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Definition: An L; sequence of random variables (X1, Xa,...) is
called a martingale with respect to a o-algebra filtration
Fi1 C Fr C...if X, is F,-measurable for all n > 0 and

E[X, | Foo1] = Xn-1. (1)
The sequence is called a submartingale if we replace (1) with

E[Xn | fn—l] > Xn—1~

The sequence is called a supermartingale if we replace (1) with

E[Xn | fnfl] < anl'
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Stopping Times

Definition: A random variable 7: Q — {0,1,...} is called a

Stopping Time with respect to o-algebra filtration 71 C F> C ...

if for all n
{r<n}eF,.

Example: If X, is F,,-measurable then for any number H the
random variable
T=min{n: X, > H},

is a stopping time.

Easy: If 77 and 7 are stopping times with respect to the same
filtration, then 73 A 7 is also a stopping time.
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Optional Stopping Theorem

Theorem
Let X,, be a martingale, and T a stopping time with 7 < k a.s. for
some integer k > 0 then

EX; =EXp.

Proof.

Observe that {r > i — 1} € F;_1, and so by conditioning on F;_1
we have E[Xi1( ~;_13] = E[Xi_11{,~;_13]. Summing this up
gives

k—1
EX, — ZE[XI{T i) + EXid s k1]

k—

= ZE[X 1—p] + EXo1lisk_oy] = ... = EXq.
i=0



Another Optional Stopping Theorem

Theorem
Let X, be a martingale and T a stopping time such that {X;an} is
bounded a.s., then

EX, = EX,.

The proof goes by truncating 7, using previous theorem and then
finishing with the Dominated Convergence Theorem.



Another Optional Stopping Theorem

Theorem
Let X, be a martingale and T a stopping time such that {X;an} is
bounded a.s., then

EX, = EX,.

The proof goes by truncating 7, using previous theorem and then
finishing with the Dominated Convergence Theorem.

Remark: If instead of a martingale X, is a submartingale, then
under the same assumptions as in the previous theorems we will
have

EX, > EXp.
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The random graph G(n, p) is obtained from the complete graph on
n vertices, by independently retaining each edge with probability p
and deleting it with probability 1 — p. Consider p = & where ¢ > 0
is fixed., and let C; denote the largest connected component of
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The Critical Random Graph

The random graph G(n, p) is obtained from the complete graph on
n vertices, by independently retaining each edge with probability p
and deleting it with probability 1 — p. Consider p = & where ¢ > 0
is fixed., and let C; denote the largest connected component of

G(n, p).
Theorem (Erdos, Renyi '60)

> If ¢ <1 we have |C1| = ©(log n) a.a.s.
» If ¢ > 1 we have |C1| = ©(n) a.a.s.

Question: What of ¢ =17

Answer: [Bollobas; Luczak, Pittel, Wierman; Aldous] n_2/3|C1|
converges in distribution to some non-trivial random variable, i.e.,
|C1| is about n?/3. Complicated proofs.
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The process starts from a vertex v and explores the component
containing v, denoted C(v). Vertices in the process are either
explored, active or neutral.

» At time t = 0, the only active vertex is v. The rest are
neutral.
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A BFS-Exploration Process

The process starts from a vertex v and explores the component
containing v, denoted C(v). Vertices in the process are either
explored, active or neutral.

» At time t = 0, the only active vertex is v. The rest are
neutral.

» At time t > 0, take first active vertex and mark it explored;
then make its neutral neighbors active.

» Process ends once there are no more active vertices.

Let Y:=#(active vertices), Ny=+#(neutral vertices). Number of
explored vertices at time t is t. Observe

Yt—i—Nt—i—t:n.



A BFS-Exploration Process (continued)

Formally, Yo =1 and given Y1,..., Y;:_1, let i be random
variable distributed as Bin(N;_1,1/n), and we have the recursion

Ye=Ye1+nm:—1,

defined only when Y;_; > 0.



A BFS-Exploration Process (continued)

Formally, Yo =1 and given Y1,..., Y;:_1, let i be random
variable distributed as Bin(N;_1,1/n), and we have the recursion

Ye=Ye1+nm:—1,

defined only when Y;_; > 0.

