M vertices of

each type.
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Variations

We have obtained our edge probabilities pij
by evaluating κ at the point (i/n, j/n). An

interesting alternative is to let x1, . . . , xn be

n random points in (0,1], independent and

uniformly distributed, and then take pij =

κ(xi, xj)/n. (We divide by n in order to keep

the average degree bounded.)

If the vertex labels 1, . . . , n do not have any

special significance, we may order the se-

quence x1, . . . , xn. The ordered sequence is

then close to 1
n,

2
n, . . . ,1, so it is not surprising

that we will obtain a random graph with the

same asymptotic properties as in Example

above.

As we will see in the general definition, we

can also allow x1, . . . , xn to be random and

dependent; asymptotically, only the density

of the points matter.
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There is nothing special with the interval (0,1]

here; it can be replaced by another space. For

example, the finite-type case in Example is

simpler described by using a finite type space

{1, . . . ,M}.

This leads to the following general (but long

and somewhat technical) definition.
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Definition

The general inhomogeneous random graph

GV(n, κ) is defined as follows, with a slight

extension of the version in Bollobás, Janson

and Riordan (2006+). We proceed in two

steps, constructing first the vertices and then

the edges. Note that n is a parameter mea-

suring the size of the graph, and we are pri-

marily interested in asymptotics as n→∞.

In many instances, n is the number of verti-

ces, but that is not always the case; in gene-

ral, the number of vertices may be random,

and we require only that it is roughly pro-

portional to n. Moreover, there is in general

no need for the parameter n to be integer

valued.
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A vertex space V is a triple (S, µ, (xn)n≥1),

such that the following holds.

(i) S is a separable metric space.

(ii) µ is a (positive) Borel measure on S with

0 < µ(S) <∞.

(iii) For each n, xn is a random sequence

(x1, x2, . . . , xNn) of Nn points of S (where

Nn may be deterministic or random).

(Formally, we should write xn = (x(n)1 , . . . , x
(n)
Nn

),

say, as we assume no relationship between

the elements of xn for different n, but we

omit this extra index.)
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Let M(S) be the space of all (positive) fi-

nite Borel measures on S, and equip M(S)

with the standard weak topology: νn → ν iff∫
f dνn →

∫
f dν for all bounded continuous

functions f : S → R. Let

µn :=
1

n

Nn∑
i=1

δxi

where δx is the Dirac measure at x ∈ S; thus

µn is a random element of M(S). We will

further assume that

(iv) µn
p→ µ, as elements of M(S).

Recall that a set A ⊆ S is a µ-continuity set if

A is (Borel) measurable and µ(∂A) = 0, whe-

re ∂A is the boundary of A. The convergence

condition (iv) is equivalent to the condition

that for every µ-continuity set A,

µn(A) := #{i ≤ Nn : xi ∈ A}/n
p→ µ(A).
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Let V be a vertex space, and let κ be a sym-

metric non-negative (Borel) measurable fun-

ction on S×S. (We call such a function a ker-

nel.) We define the random graph GV(n, κ) by

first letting the vertex set be {1, . . . , Nn}.

(It is sometimes more convenient to iden-

tify the vertices with the points x1, . . . , xNn
in S rather than integers, but note that this

must be done with care if there are repeti-

tions among the points xi.)

We then add edges as follows. Given the se-

quence xn, we consider each pair of vertices

{i, j} with i 6= j separately, and let there be

an edge between i and j with probability

pij = min
{
κ(i/n, j/n)

n
,1

}
.

This random choice is done independently for

all pairs {i, j}, conditioned on xn.
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In order to avoid pathologies, we finally as-

sume

(v) κ is continuous a.e. on S × S;

(vi) κ ∈ L1(S × S, µ× µ), i.e.,∫∫
S2
κ(x, y) dµ(x) dµ(y) <∞;

(vii)

1

n
E e

(
GV(n, κ)

)
→ 1

2

∫∫
S2
κ(x, y) dµ(x) dµ(y).

We say that the kernel κ is graphical on the

vertex space V = (S, µ, (xn)n≥1) when these

hold.

It can be shown that (vii) follows from the

other assumptions if κ is bounded.
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Note that the number of vertices v(GV(n, κ))
is roughly proportional to n; more precisely,

v(GV(n, κ))

n
=
Nn

n
= µn(S)

p→ µ(S).

Remark. It is assumed in Bollobás, Janson

and Riordan (2006+) that µ is a probability

measure, i.e. that µ(S) = 1. (This is equi-

valent to Nn/n
p→ 1.) The extension here to

0 < µ(S) < ∞ is convenient, but on a for-

mal level it is only a matter of notation since

we may normalize µ: for any c > 0, the ran-

dom graph GV(n, κ) is unchanged if we re-

place n by cn, κ by cκ and µ by c−1µ, and we

may choose c = µ(S). All results in Bollobás,

Janson and Riordan (2006+) thus hold in

our setting too, possibly with trivial modifi-

cations.

We often suppress the dependence on V, wri-

ting G(n, κ) for GV(n, κ).
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More generally, we may consider a sequence

(κn) of kernels on S and the corresponding

random graphs GV(n, κn). We say that the

sequence (κn) of kernels on (S, µ) is graphical

on V with limit κ if

(v) κ is continuous a.e. on S × S;

(v’) for a.e. (y, z) ∈ S2, yn → y and zn → z

imply that κn(yn, zn) → κ(y, z);

(vi) κ ∈ L1(S × S, µ× µ);

(vii’)

1

n
E e(GV(n, κn)) → 1

2

∫∫
S2
κ(x, y) dµ(x) dµ(y).

