Martingales, Optional Stopping, and the Critical Random Graph

Yuval Peres

May 11, 2006

Talk based on work joint with:
Asaf Nachmias

Martingales

Definition: An L_{1} sequence of random variables (X_{1}, X_{2}, \ldots) is called a martingale with respect to a σ-algebra filtration $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots$ if X_{n} is \mathcal{F}_{n}-measurable for all $n>0$ and

$$
\begin{equation*}
\mathbf{E}\left[X_{n} \mid \mathcal{F}_{n-1}\right]=X_{n-1} \tag{1}
\end{equation*}
$$

Martingales

Definition: An L_{1} sequence of random variables $\left(X_{1}, X_{2}, \ldots\right)$ is called a martingale with respect to a σ-algebra filtration $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots$ if X_{n} is \mathcal{F}_{n}-measurable for all $n>0$ and

$$
\begin{equation*}
\mathbf{E}\left[X_{n} \mid \mathcal{F}_{n-1}\right]=X_{n-1} \tag{1}
\end{equation*}
$$

The sequence is called a submartingale if we replace (1) with

$$
\mathrm{E}\left[X_{n} \mid \mathcal{F}_{n-1}\right] \geq X_{n-1}
$$

The sequence is called a supermartingale if we replace (1) with

$$
\mathbf{E}\left[X_{n} \mid \mathcal{F}_{n-1}\right] \leq X_{n-1}
$$

Stopping Times

Definition: A random variable $\tau: \Omega \rightarrow\{0,1, \ldots\}$ is called a Stopping Time with respect to σ-algebra filtration $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots$ if for all n

$$
\{\tau \leq n\} \in \mathcal{F}_{n}
$$

Stopping Times

Definition: A random variable $\tau: \Omega \rightarrow\{0,1, \ldots\}$ is called a Stopping Time with respect to σ-algebra filtration $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots$ if for all n

$$
\{\tau \leq n\} \in \mathcal{F}_{n} .
$$

Example: If X_{n} is \mathcal{F}_{n}-measurable then for any number H the random variable

$$
\tau=\min \left\{n: X_{n} \geq H\right\}
$$

is a stopping time.

Stopping Times

Definition: A random variable $\tau: \Omega \rightarrow\{0,1, \ldots\}$ is called a Stopping Time with respect to σ-algebra filtration $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots$ if for all n

$$
\{\tau \leq n\} \in \mathcal{F}_{n} .
$$

Example: If X_{n} is \mathcal{F}_{n}-measurable then for any number H the random variable

$$
\tau=\min \left\{n: X_{n} \geq H\right\}
$$

is a stopping time.

Easy: If τ_{1} and τ_{2} are stopping times with respect to the same filtration, then $\tau_{1} \wedge \tau_{2}$ is also a stopping time.

Optional Stopping Theorem

Theorem
Let X_{n} be a martingale, and τ a stopping time with $\tau \leq k$ a.s. for some integer $k>0$ then
$\mathbf{E} X_{\tau}=\mathbf{E} X_{0}$.

Optional Stopping Theorem

Theorem
Let X_{n} be a martingale, and τ a stopping time with $\tau \leq k$ a.s. for some integer $k>0$ then

$$
\mathbf{E} X_{\tau}=\mathbf{E} X_{0}
$$

Proof.
Observe that $\{\tau>i-1\} \in \mathcal{F}_{i-1}$, and so by conditioning on \mathcal{F}_{i-1} we have $\mathbf{E}\left[X_{i} \mathbf{1}_{\{\tau>i-1\}}\right]=\mathbf{E}\left[X_{i-1} \mathbf{1}_{\{\tau>i-1\}}\right]$.

Optional Stopping Theorem

Theorem

Let X_{n} be a martingale, and τ a stopping time with $\tau \leq k$ a.s. for some integer $k>0$ then

$$
\mathbf{E} X_{\tau}=\mathbf{E} X_{0}
$$

Proof.

