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Definition: An invertible mapping f : X — Y, where (X, dx) and
(Y, dy) are metric spaces, is a C-embedding if there exists a
number r > 0 such that for all x,y € X

r-dx(x,y) <dy(f(x),f(y)) < Cr-dx(x,y).

The infimum of numbers C such that f is a C-embedding is called
the distortion of f and is denoted by dist(f). Equivalently,
dlSt(f) = HfHLiprilHLip where

HfHLip—SUP{CW:X,yGX,X7éY}.



Example

Theorem: (Enflo, 1969) Let Q4 = {0,1}* be the k-dimensional
hypercube with 1 metric, then any f : Q, — L2 has distortion at

least k.

Remark: This is tight, as can be easily seen by taking the identity
function from Q, to Eé. Enflo’s proof is algebraic, and is hence
fragile: if one edge of the cube is removed, the proof breaks down.



Theorem: (Bourgain, 1985) Every n-point metric space (X, d) can
be embedded in an Euclidean space with an O(log n) distortion.

Remark: Any embedding of an expander graph family into
Euclidean space has distortion at least clog n (Linial, London and
Rabinovich, 1995).

Proof idea for Bourgain’s theorem: For each cardinality kK < n
which is a power of 2, randomly pick aclog n sets A C V(G)
independently by including each x € X with probability 1/k. We
have drawn O(log? n) sets A, . .. s Ao(Iog? n)- Map every vertex

x € X to the vector

1
log n

(d(x, A), d(x, As), ...).

This mapping has distortion O(log n).



Theorem: (Bourgain, 1986) There is no bounded distortion
embedding of the infinite binary tree into a Hilbert space.
More precisely, any embedding of a binary tree of depth M and
n =2M+1 _ 1 vertices into a Hilbert space has distortion

Q(+/Tog M) = Q(/Tog Tog n).



The Markov type of metric spaces

A Markov chain {Z;}72, with transition probabilities

pij := Pr(Zi41 =j | Z¢ = i) on the state space {1,...,n} is
stationary if 7; := P(Z; = i) does not depend on t and it is (time)
reversible if 7;p;; = m;pji for every i,j € {1,...,n}.

Definition (Ball 1992): Given a metric space (X, d) we say that X
has Markov type 2 if there exists a constant M > 0 such that for
every stationary reversible Markov chain {Z;}22, on {1,...,n},
every mapping f : {1,...,n} — X and every time t € N,

Ed(f(Z;), f(20))* < M*tEd(f(Z1), f(Z))>.



Theorem: (Ball 1992) R has Markov type 2 with constant M = 1.

Proof: Let P = (pj;;) be the transition matrix of the Markov chain.
Time reversibility is equivalent to the assertion that P is a
self-adjoint operator in L?(r), hence L?(7) has an orthogonal basis
of eigenfunctions of P with real eigenvalues. Also, since P is a
stochastic matrix | Pf | o < | f | o and thus if A is an eigenvalue
of P then |A| <1.

We have

Ed(f(Z0). F(20))* = > miy 1F(1) = FU)FF = 2((1 = P1)F. £).

and also
Ed(f(Z1),f(Z))? = 2((I — P)f,f).



So we are left to prove that,
(I = PO, f) < t{(I — P)f,f).

Indeed, if f is an eigenfunction with eigenvalue A this reduces to
proving (1 — A*) < t(1 — \). Since |A| < 1, this reduces to

T4 A4 A<t

which is obviously true. For any other f take f = Z}’Zl ajf; where
{fi} is an orthonormal basis of eigenfunctions,

n

(1= PYA) = D3~ PYG.) < D3I~ P)E.6)
> -
- Jt<(/ — P)f,f).0 :

Corollary: Any Hilbert space has Markov type 2 with constant
M=1.



Corollary: Any embedding of the hypercube {0, 1}* into Hilbert
space has distortion at least \/E/4

Proof: Let {X;} be the simple random walk on the hypercube. It
is easy to see that

Ed(Xo. X)) >3 Vj<k/4,

which by Jensen's inequality implies Ed?(Xo, X;) > j2/4. Let
f:{0,1}* — L2 be a map. Assume without loss of generality that
f is non-expanding mapping, i.e., | f | Lip, = 1 (otherwise take
f/| f | Lip). Since L2 has Markov type 2 with constant M = 1, for
any j, we have

Ed2[f(X0), F(X))] <.

Take j = k/4, together this yields

[ Lip > Vk/4.



Corollary: Any embedding of an (n, d, A)-expander family has
distortion at least Cy ) log n.

Proof: Let {X;} be the simple random walk on the expander with
transition matrix P. Let g =1 — ), take a > 0 such that ga < 1
and take t = alog n, it can be shown that

Pt(ij) < 267(17)\)04 logn

Fix 7 > 0 small enough such that d7e~ 1=V < 1. We wish to
show that up to time t = «log n, the random walk on the
expander has positive speed. Indeed, for any x € V/, since the ball
B(x,~log n) of radius 7 log n around x has at most d7'°8" vertices
it follows that

P.[X: € B(x,7logn)] < d7'°8ne=(1=Nalogn _, o
This in turn implies that for large enough n

2 log? n

Ed?(Xo, X;) > 5



Let f : V — L2, and assume without loss of generality that
| f|Lip =1 (otherwise take f/ | f | ip). We have proved in the
previous theorem that

Ed(f(X:), F(X0)? < (L+ X+ X+ + XTDEA(F(Z), F(Z))?.

