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Martingales

Definition: An L1 sequence of random variables (X1,X2, . . .) is
called a martingale with respect to a σ-algebra filtration
F1 ⊂ F2 ⊂ . . . if Xn is Fn-measurable for all n > 0 and

E[Xn | Fn−1] = Xn−1 . (1)

The sequence is called a submartingale if we replace (1) with

E[Xn | Fn−1] ≥ Xn−1.

The sequence is called a supermartingale if we replace (1) with

E[Xn | Fn−1] ≤ Xn−1.
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Stopping Times

Definition: A random variable τ : Ω → {0, 1, . . .} is called a
Stopping Time with respect to σ-algebra filtration F1 ⊂ F2 ⊂ . . .
if for all n

{τ ≤ n} ∈ Fn .

Example: If Xn is Fn-measurable then for any number H the
random variable

τ = min{n : Xn ≥ H} ,

is a stopping time.

Easy: If τ1 and τ2 are stopping times with respect to the same
filtration, then τ1 ∧ τ2 is also a stopping time.
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Optional Stopping Theorem

Theorem
Let Xn be a martingale, and τ a stopping time with τ ≤ k a.s. for
some integer k > 0 then

EXτ = EX0 .

Proof.
Observe that {τ > i − 1} ∈ Fi−1, and so by conditioning on Fi−1

we have E[Xi1{τ>i−1}] = E[Xi−11{τ>i−1}]. Summing this up
gives

EXτ =
k−1∑
i=0

E[Xi1{τ=i}] + E[Xk1{τ>k−1}]

=
k−2∑
i=0

E[Xi1{τ=i}] + E[Xk−11{τ>k−2}] = . . . = EX0 .
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Another Optional Stopping Theorem

Theorem
Let Xn be a martingale and τ a stopping time such that {Xτ∧n} is
bounded a.s., then

EXτ = EX0 .

The proof goes by truncating τ , using previous theorem and then
finishing with the Dominated Convergence Theorem.

Remark: If instead of a martingale Xn is a submartingale, then
under the same assumptions as in the previous theorems we will
have

EXτ ≥ EX0 .
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The Critical Random Graph

The random graph G (n, p) is obtained from the complete graph on
n vertices, by independently retaining each edge with probability p
and deleting it with probability 1− p. Consider p = c

n where c > 0
is fixed., and let C1 denote the largest connected component of
G (n, p).

Theorem (Erdos, Renyi ’60)

I If c < 1 we have |C1| = Θ(log n) a.a.s.

I If c > 1 we have |C1| = Θ(n) a.a.s.

Question: What of c = 1?
Answer: [Bollobas; Luczak, Pittel, Wierman; Aldous] n−2/3|C1|
converges in distribution to some non-trivial random variable, i.e.,
|C1| is about n2/3. Complicated proofs.
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A BFS-Exploration Process

The process starts from a vertex v and explores the component
containing v , denoted C (v). Vertices in the process are either
explored, active or neutral.

I At time t = 0, the only active vertex is v . The rest are
neutral.

I At time t > 0, take first active vertex and mark it explored;
then make its neutral neighbors active.

I Process ends once there are no more active vertices.

Let Yt=#(active vertices), Nt=#(neutral vertices). Number of
explored vertices at time t is t. Observe

Yt + Nt + t = n .



A BFS-Exploration Process

The process starts from a vertex v and explores the component
containing v , denoted C (v). Vertices in the process are either
explored, active or neutral.

I At time t = 0, the only active vertex is v . The rest are
neutral.

I At time t > 0, take first active vertex and mark it explored;
then make its neutral neighbors active.

I Process ends once there are no more active vertices.

Let Yt=#(active vertices), Nt=#(neutral vertices). Number of
explored vertices at time t is t. Observe

Yt + Nt + t = n .



A BFS-Exploration Process

The process starts from a vertex v and explores the component
containing v , denoted C (v). Vertices in the process are either
explored, active or neutral.

I At time t = 0, the only active vertex is v . The rest are
neutral.

I At time t > 0, take first active vertex and mark it explored;
then make its neutral neighbors active.

I Process ends once there are no more active vertices.

Let Yt=#(active vertices), Nt=#(neutral vertices). Number of
explored vertices at time t is t. Observe

Yt + Nt + t = n .



A BFS-Exploration Process

The process starts from a vertex v and explores the component
containing v , denoted C (v). Vertices in the process are either
explored, active or neutral.

I At time t = 0, the only active vertex is v . The rest are
neutral.

