
The energy of graphs and matrices

Given a complex m � n matrix A; we index its singular values as �1 (A) �
�2 (A) � ::: and call the value E (A) = �1 (A) + �2 (A) + ::: the energy of A;
thereby extending the concept of graph energy, introduced by Gutman.
Let 2 � m � n; A be an m� n nonnegative matrix with maximum entry �,

and kAk1 � n�. Extending previous results of Koolen and Moulton for graphs,
we prove that
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Furthermore, if A is any nonconstant matrix, then

E (A) � �1 (A) +
kAk22 � �21 (A)

�2 (A)
:

Koolen and Moulton exhibited an in�nite but sparse family of graphs with

E (G) = (v (G) =2)
�
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�
. We prove that for all su¢ ciently large n; there

exists a graph G = G (n) with E (G) � n3=2=2 � n11=10; implying a conjecture
of Koolen and Moulton.
We also characterize all square nonnegative matrices and all graphs with

energy close to the maximal one: In particular, such graphs are quasi-random.
Finally we note that Wigner�s semicircle law implies that
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for almost all graphs G.
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