Martingales, Optional Stopping, and the Critical Random Graph

Yuval Peres

May 11, 2006

Talk based on work joint with: Asaf Nachmias

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Martingales

Definition: An L_1 sequence of random variables $(X_1, X_2, ...)$ is called a martingale with respect to a σ -algebra filtration $\mathcal{F}_1 \subset \mathcal{F}_2 \subset ...$ if X_n is \mathcal{F}_n -measurable for all n > 0 and

$$\mathbf{E}[X_n \mid \mathcal{F}_{n-1}] = X_{n-1} \,. \tag{1}$$

- ロ ト - 4 回 ト - 4 □ - 4

Martingales

Definition: An L_1 sequence of random variables $(X_1, X_2, ...)$ is called a martingale with respect to a σ -algebra filtration $\mathcal{F}_1 \subset \mathcal{F}_2 \subset ...$ if X_n is \mathcal{F}_n -measurable for all n > 0 and

$$\mathbf{E}[X_n \mid \mathcal{F}_{n-1}] = X_{n-1} \,. \tag{1}$$

The sequence is called a submartingale if we replace (1) with

$$\mathbf{E}[X_n \mid \mathcal{F}_{n-1}] \geq X_{n-1}.$$

The sequence is called a supermartingale if we replace (1) with

$$\mathbf{E}[X_n \mid \mathcal{F}_{n-1}] \leq X_{n-1}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Stopping Times

Definition: A random variable $\tau : \Omega \to \{0, 1, \ldots\}$ is called a Stopping Time with respect to σ -algebra filtration $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$ if for all n

$$\{\tau \leq n\} \in \mathcal{F}_n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Stopping Times

Definition: A random variable $\tau : \Omega \to \{0, 1, \ldots\}$ is called a Stopping Time with respect to σ -algebra filtration $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$ if for all n

$$\{\tau \leq n\} \in \mathcal{F}_n$$
.

Example: If X_n is \mathcal{F}_n -measurable then for any number H the random variable

$$\tau=\min\{n:X_n\geq H\}\,,$$

is a stopping time.

Stopping Times

Definition: A random variable $\tau : \Omega \to \{0, 1, \ldots\}$ is called a Stopping Time with respect to σ -algebra filtration $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$ if for all n

$$\{\tau \leq n\} \in \mathcal{F}_n$$
.

Example: If X_n is \mathcal{F}_n -measurable then for any number H the random variable

$$\tau=\min\{n:X_n\geq H\}\,,$$

is a stopping time.

Easy: If τ_1 and τ_2 are stopping times with respect to the same filtration, then $\tau_1 \wedge \tau_2$ is also a stopping time.

Optional Stopping Theorem

Theorem

Let X_n be a martingale, and τ a stopping time with $\tau \leq k$ a.s. for some integer k > 0 then

$$\mathbf{E}X_{\tau} = \mathbf{E}X_0$$
 .

Optional Stopping Theorem

Theorem

Let X_n be a martingale, and τ a stopping time with $\tau \leq k$ a.s. for some integer k > 0 then

$$\mathbf{E}X_{\tau} = \mathbf{E}X_0$$
.

Proof.

Observe that $\{\tau > i-1\} \in \mathcal{F}_{i-1}$, and so by conditioning on \mathcal{F}_{i-1} we have $\mathbf{E}[X_i \mathbf{1}_{\{\tau > i-1\}}] = \mathbf{E}[X_{i-1} \mathbf{1}_{\{\tau > i-1\}}].$

Optional Stopping Theorem

Theorem

Let X_n be a martingale, and τ a stopping time with $\tau \leq k$ a.s. for some integer k > 0 then

$$\mathbf{E}X_{\tau} = \mathbf{E}X_0$$
.

Proof.

Observe that $\{\tau > i-1\} \in \mathcal{F}_{i-1}$, and so by conditioning on \mathcal{F}_{i-1} we have $\mathbf{E}[X_i \mathbf{1}_{\{\tau > i-1\}}] = \mathbf{E}[X_{i-1} \mathbf{1}_{\{\tau > i-1\}}]$. Summing this up gives

$$\mathbf{E}X_{\tau} = \sum_{i=0}^{k-1} \mathbf{E}[X_i \mathbf{1}_{\{\tau=i\}}] + \mathbf{E}[X_k \mathbf{1}_{\{\tau>k-1\}}]$$

=
$$\sum_{i=0}^{k-2} \mathbf{E}[X_i \mathbf{1}_{\{\tau=i\}}] + \mathbf{E}[X_{k-1} \mathbf{1}_{\{\tau>k-2\}}] = \dots = \mathbf{E}X_0.$$

Another Optional Stopping Theorem

Theorem

Let X_n be a martingale and τ a stopping time such that $\{X_{\tau \wedge n}\}$ is bounded a.s., then

$$\mathsf{E}X_{ au} = \mathsf{E}X_0$$
 .