Observe that $\{\tau>i-1\} \in \mathcal{F}_{i-1}$, and so by conditioning on \mathcal{F}_{i-1} we have $\mathbf{E}\left[X_{i} \mathbf{1}_{\{\tau>i-1\}}\right]=\mathbf{E}\left[X_{i-1} \mathbf{1}_{\{\tau>i-1\}}\right]$. Summing this up gives

$$
\begin{aligned}
\mathbf{E} X_{\tau} & =\sum_{i=0}^{k-1} \mathbf{E}\left[X_{i} \mathbf{1}_{\{\tau=i\}}\right]+\mathbf{E}\left[X_{k} \mathbf{1}_{\{\tau>k-1\}}\right] \\
& =\sum_{i=0}^{k-2} \mathbf{E}\left[X_{i} \mathbf{1}_{\{\tau=i\}}\right]+\mathbf{E}\left[X_{k-1} \mathbf{1}_{\{\tau>k-2\}}\right]=\ldots=\mathbf{E} X_{0} .
\end{aligned}
$$

Another Optional Stopping Theorem

Theorem
Let X_{n} be a martingale and τ a stopping time such that $\left\{X_{\tau \wedge n}\right\}$ is bounded a.s., then

$$
\mathbf{E} X_{\tau}=\mathbf{E} X_{0}
$$

The proof goes by truncating τ, using previous theorem and then finishing with the Dominated Convergence Theorem.

Another Optional Stopping Theorem

Theorem
Let X_{n} be a martingale and τ a stopping time such that $\left\{X_{\tau \wedge n}\right\}$ is bounded a.s., then

$$
\mathbf{E} X_{\tau}=\mathbf{E} X_{0}
$$

The proof goes by truncating τ, using previous theorem and then finishing with the Dominated Convergence Theorem.

Remark: If instead of a martingale X_{n} is a submartingale, then under the same assumptions as in the previous theorems we will have

$$
\mathbf{E} X_{\tau} \geq \mathbf{E} X_{0}
$$

The Critical Random Graph

The random graph $G(n, p)$ is obtained from the complete graph on n vertices, by independently retaining each edge with probability p and deleting it with probability $1-p$. Consider $p=\frac{c}{n}$ where $c>0$ is fixed., and let \mathcal{C}_{1} denote the largest connected component of $G(n, p)$.

The Critical Random Graph

The random graph $G(n, p)$ is obtained from the complete graph on n vertices, by independently retaining each edge with probability p and deleting it with probability $1-p$. Consider $p=\frac{c}{n}$ where $c>0$ is fixed., and let \mathcal{C}_{1} denote the largest connected component of $G(n, p)$.

Theorem (Erdos, Renyi '60)

- If $c<1$ we have $\left|\mathcal{C}_{1}\right|=\Theta(\log n)$ a.a.s.
- If $c>1$ we have $\left|\mathcal{C}_{1}\right|=\Theta(n)$ a.a.s.

The Critical Random Graph

The random graph $G(n, p)$ is obtained from the complete graph on n vertices, by independently retaining each edge with probability p and deleting it with probability $1-p$. Consider $p=\frac{c}{n}$ where $c>0$ is fixed., and let \mathcal{C}_{1} denote the largest connected component of $G(n, p)$.

Theorem (Erdos, Renyi '60)

- If $c<1$ we have $\left|\mathcal{C}_{1}\right|=\Theta(\log n)$ a.a.s.
- If $c>1$ we have $\left|\mathcal{C}_{1}\right|=\Theta(n)$ a.a.s.

Question: What of $c=1$?

The Critical Random Graph

The random graph $G(n, p)$ is obtained from the complete graph on n vertices, by independently retaining each edge with probability p and deleting it with probability $1-p$. Consider $p=\frac{c}{n}$ where $c>0$ is fixed., and let \mathcal{C}_{1} denote the largest connected component of $G(n, p)$.

Theorem (Erdos, Renyi '60)

- If $c<1$ we have $\left|\mathcal{C}_{1}\right|=\Theta(\log n)$ a.a.s.
- If $c>1$ we have $\left|\mathcal{C}_{1}\right|=\Theta(n)$ a.a.s.

Question: What of $c=1$?
Answer: [Bollobas; Luczak, Pittel, Wierman; Aldous] $n^{-2 / 3}\left|C_{1}\right|$ converges in distribution to some non-trivial random variable, i.e., $\left|C_{1}\right|$ is about $n^{2 / 3}$. Complicated proofs.

A BFS-Exploration Process

The process starts from a vertex v and explores the component containing v, denoted $C(v)$. Vertices in the process are either explored, active or neutral.

- At time $t=0$, the only active vertex is v. The rest are neutral.