We will see that most results for GV(n, κ)
hold for GV(n, κn) too.
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Further variations

A common variation of the construction abo-

ve is that the edges are generated with pro-

bability

pij := 1− exp
(
−κ(xi, xj)/n

)
,

rather than by
{
κ(xi, xj)/n,1

}
. This is the

result if we regard κ as intensities of Pois-

son processes of edges, and construct a mul-

ti1graph by adding a Poisson number of ed-

ges between i and j, with mean κ(xi, xj)/n,

and then merge multiple edges. (There will

be very few multiple edges, and for many pur-

poses it does not matter whether we leave

them or not.)

We can treat this version by regarding it as

an instance of GV(n, κn) with

κn(x, y) := n
(
1− exp(−κ(x, y)/n)

)
.

It is easily seen that the sequence (κn) is

graphical with limit κ if κ is graphical.
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Another alternative, studied by Britton, Deij-

fen and Martin-Löf (2006+) in a special case,

is to let

pij

1− pij
=
κ(xi, xj)

n
,

i.e., to take

pij :=
κ(xi, xj)

n+ κ(xi, xj)
.

Again, the sequence (κn) is graphical with

limit κ if κ is graphical.

This version is sometimes simpler than our

standard one. In particular, if the sequence

xn is deterministic, and the kernel κ has rank

1, i.e., κ(x, y) = ψ(x)ψ(y) for some function

ψ, then the probability of obtaining a specific

graph G on the given vertex set equals

C
∏
i

ψ(xi)
di

where di is the degree of vertex i. The pro-

bability thus depends on the degree sequence

only.
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More examples

Example. The Erdős-Rényi random graph.

If κ = c is constant, then any choice of S
and any choice of x1, . . . , xn gives the classi-

cal Erdős–Rényi random graph G(n, c/n).

The simplest choice is to let S consist of a

single point.
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Example. The finite-type case.

Let S = {s1, . . . , sr} be finite. Then κ is an r×
r matrix. In this case, G(n, κ) has vertices of

r different types (or colours), say ni vertices

of type i, with two vertices of types i and j

joined by an edge with probability n−1κ(i, j)

(for n ≥ maxκ). The condition (iv) means

that ni/n→ µi for each i (in probability if the

ni are random), where µi := µ{i} ≥ 0.

This case has been studied by Söderberg who

noted our main result on the phase transition

in this case.
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Example. I.i.d. vertices. For any S and µ, we

can take x1, . . . , xn to be i.i.d. random points

in S with distribution µ. (This has been pro-

posed by Söderberg.)
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Example. Poisson process graph. For any S
and µ, and any λ > 0, let x1, . . . , xN be the

points of a Poisson process on S with in-

tensity measure λµ. In other words, N has a

Poisson distribution Po(λ), and, given N , the

points are i.i.d. as in the preceding example.

We consider the random graph G̃λ(κ), where

we use λ as a parameter instead of n.

Conditioned on N = m, this random graph is

just G(m, κ̃), with x1, . . . , xm as in the prece-

ding example and κ̃ := (m/λ)κ.
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Results

We sometimes need one additional condition.

A kernel κ on a ground space (S, µ) is redu-

cible if ∃A ⊂ S with 0 < µ(A) < µ(S) such

that κ = 0 a.e. on A× (S \A); otherwise κ is

irreducible.

Thus κ is irreducible if A ⊆ S with κ = 0 a.e.

on A× (S \A) implies that µ(A) = 0 or µ(S).

Roughly speaking, κ is reducible if the vertex

set of GV(n, κ) can be split into two parts so

that the probability of an edge from one part

to the other is zero, and irreducible otherwi-

se.
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A branching process

A main tool to study components is a bran-
ching process approximation. We use the multi-
type Galton–Watson branching process with
type space S, where a particle of type x ∈ S
is replaced in the next generation by a set
of particles distributed as a Poisson process
on S with intensity κ(x, y) dµ(y). (Thus, the
number of children with types in a subset
A ⊆ S has a Poisson distribution with mean∫
A κ(x, y) dµ(y), and these numbers are inde-
pendent for disjoint sets A and for different
particles.) We denote this branching process,
started with a single particle of type x, by
Xκ(x).

Let ρ(κ;x) be the probability that the bran-
ching process survives for eternity.

We further define

ρ(κ) :=
∫
S
ρ(κ;x) dµ(x).
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An integral operator

Let Tκ be the integral operator on (S, µ) with

kernel κ, defined by

(Tκf)(x) =
∫
S
κ(x, y)f(y) dµ(y),

for any (measurable) function f such that

this integral is defined (finite or +∞) for a.e.

x. Note that Tκf is defined for every f ≥ 0,

with 0 ≤ Tκf ≤ ∞. If κ ∈ L1(S × S), as we

assume, then Tκf is also defined for every

bounded f ; in this case Tκf ∈ L1(S) and thus

Tκf is finite a.e.

We define

‖Tκ‖ := sup
{
‖Tκf‖2 : f ≥ 0, ‖f‖2 ≤ 1

}
≤ ∞.

This is also the spectral radius.
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Define the non-linear operator Φκ by

Φκf := 1− e−Tκf

for f ≥ 0. For such f we have 0 ≤ Tκf ≤ ∞,

and thus 0 ≤ Φκf ≤ 1. We can characterize

ρ(κ;x), and thus ρ(κ), in terms of the non-

linear operator Φκ.

There is a (necessarily unique) maximum so-

lution ρ̃κ to

Φκ(ρ̃κ) = ρ̃κ,

i.e., a solution that pointwise dominates all

other solutions. Furthermore, ρ(κ;x) = ρ̃κ(x)

for a.e. x, and

Φκ(ρκ) = ρκ a.e.,

where the function ρκ is defined by ρκ(x) :=

ρ(κ;x).