The proof goes by truncating τ , using previous theorem and then finishing with the Dominated Convergence Theorem.

Another Optional Stopping Theorem

Theorem

Let X_n be a martingale and τ a stopping time such that $\{X_{\tau \wedge n}\}$ is bounded a.s., then

$$\mathsf{E}X_{ au} = \mathsf{E}X_0$$
 .

The proof goes by truncating τ , using previous theorem and then finishing with the Dominated Convergence Theorem.

Remark: If instead of a martingale X_n is a submartingale, then under the same assumptions as in the previous theorems we will have

$$\mathbf{E}X_{ au} \geq \mathbf{E}X_0$$
 .

The random graph G(n, p) is obtained from the complete graph on n vertices, by independently retaining each edge with probability p and deleting it with probability 1 - p. Consider $p = \frac{c}{n}$ where c > 0 is fixed., and let C_1 denote the largest connected component of G(n, p).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The random graph G(n, p) is obtained from the complete graph on n vertices, by independently retaining each edge with probability p and deleting it with probability 1 - p. Consider $p = \frac{c}{n}$ where c > 0 is fixed., and let C_1 denote the largest connected component of G(n, p).

Theorem (Erdos, Renyi '60)

- If c < 1 we have $|C_1| = \Theta(\log n)$ a.a.s.
- If c > 1 we have $|C_1| = \Theta(n)$ a.a.s.

The random graph G(n, p) is obtained from the complete graph on n vertices, by independently retaining each edge with probability p and deleting it with probability 1 - p. Consider $p = \frac{c}{n}$ where c > 0 is fixed., and let C_1 denote the largest connected component of G(n, p).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (Erdos, Renyi '60)

- If c < 1 we have $|C_1| = \Theta(\log n)$ a.a.s.
- If c > 1 we have $|C_1| = \Theta(n)$ a.a.s.

Question: What of c = 1?

The random graph G(n, p) is obtained from the complete graph on n vertices, by independently retaining each edge with probability p and deleting it with probability 1 - p. Consider $p = \frac{c}{n}$ where c > 0 is fixed., and let C_1 denote the largest connected component of G(n, p).

Theorem (Erdos, Renyi '60)

- If c < 1 we have $|C_1| = \Theta(\log n)$ a.a.s.
- If c > 1 we have $|C_1| = \Theta(n)$ a.a.s.

Question: What of c = 1? **Answer:** [Bollobas; Luczak, Pittel, Wierman; Aldous] $n^{-2/3}|C_1|$ converges in distribution to some non-trivial random variable, i.e., $|C_1|$ is about $n^{2/3}$. Complicated proofs.

The process starts from a vertex v and explores the component containing v, denoted C(v). Vertices in the process are either explored, active or neutral.

At time t = 0, the only active vertex is v. The rest are neutral.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The process starts from a vertex v and explores the component containing v, denoted C(v). Vertices in the process are either explored, active or neutral.

- At time t = 0, the only active vertex is v. The rest are neutral.
- At time t > 0, take first active vertex and mark it explored; then make its neutral neighbors active.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The process starts from a vertex v and explores the component containing v, denoted C(v). Vertices in the process are either explored, active or neutral.

- At time t = 0, the only active vertex is v. The rest are neutral.
- At time t > 0, take first active vertex and mark it explored; then make its neutral neighbors active.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Process ends once there are no more active vertices.

The process starts from a vertex v and explores the component containing v, denoted C(v). Vertices in the process are either explored, active or neutral.

- At time t = 0, the only active vertex is v. The rest are neutral.
- At time t > 0, take first active vertex and mark it explored; then make its neutral neighbors active.
- Process ends once there are no more active vertices.

Let $Y_t = #$ (active vertices), $N_t = #$ (neutral vertices). Number of explored vertices at time *t* is *t*. Observe

$$Y_t + N_t + t = n.$$

A BFS-Exploration Process (continued)

Formally, $Y_0 = 1$ and given Y_1, \ldots, Y_{t-1} , let η_t be random variable distributed as $Bin(N_{t-1}, 1/n)$, and we have the recursion

$$Y_t=Y_{t-1}+\eta_t-1\,,$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

defined only when $Y_{t-1} > 0$.

A BFS-Exploration Process (continued)

Formally, $Y_0 = 1$ and given Y_1, \ldots, Y_{t-1} , let η_t be random variable distributed as $Bin(N_{t-1}, 1/n)$, and we have the recursion

$$Y_t=Y_{t-1}+\eta_t-1\,,$$

defined only when $Y_{t-1} > 0$.