A BFS-Exploration Process

The process starts from a vertex v and explores the component containing v, denoted $C(v)$. Vertices in the process are either explored, active or neutral.

- At time $t=0$, the only active vertex is v. The rest are neutral.
- At time $t>0$, take first active vertex and mark it explored; then make its neutral neighbors active.

A BFS-Exploration Process

The process starts from a vertex v and explores the component containing v, denoted $C(v)$. Vertices in the process are either explored, active or neutral.

- At time $t=0$, the only active vertex is v. The rest are neutral.
- At time $t>0$, take first active vertex and mark it explored; then make its neutral neighbors active.
- Process ends once there are no more active vertices.

A BFS-Exploration Process

The process starts from a vertex v and explores the component containing v, denoted $C(v)$. Vertices in the process are either explored, active or neutral.

- At time $t=0$, the only active vertex is v. The rest are neutral.
- At time $t>0$, take first active vertex and mark it explored; then make its neutral neighbors active.
- Process ends once there are no more active vertices.

Let $Y_{t}=\#$ (active vertices), $N_{t}=\#$ (neutral vertices). Number of explored vertices at time t is t. Observe

$$
Y_{t}+N_{t}+t=n
$$

A BFS-Exploration Process (continued)

Formally, $Y_{0}=1$ and given Y_{1}, \ldots, Y_{t-1}, let η_{t} be random variable distributed as $\operatorname{Bin}\left(N_{t-1}, 1 / n\right)$, and we have the recursion

$$
Y_{t}=Y_{t-1}+\eta_{t}-1
$$

defined only when $Y_{t-1}>0$.

A BFS-Exploration Process (continued)

Formally, $Y_{0}=1$ and given Y_{1}, \ldots, Y_{t-1}, let η_{t} be random variable distributed as $\operatorname{Bin}\left(N_{t-1}, 1 / n\right)$, and we have the recursion

$$
Y_{t}=Y_{t-1}+\eta_{t}-1
$$

defined only when $Y_{t-1}>0$.
Observe,

$$
|C(v)|=\min \left\{t: Y_{t}=0\right\}
$$

An upper bound for $\left|\mathcal{C}_{1}\right|$ with a simple proof

Theorem (Nachmias, P.)
In $G\left(n, \frac{1}{n}\right)$, we have that for any $n>1000$ and any $A>0$

$$
\mathbf{P}\left(\left|\mathcal{C}_{1}\right| \geq A n^{2 / 3}\right) \leq \frac{3}{A^{2}}
$$

An upper bound for $\left|\mathcal{C}_{1}\right|$ with a simple proof

Theorem (Nachmias, P.)
In $G\left(n, \frac{1}{n}\right)$, we have that for any $n>1000$ and any $A>0$

$$
\mathbf{P}\left(\left|\mathcal{C}_{1}\right| \geq A n^{2 / 3}\right) \leq \frac{3}{A^{2}}
$$

Proof: First observe that it suffices to bound

$$
\mathbf{E}|C(v)| \leq 3 n^{1 / 3} .
$$

Since by symmetry,

$$
\mathbf{E}|C(v)|=\frac{1}{n} \mathbf{E} \sum_{i=1}^{n}\left|C\left(v_{i}\right)\right|=\frac{1}{n} \sum_{j} \mathbf{E}\left|\mathcal{C}_{j}\right|^{2},
$$

and hence $\mathbf{E}\left|\mathcal{C}_{1}\right|^{2} \leq 3 n^{4 / 3}$, which finishes the proof.

Consider the martingale S_{t} defined by

$$
S_{0}=1, \quad S_{t}=S_{t-1}+\operatorname{Bin}\left(n, \frac{1}{n}\right)-1 .
$$

We can couple such that $S_{t} \geq Y_{t}$ for all $t>0$.