I At time t > 0, take first active vertex and mark it explored;
then make its neutral neighbors active.

I Process ends once there are no more active vertices.

Let Yt=#(active vertices), Nt=#(neutral vertices). Number of
explored vertices at time t is t. Observe

Yt + Nt + t = n .



A BFS-Exploration Process (continued)

Formally, Y0 = 1 and given Y1, . . . ,Yt−1, let ηt be random
variable distributed as Bin(Nt−1, 1/n), and we have the recursion

Yt = Yt−1 + ηt − 1 ,

defined only when Yt−1 > 0.

Observe,
|C (v)| = min{t : Yt = 0} .
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An upper bound for |C1| with a simple proof

Theorem (Nachmias, P.)

In G (n, 1
n ), we have that for any n > 1000 and any A > 0

P(|C1| ≥ An2/3) ≤ 3

A2
.

Proof: First observe that it suffices to bound

E|C (v)| ≤ 3n1/3 .

Since by symmetry,

E|C (v)| = 1

n
E

n∑
i=1

|C (vi )| =
1

n

∑
j

E|Cj |2 ,

and hence E|C1|2 ≤ 3n4/3, which finishes the proof.
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An upper bound with a simple proof (continued)

Consider the martingale St defined by

S0 = 1, St = St−1 + Bin(n,
1

n
)− 1 .

We can couple such that St ≥ Yt for all t > 0.

Fix an integer H and define a stopping time

γ = min{t : St = 0 or St ≥ H} ,

Then since St is a martingale, Optional Stopping Theorem gives
1 = ESγ ≥ HP(Sγ ≥ H) , hence

P(Sγ ≥ H) ≤ 1

H
.

A simple lemma: Let X be distributed Bin(n, 1/n) and let f be
an increasing real function. Then,

E[f (Sγ − H) | Sγ ≥ H] ≤ Ef (X ) .
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An upper bound with a simple proof (continued)

Write S2
γ = H2 + 2H(Sγ − H) + (Sγ − H)2 and apply the lemma

with f (x) = 2Hx + x2 to get that for H > 3

E
[
S2

γ | Sγ ≥ H
]
≤ H2 + 2H + 2 ≤ H2 + 3H .

Now S2
t − (1− 1

n )t is also a martingale. By optional stopping and
our previous inequalities,

1 + (1− 1

n
)Eγ = E(S2

γ ) = P(Sγ ≥ H)E
[
S2

γ | Sγ ≥ H
]
≤ H + 3 ,

We conclude that for H < n − 3

Eγ ≤ H + 3 .
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An upper bound with a simple proof (continued)

Next, define
τ0 = min{t ≥ 0 : Yγ+t = 0} ,

If Sγ = 0, then τ ≤ γ. Therefore: τ ≤ γ + τ01(Sγ≥H) .

τγ τ
0

St

Yt

Yt
Z0St

γ

HH

On the left is the case where Sγ = 0 and hence by the coupling
Yγ = 0. On the right, Sγ ≥ H.
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An upper bound with a simple proof (continued)

Let

Zt = Yγ+t +
t∑

j=1

j

n
.

Recall that number of neutral vertices is Nt = n − t − Yt , hence
E[Yt − Yt−1|Yj−1] ≤ − t

n .
We conclude that Zt is a supermartingale.

By Optional Stopping Theorem and the simple lemma, we have

H + 1 ≥ E
[
Sγ | Sγ ≥ H

]
≥ E

[
Z0 | Sγ ≥ H

]
≥ E

[
Zτ0 | Sγ ≥ H

]
.
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An upper bound with a simple proof (continued)

Invoking the obvious inequality Zt ≥ t2

2n , this yields

H + 1 ≥ E[τ2
0 | Sγ ≥ H]

2n
.

By Cauchy-Schwarz,

E[τ0 | Sγ ≥ H] ≤ (2n(H + 1))1/2 .

We are almost done. Recall:

τ ≤ γ + τ01(Sγ≥H) .
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An upper bound with a simple proof (continued)

Hence,

Eτ ≤ Eγ + E[τ0 | Sγ ≥ H]P(Sγ ≥ H) .

Taking expectation and putting all the estimates together gives,

Eτ ≤ H + 3 + (2n(H + 1))1/2H−1 ≤ H + 2(n/H)1/2 − 1 ,

where the second inequality holds if n/H is large.

Optimize by taking H = dn1/3e, this yields

E|C (v)| ≤ 3n1/3 .
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