Observe,

$$|C(v)| = \min\{t : Y_t = 0\}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An upper bound for $|C_1|$ with a simple proof

Theorem (Nachmias, P.) In $G(n, \frac{1}{n})$, we have that for any n > 1000 and any A > 0

$$\mathbf{P}(|\mathcal{C}_1| \geq An^{2/3}) \leq rac{3}{A^2}$$
 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

An upper bound for $|C_1|$ with a simple proof

Theorem (Nachmias, P.) In $G(n, \frac{1}{n})$, we have that for any n > 1000 and any A > 0

$$\mathbf{P}(|\mathcal{C}_1| \geq An^{2/3}) \leq rac{3}{A^2}$$

Proof: First observe that it suffices to bound

$$|\mathsf{E}|C(v)| \leq 3n^{1/3}$$
.

Since by symmetry,

$$\mathbf{E}|C(\mathbf{v})| = \frac{1}{n}\mathbf{E}\sum_{i=1}^{n}|C(\mathbf{v}_i)| = \frac{1}{n}\sum_{j}\mathbf{E}|\mathcal{C}_j|^2,$$

and hence $\mathbf{E}|\mathcal{C}_1|^2 \leq 3n^{4/3}$, which finishes the proof.

Consider the martingale S_t defined by

$$S_0 = 1,$$
 $S_t = S_{t-1} + Bin(n, \frac{1}{n}) - 1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

We can couple such that $S_t \ge Y_t$ for all t > 0.

Consider the martingale S_t defined by

$$S_0 = 1,$$
 $S_t = S_{t-1} + Bin(n, \frac{1}{n}) - 1.$

We can couple such that $S_t \ge Y_t$ for all t > 0.

Fix an integer H and define a stopping time

$$\gamma = \min\{t : S_t = 0 \text{ or } S_t \ge H\},\$$

Then since S_t is a martingale, Optional Stopping Theorem gives $1 = \mathbf{E}S_{\gamma} \ge H\mathbf{P}(S_{\gamma} \ge H)$, hence

$${\sf P}(S_\gamma \geq H) \leq rac{1}{H}$$
 .

Consider the martingale S_t defined by

$$S_0 = 1,$$
 $S_t = S_{t-1} + Bin(n, \frac{1}{n}) - 1.$

We can couple such that $S_t \ge Y_t$ for all t > 0.

Fix an integer H and define a stopping time

$$\gamma = \min\{t : S_t = 0 \text{ or } S_t \ge H\},\$$

Then since S_t is a martingale, Optional Stopping Theorem gives $1 = \mathbf{E}S_{\gamma} \ge H\mathbf{P}(S_{\gamma} \ge H)$, hence

$$\mathbf{P}(S_{\gamma} \geq H) \leq rac{1}{H}$$
.

A simple lemma: Let X be distributed Bin(n, 1/n) and let f be an increasing real function. Then,

$$\mathbf{E}[f(S_{\gamma}-H) \mid S_{\gamma} \geq H] \leq \mathbf{E}f(X).$$

Write $S_{\gamma}^2 = H^2 + 2H(S_{\gamma} - H) + (S_{\gamma} - H)^2$ and apply the lemma with $f(x) = 2Hx + x^2$ to get that for H > 3 $\mathbf{E} \Big[S_{\gamma}^2 \mid S_{\gamma} \ge H \Big] \le H^2 + 2H + 2 \le H^2 + 3H.$

Write $S_{\gamma}^2 = H^2 + 2H(S_{\gamma} - H) + (S_{\gamma} - H)^2$ and apply the lemma with $f(x) = 2Hx + x^2$ to get that for H > 3

$$\mathbf{E}\Big[S_{\gamma}^2 \mid S_{\gamma} \geq H\Big] \leq H^2 + 2H + 2 \leq H^2 + 3H.$$

Now $S_t^2 - (1 - \frac{1}{n})t$ is also a martingale. By optional stopping and our previous inequalities,

$$1+(1-\frac{1}{n})\mathbf{E}\gamma=\mathbf{E}(S_{\gamma}^{2})=\mathbf{P}(S_{\gamma}\geq H)\mathbf{E}\Big[S_{\gamma}^{2}\mid S_{\gamma}\geq H\Big]\leq H+3\,,$$

Write $S_{\gamma}^2 = H^2 + 2H(S_{\gamma} - H) + (S_{\gamma} - H)^2$ and apply the lemma with $f(x) = 2Hx + x^2$ to get that for H > 3

$$\mathbf{E}\Big[S_{\gamma}^2 \mid S_{\gamma} \geq H\Big] \leq H^2 + 2H + 2 \leq H^2 + 3H.$$

Now $S_t^2 - (1 - \frac{1}{n})t$ is also a martingale. By optional stopping and our previous inequalities,

$$1+(1-\frac{1}{n})\mathbf{E}\gamma=\mathbf{E}(S_{\gamma}^{2})=\mathbf{P}(S_{\gamma}\geq H)\mathbf{E}\Big[S_{\gamma}^{2}\mid S_{\gamma}\geq H\Big]\leq H+3\,,$$

We conclude that for H < n - 3

$$\mathbf{E}\gamma \leq H+3$$
 .