Consider the martingale S_{t} defined by

$$
S_{0}=1, \quad S_{t}=S_{t-1}+\operatorname{Bin}\left(n, \frac{1}{n}\right)-1 .
$$

We can couple such that $S_{t} \geq Y_{t}$ for all $t>0$.
Fix an integer H and define a stopping time

$$
\gamma=\min \left\{t: S_{t}=0 \text { or } S_{t} \geq H\right\}
$$

Then since S_{t} is a martingale, Optional Stopping Theorem gives $1=\mathbf{E} S_{\gamma} \geq H \mathbf{P}\left(S_{\gamma} \geq H\right)$, hence

$$
\mathbf{P}\left(S_{\gamma} \geq H\right) \leq \frac{1}{H}
$$

Consider the martingale S_{t} defined by

$$
S_{0}=1, \quad S_{t}=S_{t-1}+\operatorname{Bin}\left(n, \frac{1}{n}\right)-1 .
$$

We can couple such that $S_{t} \geq Y_{t}$ for all $t>0$.
Fix an integer H and define a stopping time

$$
\gamma=\min \left\{t: S_{t}=0 \text { or } S_{t} \geq H\right\}
$$

Then since S_{t} is a martingale, Optional Stopping Theorem gives $1=\mathbf{E} S_{\gamma} \geq H \mathbf{P}\left(S_{\gamma} \geq H\right)$, hence

$$
\mathbf{P}\left(S_{\gamma} \geq H\right) \leq \frac{1}{H}
$$

A simple lemma: Let X be distributed $\operatorname{Bin}(n, 1 / n)$ and let f be an increasing real function. Then,

$$
\mathbf{E}\left[f\left(S_{\gamma}-H\right) \mid S_{\gamma} \geq H\right] \leq \mathbf{E} f(X)
$$

An upper bound with a simple proof (continued)
Write $S_{\gamma}^{2}=H^{2}+2 H\left(S_{\gamma}-H\right)+\left(S_{\gamma}-H\right)^{2}$ and apply the lemma with $f(x)=2 H x+x^{2}$ to get that for $H>3$

$$
\mathbf{E}\left[S_{\gamma}^{2} \mid S_{\gamma} \geq H\right] \leq H^{2}+2 H+2 \leq H^{2}+3 H .
$$

Write $S_{\gamma}^{2}=H^{2}+2 H\left(S_{\gamma}-H\right)+\left(S_{\gamma}-H\right)^{2}$ and apply the lemma with $f(x)=2 H x+x^{2}$ to get that for $H>3$

$$
\mathbf{E}\left[S_{\gamma}^{2} \mid S_{\gamma} \geq H\right] \leq H^{2}+2 H+2 \leq H^{2}+3 H
$$

Now $S_{t}^{2}-\left(1-\frac{1}{n}\right) t$ is also a martingale. By optional stopping and our previous inequalities,

$$
1+\left(1-\frac{1}{n}\right) \mathbf{E} \gamma=\mathbf{E}\left(S_{\gamma}^{2}\right)=\mathbf{P}\left(S_{\gamma} \geq H\right) \mathbf{E}\left[S_{\gamma}^{2} \mid S_{\gamma} \geq H\right] \leq H+3
$$

Write $S_{\gamma}^{2}=H^{2}+2 H\left(S_{\gamma}-H\right)+\left(S_{\gamma}-H\right)^{2}$ and apply the lemma with $f(x)=2 H x+x^{2}$ to get that for $H>3$

$$
\mathbf{E}\left[S_{\gamma}^{2} \mid S_{\gamma} \geq H\right] \leq H^{2}+2 H+2 \leq H^{2}+3 H
$$

Now $S_{t}^{2}-\left(1-\frac{1}{n}\right) t$ is also a martingale. By optional stopping and our previous inequalities,

$$
1+\left(1-\frac{1}{n}\right) \mathbf{E} \gamma=\mathbf{E}\left(S_{\gamma}^{2}\right)=\mathbf{P}\left(S_{\gamma} \geq H\right) \mathbf{E}\left[S_{\gamma}^{2} \mid S_{\gamma} \geq H\right] \leq H+3
$$

We conclude that for $H<n-3$

$$
\mathbf{E} \gamma \leq H+3 .
$$

An upper bound with a simple proof (continued)

Next, define

$$
\tau_{0}=\min \left\{t \geq 0: Y_{\gamma+t}=0\right\}
$$

An upper bound with a simple proof (continued)
Next, define

$$
\tau_{0}=\min \left\{t \geq 0: Y_{\gamma+t}=0\right\}
$$

If $S_{\gamma}=0$, then $\tau \leq \gamma$. Therefore: $\tau \leq \gamma+\tau_{0} \mathbf{1}_{\left(S_{\gamma} \geq H\right)}$.

On the left is the case where $S_{\gamma}=0$ and hence by the coupling $Y_{\gamma}=0$. On the right, $S_{\gamma} \geq H$.