This immediately implies that

EQ(F(X0), F(Xe)) < % .

Together this implies

I F1 |l Lip > V1 —Aylogn.



In similar ways one can prove that if a family of graphs have all
degrees at least 3 and girth (size of smallest cycle) at least g then
any embedding into Hilbert space has distortion at least Q(,/g).
So if the girth is at least c log n we cannot embed with distortion
smaller than ¢’v/log n, but we can with distortion O(log n)
(Bourgain's theorem).

Open question: What is the minimal possible distortion for an
embedding of an n vertex graph of girth g = clog(n) in Euclidean
space?



Theorem: (Naor, P., Sheffield, Schramm, 2004) L, for p > 2,
trees and hyperbolic groups have Markov type 2.

Open question: Do planar graphs (with graph distance) have
Markov type 27



Key ideas in proofs

Stationary reversible Markov chains in R (and more generally, in
any normed space) are difference of two martingales, a forward
martingale, and a backward martingale; the squared norms of the
martingale increments can be bounded using the original
increments. For martingales, powerful inequalities due to Doob and
Pisier are available.

On a tree, the length of a path can be bounded by twice the
difference between the maximum and the minimum distance to the
root along the path.

We will use a decomposition of a stationary reversible Markov
chain into forward and backward martingales (inspired by a
decomposition due to Lyons and Zhang for stochastic integrals.)



A central Lemma

Lemma: Let {Z;}2°, be a stationary time reversible Markov chain
on{l,...,n}and f:{1,...,n} — R. Then, for every time t > 0,

E max [£(Z5) — F(Z0)]? < 15tE[f(Z1) — F(Z)P.

Proof: Let P : [%(1) — L?(m) be the Markov operator, i.e.
(PF)(i) = E[f(Zs4+1)|Zs = i]. Forany s € {0,...,t — 1} let

Ds = f(Zs—i-l) - (Pf)(ZS)v

and
Ds = f(Zs_1) — (PF)(Zs) .

The first are martingale differences with respect to the natural
filtration of Z1,..., Z;, and the second, because of reversibility are
martingale differences with respect to the natural filtration on
Z,. .., 21



Subtracting,

f(Zes1) — F(Zs—1) = Ds — D

Thus for any m

f(Zom) — f(20) = ZD2I< 1—ZD2/< 1

So,

max f(Zs) — f(Z) < max Zng 1+ max Z ng 1

0<s<t m<t/2 4

f Z —f(Z .
+ éfgf/él ( 2041) — f( 2@)\



Take squares and use the fact (a+ b+ c)? < 3(a® + b + ¢2?),
which is implied by the Cauchy-Schwarz inequality, to get

max |f(Zs) — F(Z)P < 3 max ‘Zng_l
k=1

2
0<s<t m<t/2 )
mo_ 2
+ 3, |3 B
£33 | 2oen) — F(Z)||
(<t/2



We will use Doob’s L2 maximum inequality for martingales (see,
e.g., Durrett 1996)

E max M2 < 4E|M,|*.
0<s<t

Consider

Msy1 = Z D;.

j<s,j odd

Since M is still a martingale, we have

2
2
Eorgfgt\f(zs) — (L) < 12 E‘ ; D2k71‘
Lt/2]

~ 2
n 12E‘ 3 DZk_lj
k=1

2
+ 3 ) E‘f(zzul)—f(zzz)
0<i<t/2



Denote V = E[|f(Z1) — f(Zo)|?], and notice that

Do = f(21) — f(2) — E[f(Z1) — f(Z) | ],
which implies that Dy is orthogonal to E[f(Z1) — f(Zp) | Zo] in
L?(7). So, by the Pythagorian law, for any s we have

E[D2?] = E[D3] < V. Summing everything up gives

E max |f(Z) — f(Zo)? <6tV + 6tV +3(t/2+ 1)V < 15tV

which concludes the proof of the Lemma.



Trees have Markov Type 2

Theorem: (Naor, P., Sheffield, Schramm, 2004) Trees have
Markov Type 2.

Proof: Let T be a weighted tree, {Z;} be a reversible Markov
chainon {1,...,n} and F:{1,...,n} — T. Choose an arbitrary
root and set for any vertex v, ¥(v) = d(root,v). If vp,..., v is a
path in the tree, then

d(vo, ) < max ([4(u0) = ()| + () = %))

0<<t

since choosing the closest vertex to the root on the path yields
equality.



Let X; = F(Z;). Connect X; to Xji1 by the shortest path for any
0 <i<t—1to get a path between Xy and X;. Since now the
closest vertex to the root can be on any of the shortest paths
between X; and X1, we get

d(Xo Xe) < max ([1(Xo) =)+ (X)—(X)|+2d (X, X41) )
<<t
Square, and use Cauchy-Schwarz again,
d(Xo, X < 3 max (w(xo) BOG)R + [6(X) — p0G)1)
<<

o<j<t



By our central Lemma with f = ¥ F we get,

Ed(Xo, X:)* < 90tE[¢h(Xo) — (X1)P +6 > Ed*(Xj, Xj11).
0<j<t

Since in any metric space [1)(X1) — ¥(Xo)| < d(Xo, X1) and since
the Markov chain is stationary we have Ed(Xp, X1) = Ed(Xj, Xj+1)
for any j. So

Ed(Xo, X:)? < 96tEd(Xp, X1)?,

which concludes our proof. O