Next, define

$$au_0 = \min\{t \ge 0 : Y_{\gamma+t} = 0\},\$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Next, define

$$\tau_0 = \min\{t \ge 0 : Y_{\gamma+t} = 0\},\$$

If $S_{\gamma} = 0$, then $\tau \leq \gamma$. Therefore: $\tau \leq \gamma + \tau_0 \mathbf{1}_{(S_{\gamma} \geq H)}$.

On the left is the case where $S_{\gamma} = 0$ and hence by the coupling $Y_{\gamma} = 0$. On the right, $S_{\gamma} \ge H$.

Let

$$Z_t = Y_{\gamma+t} + \sum_{j=1}^t \frac{j}{n}.$$

Recall that number of neutral vertices is $N_t = n - t - Y_t$, hence $\mathbf{E}[Y_t - Y_{t-1}|Y_{j-1}] \leq -\frac{t}{n}$. We conclude that Z_t is a supermartingale.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Let

$$Z_t = Y_{\gamma+t} + \sum_{j=1}^t \frac{j}{n} \, .$$

Recall that number of neutral vertices is $N_t = n - t - Y_t$, hence $\mathbf{E}[Y_t - Y_{t-1}|Y_{j-1}] \leq -\frac{t}{n}$. We conclude that Z_t is a supermartingale.

By Optional Stopping Theorem and the simple lemma, we have

$$H+1 \ge \mathbf{E}\Big[S_{\gamma} \mid S_{\gamma} \ge H\Big] \ge \mathbf{E}\Big[Z_{0} \mid S_{\gamma} \ge H\Big] \ge \mathbf{E}\Big[Z_{\tau_{0}} \mid S_{\gamma} \ge H\Big]$$

うして ふぼう ふほう ふほう しょうくの

Invoking the obvious inequality $Z_t \geq \frac{t^2}{2n}$, this yields

$$H+1\geq \frac{\mathbf{E}[\tau_0^2\mid S_{\gamma}\geq H]}{2n}\,.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Invoking the obvious inequality $Z_t \geq \frac{t^2}{2n}$, this yields

$$H+1\geq \frac{\mathbf{E}[\tau_0^2\mid S_{\gamma}\geq H]}{2n}\,.$$

By Cauchy-Schwarz,

$$\mathsf{E}[au_0 \mid S_{\gamma} \geq H] \leq (2n(H+1))^{1/2}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Invoking the obvious inequality $Z_t \geq \frac{t^2}{2n}$, this yields

$$H+1\geq \frac{\mathbf{E}[\tau_0^2\mid S_{\gamma}\geq H]}{2n}\,.$$

By Cauchy-Schwarz,

$$\mathbf{E}[\tau_0 \mid S_{\gamma} \geq H] \leq (2n(H+1))^{1/2}.$$

We are almost done. Recall:

$$\tau \leq \gamma + \tau_0 \mathbf{1}_{(S_{\gamma} \geq H)}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Hence,

$$\mathbf{E}\tau \leq \mathbf{E}\gamma + \mathbf{E}[\tau_0 \mid S_\gamma \geq H] \, \mathbf{P}(S_\gamma \geq H) \, .$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Hence,

$$\mathbf{E}\tau \leq \mathbf{E}\gamma + \mathbf{E}[\tau_0 \mid S_\gamma \geq H] \, \mathbf{P}(S_\gamma \geq H) \, .$$

Taking expectation and putting all the estimates together gives,

$$\mathbf{E} au \leq H + 3 + (2n(H+1))^{1/2}H^{-1} \leq H + 2(n/H)^{1/2} - 1$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where the second inequality holds if n/H is large.

Hence,

$$\mathbf{E}\tau \leq \mathbf{E}\gamma + \mathbf{E}[\tau_0 \mid S_\gamma \geq H] \, \mathbf{P}(S_\gamma \geq H) \, .$$

Taking expectation and putting all the estimates together gives,

$$\mathbf{E} au \leq H + 3 + (2n(H+1))^{1/2}H^{-1} \leq H + 2(n/H)^{1/2} - 1$$

where the second inequality holds if n/H is large.

Optimize by taking $H = \lceil n^{1/3} \rceil$, this yields

$$|\mathbf{E}|C(v)| \leq 3n^{1/3}$$
.

うして ふぼう ふほう ふほう しょうくの