If ‖Tκ‖ ≤ 1, then ρ̃κ is identically zero, and

this is thus the only solution. If ‖Tκ‖ > 1, then

ρ̃κ is positive on a set of positive measure.

Thus ρ(κ) > 0 if and only if ‖Tκ‖ > 1.
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Main results

We denote the orders of the components of

a graph G by C1(G) ≥ C2(G) ≥ . . . , with

Cj(G) = 0 if G has fewer than j components.

We let Nk(G) denote the total number of

vertices in components of order k, and write

N≥k(G) for
∑
j≥kNj(G), the number of ver-

tices in components of order at least k. Our

results are asymptotic, and all unspecified li-

mits are taken as n→∞.
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Theorem 1.Let (κn) be a graphical sequence

of kernels on a vertex space V with limit κ.

(i) If ‖Tκ‖ ≤ 1, then C1

(
GV(n, κn)

)
= op(n),

while if ‖Tκ‖ > 1, then C1

(
GV(n, κn)

)
=

Θ(n) whp.

(ii) For any ε > 0, whp we have

1

n
C1

(
GV(n, κn)

)
≤ ρ(κ) + ε.

(iii) If κ is irreducible, then

1

n
C1(G

V(n, κn))
p→ ρ(κ).

In all cases ρ(κ) < 1; furthermore, ρ(κ) > 0 if

and only if ‖Tκ‖ > 1.
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As customary, we say that a sequence of ran-

dom graphs Gn (with n vertices in Gn) has a

giant component if C1(Gn) = Θ(n) whp.

Corollary 1. Let κ be a graphical kernel on

a vertex space V, and consider the random

graphs GV(n, cκ) where c > 0 is a constant.

Then the threshold for the existence of a gi-

ant component is c = ‖Tκ‖−1. More precise-

ly, if c ≤ ‖Tκ‖−1, then C1

(
GV(n, cκ)

)
= op(n),

while if c > ‖Tκ‖−1 and κ is irreducible, then

C1

(
GV(n, cκ)

)
= ρ(cκ)n+ op(n) = Θp(n).

Corollary 2. Let κ be a graphical kernel on

a vertex space V. Then the property that

GV(n, cκ) has whp a giant component holds

for every c > 0 if and only if ‖Tκ‖ = ∞. Ot-

herwise it has a finite threshold c0 > 0.

In the light of the results above, we say that

a kernel κ is subcritical if ‖Tκ‖ < 1, critical if

‖Tκ‖ = 1, and supercritical if ‖Tκ‖ > 1. We

use the same expressions for a random graph

G(n, κ) and a branching process Xκ.
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The number of edges in the graph at the

point where the giant component emerges is

maximal in the classical Erdős–Rényi case.

the proof.

Theorem 2. Let κn be a graphical sequence

of kernels on a vertex space V with limit κ,

and assume that κ is critical, i.e. ‖Tκ‖ =

1. Then 1
ne(G

V(n, κn))
p→ 1

2

∫∫
κ ≤ 1/2, with

equality in the uniform case κ = 1.
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We can also determine the asymptotic num-

ber of edges in the giant component. As this

is not always uniquely defined, for any graph

G, let C1(G) be the largest component of G,

i.e., the component with most vertices, cho-

sen according to any fixed rule if there is a

tie. In order to state the next result concisely,

let

ζ(κ) :=
1

2

∫∫
S2
κ(x, y)

(
ρ(κ;x) + ρ(κ; y)

− ρ(κ;x)ρ(κ; y)
)
dµ(x) dµ(y).

Theorem 3.Let (κn) be a graphical sequence

of kernels on a vertex space V with irreducible

limit κ. Then

1

n
e
(
C1(GV(n, κn))

) p→ ζ(κ).
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The giant component is whp unique when it

exists; the second largest component is much

smaller. Indeed, only op(n) vertices are in ‘lar-

ge’ components other than the largest.

Theorem 4.Let (κn) be a graphical sequence

of kernels on a vertex space V with irreducible

limit κ, and let Gn = GV(n, κn). If ω(n) →∞
and ω(n) = o(n), then∑

j≥2: Cj(Gn)≥ω(n)

Cj(Gn) = op(n).

In particular,

C2(Gn) = op(n).
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Remark. If κ and κ′ are two kernels with

κ′ ≥ κ, then one can couple the correspon-

ding graphs or branching processes so that

G(n, κ) ⊆ G(n, κ′) or Xκ ⊆ Xκ′. Thus ρ(κ) ≤
ρ(κ′).

If κ is irreducible and ρ(κ) > 0, then ρ(κ′) >
ρ(κ) unless κ′ = κ a.e.

Similarly, the threshold c0(κ
′) := ‖Tκ′‖−1 is

at most c0(κ) := ‖Tκ‖−1.

Here, however, somewhat surprisingly, we may

have c0(κ
′) = c0(κ) even if κ′ > κ. On the

other hand, it is easily seen that if Tκ is com-

pact and κ′ > κ on a set of positive measure,

then ‖Tκ′‖ > ‖Tκ‖ and thus c0(κ
′) < c0(κ).
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Stability

The giant component of Gn = GV(n, κn) is

stable in the sense that its size does not

change much if we add or delete a few verti-

ces or edges. Note that the vertices or edges

added or deleted do not have to be random or

independent of the existing graph; they can

be chosen by an adversary after inspecting

the whole of Gn.

Theorem 5.Let (κn) be a graphical sequence

of kernels on a vertex space V with irreducib-

le limit κ, and let Gn = GV(n, κn). For every

ε > 0 there is a δ > 0 (depending on κ) such

that, whp,

(ρ(κ)− ε)n ≤ C1(G
′
n) ≤ (ρ(κ) + ε)n

for every graph G′n that may be obtained

from Gn by deleting at most δn vertices and

their incident edges, and then adding or de-

leting at most δn edges.
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In particular, if G′n is a graph on [n] = 1, . . . , n

with e(G′n4Gn) = op(n) then

C1(G
′
n) = C1(Gn) + op(n) = ρ(κ)n+ op(n).