An upper bound with a simple proof (continued)

Let

$$
Z_{t}=Y_{\gamma+t}+\sum_{j=1}^{t} \frac{j}{n}
$$

Recall that number of neutral vertices is $N_{t}=n-t-Y_{t}$, hence $\mathbf{E}\left[Y_{t}-Y_{t-1} \mid Y_{j-1}\right] \leq-\frac{t}{n}$.
We conclude that Z_{t} is a supermartingale.

An upper bound with a simple proof (continued)

Let

$$
Z_{t}=Y_{\gamma+t}+\sum_{j=1}^{t} \frac{j}{n}
$$

Recall that number of neutral vertices is $N_{t}=n-t-Y_{t}$, hence $\mathbf{E}\left[Y_{t}-Y_{t-1} \mid Y_{j-1}\right] \leq-\frac{t}{n}$.
We conclude that Z_{t} is a supermartingale.

By Optional Stopping Theorem and the simple lemma, we have

$$
H+1 \geq \mathbf{E}\left[S_{\gamma} \mid S_{\gamma} \geq H\right] \geq \mathbf{E}\left[Z_{0} \mid S_{\gamma} \geq H\right] \geq \mathbf{E}\left[Z_{\tau_{0}} \mid S_{\gamma} \geq H\right]
$$

An upper bound with a simple proof (continued)

Invoking the obvious inequality $Z_{t} \geq \frac{t^{2}}{2 n}$, this yields

$$
H+1 \geq \frac{\mathbf{E}\left[\tau_{0}^{2} \mid S_{\gamma} \geq H\right]}{2 n}
$$

An upper bound with a simple proof (continued)

Invoking the obvious inequality $Z_{t} \geq \frac{t^{2}}{2 n}$, this yields

$$
H+1 \geq \frac{\mathbf{E}\left[\tau_{0}^{2} \mid S_{\gamma} \geq H\right]}{2 n}
$$

By Cauchy-Schwarz,

$$
\mathbf{E}\left[\tau_{0} \mid S_{\gamma} \geq H\right] \leq(2 n(H+1))^{1 / 2}
$$

An upper bound with a simple proof (continued)

Invoking the obvious inequality $Z_{t} \geq \frac{t^{2}}{2 n}$, this yields

$$
H+1 \geq \frac{\mathbf{E}\left[\tau_{0}^{2} \mid S_{\gamma} \geq H\right]}{2 n}
$$

By Cauchy-Schwarz,

$$
\mathbf{E}\left[\tau_{0} \mid S_{\gamma} \geq H\right] \leq(2 n(H+1))^{1 / 2}
$$

We are almost done. Recall:

$$
\tau \leq \gamma+\tau_{0} \mathbf{1}_{\left(S_{\gamma} \geq H\right)}
$$

An upper bound with a simple proof (continued)

Hence,

$$
\mathbf{E} \tau \leq \mathbf{E} \gamma+\mathbf{E}\left[\tau_{0} \mid S_{\gamma} \geq H\right] \mathbf{P}\left(S_{\gamma} \geq H\right)
$$

> An upper bound with a simple proof (continued)

Hence,

$$
\mathbf{E} \tau \leq \mathbf{E} \gamma+\mathbf{E}\left[\tau_{0} \mid S_{\gamma} \geq H\right] \mathbf{P}\left(S_{\gamma} \geq H\right)
$$

Taking expectation and putting all the estimates together gives,

$$
\mathbf{E} \tau \leq H+3+(2 n(H+1))^{1 / 2} H^{-1} \leq H+2(n / H)^{1 / 2}-1,
$$

where the second inequality holds if n / H is large.

> An upper bound with a simple proof (continued)

Hence,

$$
\mathbf{E} \tau \leq \mathbf{E} \gamma+\mathbf{E}\left[\tau_{0} \mid S_{\gamma} \geq H\right] \mathbf{P}\left(S_{\gamma} \geq H\right)
$$

Taking expectation and putting all the estimates together gives,

$$
\mathbf{E} \tau \leq H+3+(2 n(H+1))^{1 / 2} H^{-1} \leq H+2(n / H)^{1 / 2}-1,
$$

where the second inequality holds if n / H is large.
Optimize by taking $H=\left\lceil n^{1 / 3}\right\rceil$, this yields

$$
\mathbf{E}|C(v)| \leq 3 n^{1 / 3}
$$