Observe,
|C(v)| = min{t: Y; =0}.
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Theorem (Nachmias, P.)
In G(n, %), we have that for any n > 1000 and any A > 0
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An upper bound for |C;| with a simple proof

Theorem (Nachmias, P.)
In G(n, %), we have that for any n > 1000 and any A > 0

3
P(|C1| > An?/3) < vl

Proof: First observe that it suffices to bound
E|C(v)] < 3n'/3.

Since by symmetry,

n

EIC()| = JEY IC(w)l = Y EIGP.

i=1

and hence E|C;|?> < 3n*/3, which finishes the proof.



An upper bound with a simple proof (continued)

Consider the martingale S; defined by
1
So=1, St = St—1 + Bin(n, ;) —-1.

We can couple such that S; > Y; for all t > 0.
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An upper bound with a simple proof (continued)
Consider the martingale S; defined by
So=1, St = St—1 + Bin(n, %) —-1.
We can couple such that S; > Y; for all t > 0.
Fix an integer H and define a stopping time
vy=min{t:S;=0o0r S > H},

Then since S; is a martingale, Optional Stopping Theorem gives
1=ES, > HP(S, > H), hence

1
> < —.
P(S, > H) < —

A simple lemma: Let X be distributed Bin(n, 1/n) and let f be
an increasing real function. Then,

E[f(S, — H) | S, > H] < Ef(X).



An upper bound with a simple proof (continued)

Write $2 = H? + 2H(S, — H) + (S, — H)? and apply the lemma
with f(x) = 2Hx + x? to get that for H > 3

E[Sﬁ\svzH] <H>+2H+2<H?>+3H.
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An upper bound with a simple proof (continued)

Write $2 = H? + 2H(S, — H) + (S, — H)? and apply the lemma
with f(x) = 2Hx + x? to get that for H > 3

E[Sﬁ\svzH] <H>+2H+2<H?>+3H.

Now S? — (1 — %)t is also a martingale. By optional stopping and
our previous inequalities,

1+(1—%)E7:E(5§):P(572 H)E[53 = H} <H+3,

We conclude that for H< n—3

Evy < H+3.



An upper bound with a simple proof (continued)

Next, define
70 =min{t >0: Y, =0},



An upper bound with a simple proof (continued)

Next, define
70 =min{t >0: Y, =0},

If Sy =0, then 7 <. Therefore: 7 <+ 701(s >p)-

On the left is the case where S, = 0 and hence by the coupling
Y, = 0. On theright, S, > H.



An upper bound with a simple proof (continued)

Let

t .
ZJ

Zt:Y'y+t+ ' 1;.
J:

Recall that number of neutral vertices is Ny = n — t — Y%, hence
E[Y: — Yea|Yj1] < £
We conclude that Z; is a supermartingale.



An upper bound with a simple proof (continued)

Let

t .
J
Zt == ny_t,_t + Z ; .
j=1
Recall that number of neutral vertices is Ny = n — t — Y%, hence
E[Y: — Yea|Yj 1] < L.

We conclude that Z; is a supermartingale.

By Optional Stopping Theorem and the simple lemma, we have

H+1>E[S, |5, >H|>E[2|S, > H] >E[Z, |5, > H|.



An upper bound with a simple proof (continued)
. . . . t2 . .
Invoking the obvious inequality Z; > 5, this yields

E[Tg ‘ S5y > H]_

H+1>
tiz 2n
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An upper bound with a simple proof (continued)
. . . . t2 . .
Invoking the obvious inequality Z; > 5, this yields

E[Tg ‘ S5y > H]_

H+1>
tiz 2n

By Cauchy-Schwarz,

Elro | S, > H] < (2n(H + 1))"2.

We are almost done. Recall:

T<~v+ TO]-(SWEH) .



An upper bound with a simple proof (continued)

Hence,

Er <Ey+E[n|S,>H|P(S, > H).
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Hence,
Er <Ey+E[n|S,>H|P(S, > H).
Taking expectation and putting all the estimates together gives,
Er <H-+3+@2n(H+1)Y?H* < H+2(n/H)Y? -1,

where the second inequality holds if n/H is large.



An upper bound with a simple proof (continued)
Hence,
Er <Ey+E[n|S,>H|P(S, > H).
Taking expectation and putting all the estimates together gives,
Er <H-+3+@2n(H+1)Y?H* < H+2(n/H)Y? -1,

where the second inequality holds if n/H is large.

Optimize by taking H = [n'/3], this yields

E|C(v)] < 3n'/3.