As pointed out by Britton and Martin-Löf [?],

the theorem has the following interpretation:

suppose that Gn represents the network of

contacts that may allow the spread of an in-

fectious disease from person to person, and

that we wish to eliminate the possibility of an

epidemic by vaccinating some of the popula-

tion. Even if the entire network of contacts

is known, if the source of the infection is not

known, a significant (constant, as n → ∞)

proportion of the population must be vacci-

nated: otherwise, there is still a giant com-

ponent in the graph on the unvaccinated pe-

ople, and if the infection starts at one of its

vertices, it spreads to Θ(n) people.
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More on the phase transition

Fix a graphical kernel κ on a vertex space
V, and study GV(n, cκ) for a real parameter
c > 0 as in the corollary above.

By Theorem 1, the size of the largest com-
ponent of GV(n, cκ) is described by the fun-
ction ρ(cκ), which is 0 for c ≤ c0 := ‖Tκ‖−1

and strictly positive for larger c. With V and
κ fixed, let us denote this function by ρ(c),
c > 0. It turns out that ρ(c) is continuous on
(0,∞).

Since ρ(c) = 0 for c ≤ c0 but not for larger c,
the function ρ is not analytic at c0; in physical
terminology, there is a phase transition at c0.

For the classical Erdős–Rényi random graph
G(n, c/n) (obtained with κ = 1), it is well-
known that ρ is continuous but the first de-
rivative has a jump at c0 = 1; more precisely,
ρ′
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jumps from 0 to ρ′+(c0) = 2. For finite d, we

shall say that the phase transition in GV(n, κ)
has exponent d if ρ(c0+ ε) = Θ(εd) as ε↘ 0.

As we have just noted, in G(n, c/n) the phase

transition has exponent 1. If ρ(c0+ε) = o(εd)

for all d, we say that the phase transition has

infinite exponent. We are deliberately avoi-

ding the physical term ‘order’, as it is not

used in a consistent way in this context.

It has been shown (Dorogovtsev, Mendes and

Samukhin (2001), Durrett (2003) and Bol-

lobás, Janson and Riordan (2005)) that in

the case S = (0,1] and κ(x, y) = 1/(x ∨ y),
the phase transition ‘is of infinite order’, i.e.,

has infinite exponent. We shall later see in

that it is also possible to have a phase tran-

sition with any finite exponent larger than 1

(including non-integer values).

The next theorem shows that the phase tran-

sition has exponent 1 for a wide class of ker-

nels κ, including all bounded κ.
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Theorem 6. Let κ be a kernel on a ground

space (S, µ). Suppose that κ is irreducible,

and that

sup
x

∫
S
κ(x, y)2 dµ(y) <∞.

(i) The function c 7→ ρ(c) := ρ(cκ) is analytic

except at c0 := ‖Tκ‖−1.

(ii) Furthermore, Tκ has an eigenfunction ψ

of eigenvalue ‖Tκ‖ < ∞, and every such

eigenfunction is bounded and satisfies

ρ(c0+ε) = 2c−1
0

∫
S ψ

∫
S ψ

2∫
S ψ3

ε+O(ε2), ε > 0,

so ρ′+(c0) = 2c−1
0

∫
S ψ

∫
S ψ

2/
∫
S ψ

3 > 0 and

ρ has a phase transition at c0 with expo-

nent 1.

Corollary 3. Let κ be an irreducible kernel

such that (6) holds, and let c0 := ‖Tκ‖−1 >

0. Then c0ρ
′
+(c0) ≤ 2, with equality in the

classical Erdős–Rényi case.
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Bounds on the small components

For the classical random graph G(n, c/n) it

is well-known that in the subcritical (c < 1)

case, C1 = O(logn) whp, and that in the su-

percritical (c > 1) case, C2 = O(logn) whp.

If we add some conditions, we obtain similar

results. As before, we write Gn for GV(n, κn).

Theorem 7.Let (κn) be a graphical sequence

of kernels on a vertex space V with limit κ.

(i) If κ is subcritical, i.e., ‖Tκ‖ < 1, and

supx,y,n κn(x, y) <∞, then C1(Gn) = O(logn)

whp.

(ii) If κ is supercritical, i.e., ‖Tκ‖ > 1, κ is

irreducible, and either infx,y,n κn(x, y) > 0

or supx,y,n κn(x, y) < ∞, then C2(Gn) =

O(logn) whp.
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Note that in part (ii) we draw the same con-

clusion from the very different assumptions

infx,y,n κn(x, y) > 0 and supx,y,n κn(x, y) <∞.

There is no similar result for the subcritical

case assuming only that infx,y,n κn(x, y) > 0.

Example:

The random graph G
1/j
n (c) with 0 < c <

1/4 is subcritical and satisfies C1(G
1/j
n (c)) =

nΘ(1) whp.
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Degree sequence

The degree of a vertex of a given type x is
asymptotically Poisson with a mean

λ(x) :=
∫
S
κ(x, y) dµ(y)

that depends on x. This leads to a mixed
Poisson distribution for the degree D of a
random vertex of GV(n, κn). We write Zk for
the number of vertices of GV(n, κn) with de-
gree k.
Theorem 8.Let (κn) be a graphical sequence
of kernels on a vertex space V with limit κ.
Define λ(x) as above, and let Ξ have the
mixed Poisson distribution

∫
S Po(λ(x)) dµ(x).

Then, for any fixed k ≥ 0,

Zk/n
p→ P(Ξ = k) =

∫
S

λ(x)k

k!
e−λ(x) dµ(x).

In other words, if D is the degree of a random
vertex of GV(n, κn), then

L(D | GV(n, κn))
p→ L(Ξ) =

∫
S
Po(λ(x)) dµ(x).
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Distances between vertices

Let us write d(v, w) for the graph distan-
ce between two vertices of Gn = GV(n, κn),
which we take to be infinite if they lie in dif-
ferent components.
Theorem 9. Let κn be a graphical sequence
of kernels on a vertex space V with limit κ,
with ‖Tκ‖ > 1. Let Gn = GV(n, κn), and let v
and w be two independently chosen random
vertices in Gn.

(i) If κ is irreducible and 1 < ‖Tκ‖ <∞, then(
d(v, w)/ logn | d(v, w) <∞

) p→ 1/ log ‖Tκ‖

(ii) If κ is irreducible and ‖Tκ‖ = ∞, then
there is a function f(n) = o(logn) such
that

P
(
d(v, w) ≤ f(n) | d(v, w) <∞

)
→ 1.
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Define the ‘diameter’ of Gn as

diam(Gn) :=

max{d(v, w) : v, w ∈ V (G), d(v, w) <∞},

the maximum of the diameters of the com-

ponents of Gn.

Theorem 10. Let κ be a kernel on a finite

ground space (S, µ), S = {1,2, . . . , r}, with

µ{i} > 0 for each i. If 0 < ‖Tκ‖ < 1, then

diam(Gn)

logn

p→
1

log ‖Tκ‖−1

as n→∞, where Gn = GV(n, κ). If ‖Tκ‖ > 1

and κ is irreducible, then

diam(Gn)

logn

p→
2

log ‖Tκ̂‖−1
+

1

log ‖Tκ‖
,

where κ̂ is the dual kernel to κ, defined by

κ̂(x, y) = (1− ρ(κ))κ(x, y)

on (S, µ̂), where the measure µ̂ is defined by

dµ̂(x) = (1− ρ(κ;x))/(1− ρ(κ)) dµ(x).
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More examples

Example. The homogeneous case. More ge-

nerally, let the ground space (S, µ) be arbit-

rary, and let κ be irreducible and such that∫
S κ(x, y) dµ(y) is independent of x ∈ S, i.e.,

that ∫
S
κ(x, y) dµ(y) = c for every x,

for some constant c. (This says roughly that,

asymptotically, all vertices have the same ave-

rage degree.)

Then Tκ1 = c, so the constant function 1 is a

positive eigenfunction with eigenvalue c, and

thus ‖Tκ‖ = c, and by Theorem 1 there is a

giant component (and ρ(κ) > 0) if and only

if c > 1.
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In the branching process, the number of child-

ren of each particle has a Po(c) distribution.

Hence, ignoring the types of the particles,

the distributions of the process Xκ and the

single-type process Xc are the same. In par-

ticular, ρ(κ) = ρ(c), so ρ(κ) = ρ(c) is given

by the same equation as in the Erdős–Rényi

case.

Thus, the global behaviour of G(n, κ) is ex-

actly the same as that of G(n, c/n), at least

in terms of the size of the giant component.

The local behaviour can be quite different,

though. For example, G(n, κ) may have ma-

ny more triangles or other small cycles than

G(n, c/n). On the other hand, the vertex de-

grees have an asymptotic Po(c) distribution

just as in G(n, c/n).
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A natural example of such a homogeneous

κ is given by taking S as (0,1] (now bet-

ter regarded as the circle T), µ as Lebesgue

measure, and κ(x, y) = h(x − y) for an even

function h ≥ 0 of period 1. For example, h

can be constant on a small interval (−δ, δ)
and vanish outside it; this gives a modifica-

tion of G(n, c/n) where only “short” edges

are allowed.

More generally, S can be any compact homo-

geneous space, for example a sphere, with

Haar measure µ and an invariant metric d,

and κ(x, y) a function of the distance d(x, y).
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Example. Take S = (0,1] with µ the Lebes-

gue measure, and let xi = i/n. Set κ(x, y) =

1[x + y ≤ 1] and consider the kernel cκ, so

that

pij =

c/n, i+ j ≤ n;

0, i+ j > n.

Thus G(n, cκ) can be obtained from the ran-

dom graph G(n, c/n) by deleting all edges ij

with i+ j > n.

The operator Tκ is compact, and it easy to

see that it has eigenvalues (−1)kω−1
k and ei-

genfunctions cos(ωkx), with ωk = (k+1/2)π,

k = 0,1, . . . . Hence ‖Tκ‖ = 2/π and the criti-

cal value is c0 = π/2. Theorem 6 shows that

at the critical value we have c0ρ
′
+(c0) = 3/2.
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Example. Edge percolation. Let κ be an ir-

reducible graphical kernel on a vertex space

V with ‖Tκ‖ > 1, and let 0 < p ≤ 1. Indepen-

dently of everything else, keep each edge in

G(n, κ) with probability p and delete it with

probability 1− p. Denote the resulting graph

by G〈p〉(n, κ).

This random graph G〈p〉(n, κ) is nothing but

G(n, κ̃n), where

κ̃n(x, y) := p
(
κ(x, y) ∧ n

)
.

Clearly, xn → x and yn → y imply κ̃n(xn, yn) →
pκ(x, y), provided (x, y) is a point of con-

tinuity of κ. Furthermore, E e
(
G〈p〉(n, κ)

)
=

pE e
(
G(n, κ)

)
→ p12

∫∫
κ. Hence, Theorem 1

applies with κ replaced by pκ, so

n−1C1

(
G〈p〉(n, κ)

) p→ ρ(pκ).

In particular, G〈p〉(n, κ) has whp a component

of order Θ(n) if and only if ‖Tpκ‖ > 1, i.e., if

p > ‖Tκ‖−1.
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Example. Vertex percolation. Independently

of everything else, keep each vertex in G(n, κ)

with probability p and delete it with proba-

bility 1 − p. Denote the resulting graph by

G[p](n, κ).

G[p](n, κ) is the graph G(m,κn) obtained from

a random sample x̃1, . . . , x̃m of the points

x1, . . . , xn, rather than from all of them.

Theorem 1 applies (with µ replaced by pµ),

and it follows that

n−1C1

(
G[p](n, κ)

) p→ pρ(pκ).

In particular, G[p](n, κ) has whp a component

of order Θ(n) if and only if ‖Tpκ‖ > 1, i.e. if

p > ‖Tκ‖−1. We thus obtain the same thres-

hold for vertex percolation in G(n, κ) as for

edge percolation.
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Dubins’ model

A common setting is the following: the ver-

tex space V is (S, µ, (xn)n≥1), where S =

(0,1], µ is the Lebesgue measure, and xn =

(x1, . . . , xn) with xi = i/n. In this case, we ha-

ve pij = κ(i/n, j/n)/n ∧ 1 for the probability

of an edge between vertices i and j. We shall

consider several choices of κ in some detail.

Observe first that if κ is a positive function

on (0,∞)2 that is homogeneous of degree

−1, then pij = κ(i, j)∧1. Since this does not

depend on n, in this case we can also consi-

der the infinite graph G(∞, κ), defined in the

same way as Gn = GV(n, κ) but on the vertex

set {1,2, . . . }. Note that the graphs GV(n, κ)
are induced subgraphs of G(∞, κ) and that

we can construct them by successively ad-

ding new vertices, and for each new vertex

an appropriate random set of edges to earlier

vertices.
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We first consider κ(x, y) = c/(x ∨ y) with c >

0, so that if j ≥ c then

pij = c/j for i < j.

In this case we can regard GV(n, κ) as a se-

quence of graphs grown by adding new ver-

tices one at a time where, when vertex k is

added, it gets Bi(k−1, c/k) edges, whose ot-

her endpoints are chosen uniformly among

the other vertices. (We might instead take

Po(c)∧ (k− 1) new edges, without any diffe-

rence in the asymptotic results below.)

This infinite graph G(∞, κ) was considered

by Dubins in 1984, who asked when G(∞, κ)

is a.s. connected. Dubins’ question was an-

swered partially by Kalikow and Weiss (1988).

A little later Shepp (1989) proved that G(∞, κ)

is a.s. connected if and only if c > 1/4. This

result was generalized to more general ho-

mogeneous kernels by Durrett and Kesten

(1990).
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The finite random graph GV(n, κ) with this

κ, has been studied by Durrett (2003), who

points out that it has the same critical value

c = 1/4 for the emergence of a giant com-

ponent as the infinite version has for con-

nectedness, and by Bollobás, Janson and Ri-

ordan (2005) who rigorously show that this

example has a phase transition with infinite

exponent. More precisely, denoting ρ(κ) by

ρ(c), it was shown by Riordan (2006+) that

ρ(1/4 + ε) = exp
(
−π2ε

−1/2 +O(log ε)
)
.

A similar formula for the closely related CHKNS

model introduced by Callaway, Hopcroft, Kle-

inberg, Newman and Strogatz (2001) had

been given earlier by Dorogovtsev, Mendes

and Samukhin (2001) using non-rigorous met-

hods.
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To find the critical value by our methods,

we have to find the norm of Tκ on L2(0,1).

Using the isometry U : f 7→ e−x/2f(e−x) of

L2(0,1) onto L2(0,∞), we may instead con-

sider T̃κ := UTκU−1, which by a simple cal-

culation is the integral operator on L2(0,∞)

with kernel

κ̃(x, y) = e−x/2κ(e−x, e−y)e−y/2

= ce−x/2−y/2+x∧y = ce−|x−y|/2.

Hence T̃κ is the restriction to (0,∞) of the

convolution with h(x) := ce−|x|/2. Because of

translation invariance, it is easily seen that T̃κ
has the same norm as convolution with h on

L2(−∞,∞), and taking the Fourier transform

we find

‖Tκ‖ = ‖T̃κ‖ = ‖f 7→ h ∗ f‖L2(−∞,∞)

= sup
ξ∈R

|ĥ(ξ)| =
∫ ∞

−∞
h(x) dx = 4c.

Thus, Theorem 1 shows that there is a giant

component if and only if c > 1/4.
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To find the size of the giant component is

more challenging. It is easy to see that Tκ is

a non-compact operator, and that it has no

eigenfunctions at all in L2. We suspect that

this is connected to the fact that the phase

transition has infinite exponent.
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The mean-field scale-free model

Another interesting case with a homogene-

ous kernel as in Subsection is κ(x, y) = c/
√
xy

with c > 0; then (for ij ≥ c2)

pij = c/
√
ij.

This model has been studied in detail by Rior-

dan (2006+). Considering the sequence GV(n, κ)
as a growing graph, in this case, together

with each new vertex we add a number of ed-

ges that has approximately a Poisson Po(2c)

distribution; the other endpoint of each ed-

ge is chosen with probability proportional to

i−1/2, which is approximately proportional to

the degree of vertex i. Hence, this random

graph model resembles the growth with pre-

ferential attachment model of Barabási and

Albert (1999), which was made precise as the

LCD model by Bollobás and Riordan (2004).
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In fact, up to a factor of 1 + o(i−1) in the

edge probabilities, this model is the ‘mean-

field’ version of the Barabási–Albert model,

having the same individual edge probabilities,

but with edges present independently.

In this case, Tκ is an unbounded operator,

because x−1/2 6∈ L2(0,1), and thus there is

no threshold. In other words, ρ(c) := ρ(κ) > 0

for every c > 0.

As shown by Riordan (2006+), ρ(c) grows

very slowly at first in this case too; more pre-

cisely,

ρ(c) ∼ 2e1−γ exp
(
−1/(2c)

)
as c→ 0,

where γ is Euler’s constant. The result in Ri-

ordan (2006+), for the Barabási–Albert mo-

del is different, showing that in this model

the dependence between edges is important.
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Remark. Random graphs related to the ones

defined here but with some dependence between

edges can be obtained by adding at each new

vertex a number of edges with some other

distribution, for example Bi(m, p) for some

fixed m and p. Such random graphs have be-

en considered by several authors, and their

results show that not only the expected num-

bers of edges added at each step are impor-

tant, but also the variances; the edge depen-

dencies shift the threshold.
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The CHKNS model

The CHKNS model of Callaway, Hopcroft,

Kleinberg, Newman and Strogatz (2001) grows

from a single vertex; vertices are added one

by one, and after each vertex is added, an ed-

ge is added with probability δ; the endpoints

are chosen uniformly among all existing ver-

tices. (Multiple edges are allowed; this does

not matter for the asymptotics.)

Following Durrett (2003), we consider a mo-

dification (which is perhaps at least as natu-

ral): after adding each vertex, add a Poisson

Po(δ) number of edges to the graph, again

choosing the endpoints of these edges uni-

formly at random. Thus, when vertex k is

added, each existing pair of vertices acquires

Po
(
δ/

(
k
2

))
new edges, and these numbers are

independent. When we have reached n verti-

ces, the number of edges between vertices
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i and j, with 1 ≤ i ≤ j ≤ n, is thus Poisson

with mean

eij :=
n∑

k=j

δ(
k
2

) = 2δ
n∑

k=j

1

k(k − 1)
= 2δ

(
1

j − 1
−

1

n

)
,

and the probability that there is one or more

edges between i and j is pij := 1−exp(−eij).

Hence, ignoring multiple edges, we have a

graph Gn of our type, with S = (0,1], µ Le-

besgue measure, xi = i/n and

κn(x, y) := n

(
1− exp

(
−2δ

(
1

n(x ∨ y)− 1
−

1

n

)))
→ κ(x, y) := 2δ

(
1

x ∨ y
− 1

)
.

Theorem 1 shows that C1(Gn)/n
p→ ρ(κ).

The original CHKNS model, G̃n, say, can be

treated by a comparison argument. It follows

that C1(G̃n)/n
p→ ρ(κ) holds for the CHKNS

model too.
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In particular, the threshold for the CHKNS

model, as well as for Durrett’s modification,

is given by ‖Tκ‖ = 1, or 2δ = ‖T‖−1, where

T is the integral operator with kernel 1/(x ∨
y)−1 on L2(0,1). This kernel is strictly smal-

ler that the kernel 1/(x ∨ y) considered abo-

ve. However, changing variables as there, we

see that T is equivalent to the operator on

L2(0,∞) with kernel e−|x−y|/2−e−(x+y)/2. Using

translational invariance of the operator with

kernel e−|x−y|/2 considered above, it is easily

seen that T has the same norm as this ope-

rator, namely 4.

Thus the thresholds for the CHKNS model

and Durrett’s modification are both given by

2δ = 1/4, i.e. δ = 1/8, as was found by non-

rigorous arguments by Callaway, Hopcroft,

Kleinberg, Newman and Strogatz (2001) and

Dorogovtsev, Mendes and Samukhin (2003),

and first proved rigorously by Durrett (2003).
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The rank 1 case

The rank 1 case, is when the kernel κ has the
form κ(x, y) = ψ(x)ψ(y) for some function
ψ > 0 on S. We shall assume that

∫
ψ dµ <∞,

but not necessarily that
∫
ψ2 dµ <∞.

This is a special case of our general model
that, while very restrictive, is also very natu-
ral, and includes or is closely related to ma-
ny random graph models considered by other
authors.

The function ψ(x) can be interpreted as the
“activity” of a vertex at x, with the probabi-
lity of an edge between two vertices propor-
tional to the product of their activities.

In the rank 1 case, Tκf =
(∫
fψ

)
ψ, and ‖Tκ‖ =

‖ψ‖22 =
∫
ψ2 dµ ≤ ∞. Thus Tκ is bounded if

and only if ψ ∈ L2, in which case Tκ has rank
1, so it is compact, and ψ is the unique (up
to multiplication by constants) eigenfunction
with non-zero eigenvalue.
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By Theorem 8, the distribution of vertex de-

grees is governed by the distribution of the

function λ(x) = (
∫
ψ dµ)ψ(x) on (S, µ). In

particular, the degree sequence will (asymp-

totically) have a power-law tail if the dis-

tribution of λ(x) has; for example, if S =

(0,1] with µ Lebesgue measure, and ψ(x) =

cx−1/p.

Another, perhaps more canonical, version is

to take ψ(x) = x on S = [0,∞), with a sui-

table finite Borel measure µ. Note that every

random graph considered in this example may

be defined in this way, since we may map S
to [0,∞) by x 7→ ψ(x). Alternatively, we may

map by x 7→ λ(x) and have ψ(x) = cx with

c > 0 and λ(x) = x.

Random graphs of this type have been stu-

died by several authors, e.g, Chung and Lu,

Norros and Reittu, and Britton, Deijfen and

Martin-Löf.
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To study the phase transition in the rank 1
case, let us now consider the kernel cκ(x, y) =
cψ(x)ψ(y), with c > 0 a parameter. We study
the size of the giant component (if any) as a
function of c, and let α(c) := c

∫
ψρcκ dµ, whe-

re, as before, ρcκ(x) = ρ(cκ;x) is the survival
probability of the branching process Xcκ(x).
Then ρcκ ↘ 0 a.e. as c↘ c0, and thus so, by
dominated convergence,

α(c)/c↘ 0 as c↘ c0.

We have Tcκρcκ = cTκρcκ = α(c)ψ, and thus

ρcκ = Φcκ(ρcκ) = 1− e−Tcκρcκ = 1− e−α(c)ψ.

Let

β(t) :=
∫
S

(
1− e−tψ(x)

)
ψ(x) dµ(x), t ≥ 0.

Then,

α(c) = c
∫
S
ρcκψ dµ = cβ

(
α(c)

)
.

so c = α(c)/β
(
α(c)

)
, i.e., α is the inverse fun-

ction to t 7→ γ(t) := t/β(t).
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Let us consider some concrete examples. Ta-

ke S = (0,1] with µ Lebesgue measure, and

let ψ(x) = x−1/p where 1 < p ≤ ∞.

Case 1: 1 < p < 2. In this case, ‖ψ‖2 = ∞, so

c0 = 0. Calculations yield

ρ(c) ∼ C3α(c) = C3γ
−1(c) ∼ C4c

1/(2−p) as c→ 0.

Note that this exponent 1/(2−p) may be any

real number in (1,∞).

Case 2: p = 2. We still have ‖ψ‖2 = ∞ and

thus c0 = 0. We now find that

ρ(c) = e−(1+o(1))/2c as c→ 0.

More refined estimates can be obtained in

the same way.
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Case 3: 2 < p < 3. For p > 2 we have
∫
ψ2 dµ <

∞, and thus c0 > 0, so we have a phase tran-
sition. (In fact, c0 = 1 − 2/p.) Calculations
yield

ρ(c0+ε) ∼ C4α(c0+ε) ∼ C5ε
1/(p−2) as ε↘ 0.

We thus have a phase transition at c0 with
exponent 1/(p− 2). Note that this exponent
may be any real number in (1,∞). (Taking
instead e.g. ψ(x) = x−1/2 ln−1(e3/x), it is si-
milarly seen that there is a phase transition
with infinite exponent.)

Case 4: p = 3. Similarly, with c0 = 1/3,

ρ(c0+ε) ∼ Cα(c0+ε) ∼ C1ε/ ln(1/ε) as ε↘ 0,

so ρ′(c0) = 0.

Case 5: 3 < p ≤ ∞. In this case,
∫
ψ3 dµ <∞.

We find

ρ(c0 + ε) ∼ C2α(c0 + ε) ∼ C3ε,

so we have a phase transition with exponent
1. (This is similar to Theorem 6, although
the conditions are not quite satisfied.)
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A “quantum random graph”

Ioffe and Levit (2006+) have recently intro-

duced and studied a new random graph mo-

del related to quantum theory. To construct

the graph, start with n cirles of length β > 0.

break the circles into pieces using indepen-

dent Poisson processes of intensity λ. Then

connect every pair of circles using a Poisson

process with intensity 1/n of links.

It is easily seen that this is an instance of our

model, where S is the family of all intervals

in a circle of length β, µ is a certain measure

with total mass e−λβ + λβ , and

κ(I, J) = |I ∩ J |.

A calculation shows that

‖Tκ‖ =
2

λ

(
1− e−λβ

)
− βe−λβ.

See further Janson (2006+).
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Turova’s model

Turova (2003, 2004, 2005) has studied a dy-

namical random graph G(t), t ≥ 0, defined as

follows, using three parameters γ > 0, λ > 0

and δ ≥ 0. The graph starts with a single ver-

tex at time t = 0. Each existing vertex produ-

ces new, initially isolated, vertices according

to a Poisson process with intensity γ. As soon

as there are at least two vertices, each vertex

sends out edges according to another Poisson

process with intensity λ; the other endpoint

is chosen uniformly among all other existing

vertices. (Multiple edges are allowed, but this

makes little difference.) Vertices live for ever,

but edges die with intensity δ, i.e., the lifeti-

me of an edge has an exponential distribution

with mean 1/δ.
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By homogeneity we may assume γ = 1; the

general case follows by replacing λ and δ by

λ/γ and δ/γ and changing the time scale.

The vertices proliferate according to a Yule

process (binary fission process): writing N(t)

for the number of vertices at time t, the pro-

bability that a new vertex is added in the

infinitesimal time interval [t, t+ dt] is N(t) dt.

It is well-known that

e−tN(t)
a.s.→ W as t→∞

for a random variable W with W > 0 a.s. (In

fact, W ∼ Exp(1).)

We condition on the vertex process. We then

take S = [0,∞) and let x1, . . . , xN(t) be the

ages of the particles existing at time t. It is

easily checked that this gives a vertex space

(S, µ,xn), where µ is the measure on [0,∞)

given by dµ/dx = e−x (the exponential distri-

bution).
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Moreover, the number of edges at time t

between two vertices of ages xi and xj has a

Poisson distribution with mean κ∗t (x, y)/N(t),

where

κ∗t (x, y) := 2λ
∫ x∧y

0
e−δs

N(t)

N(t− s)− 1
ds.

It is easily checked that if δ 6= 1 and xt → x,

yt → y, then

κ∗t (xt, yt) → κδ(x, y) =
2λ

1− δ

(
e(1−δ)(x∧y)−1

)

For δ = 1, corresponding to δ = γ in the

non-rescaled model, let κ1(x, y) := 2λ(x∧ y).
Then κ∗t (xt, yt) → κδ(x, y) in this case also.

Theorem 1 thus applies to G(t) conditioned

on the process (N(t))t≥0.
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