Embeddings of finite metric spaces in Euclidean space: a probabilistic view

Yuval Peres

May 11, 2006

Talk based on work joint with:
Assaf Naor, Oded Schramm and Scott Sheffield

Definition: An invertible mapping $f: X \rightarrow Y$, where $\left(X, d_{X}\right)$ and (Y, d_{Y}) are metric spaces, is a C-embedding if there exists a number $r>0$ such that for all $x, y \in X$

$$
r \cdot d_{X}(x, y) \leq d_{Y}(f(x), f(y)) \leq C r \cdot d_{X}(x, y)
$$

The infimum of numbers C such that f is a C-embedding is called the distortion of f and is denoted by $\operatorname{dist}(f)$. Equivalently, $\operatorname{dist}(f)=\|f\|_{\text {Lip }}\left\|f^{-1}\right\|_{\text {Lip }}$ where

$$
\|f\|_{\text {Lip }}=\sup \left\{\frac{d_{Y}(f(x), f(y))}{d_{X}(x, y)}: x, y \in X, x \neq y\right\}
$$

Example

Theorem: (Enflo, 1969) Let $\Omega_{k}=\{0,1\}^{k}$ be the k-dimensional hypercube with ℓ_{1} metric, then any $f: \Omega_{k} \rightarrow L^{2}$ has distortion at least \sqrt{k}.

Remark: This is tight, as can be easily seen by taking the identity function from Ω_{k} to ℓ_{2}^{k}. Enflo's proof is algebraic, and is hence fragile: if one edge of the cube is removed, the proof breaks down.

Theorem: (Bourgain, 1985) Every n-point metric space (X, d) can be embedded in an Euclidean space with an $O(\log n)$ distortion.

Remark: Any embedding of an expander graph family into Euclidean space has distortion at least $c \log n$ (Linial, London and Rabinovich, 1995).

Proof idea for Bourgain's theorem: For each cardinality $k<n$ which is a power of 2 , randomly pick $\alpha \log n$ sets $A \subset V(G)$ independently by including each $x \in X$ with probability $1 / k$. We have drawn $O\left(\log ^{2} n\right)$ sets $A_{1}, \ldots, A_{O\left(\log ^{2} n\right)}$. Map every vertex $x \in X$ to the vector

$$
\frac{1}{\log n}\left(d\left(x, A_{1}\right), d\left(x, A_{2}\right), \ldots\right)
$$

This mapping has distortion $O(\log n)$.

Theorem: (Bourgain, 1986) There is no bounded distortion embedding of the infinite binary tree into a Hilbert space. More precisely, any embedding of a binary tree of depth M and $n=2^{M+1}-1$ vertices into a Hilbert space has distortion $\Omega(\sqrt{\log M})=\Omega(\sqrt{\log \log n})$.

The Markov type of metric spaces

A Markov chain $\left\{Z_{t}\right\}_{t=0}^{\infty}$ with transition probabilities $p_{i j}:=\operatorname{Pr}\left(Z_{t+1}=j \mid Z_{t}=i\right)$ on the state space $\{1, \ldots, n\}$ is stationary if $\pi_{i}:=\mathbf{P}\left(Z_{t}=i\right)$ does not depend on t and it is (time) reversible if $\pi_{i} p_{i j}=\pi_{j} p_{j i}$ for every $i, j \in\{1, \ldots, n\}$.

Definition (Ball 1992): Given a metric space (X, d) we say that X has Markov type 2 if there exists a constant $M>0$ such that for every stationary reversible Markov chain $\left\{Z_{t}\right\}_{t=0}^{\infty}$ on $\{1, \ldots, n\}$, every mapping $f:\{1, \ldots, n\} \rightarrow X$ and every time $t \in \mathbf{N}$,

$$
\mathbf{E d} d\left(f\left(Z_{t}\right), f\left(Z_{0}\right)\right)^{2} \leq M^{2} t \mathbf{E} d\left(f\left(Z_{1}\right), f\left(Z_{0}\right)\right)^{2}
$$

Theorem: (Ball 1992) \mathbf{R} has Markov type 2 with constant $M=1$.

Proof: Let $P=\left(p_{i j}\right)$ be the transition matrix of the Markov chain. Time reversibility is equivalent to the assertion that P is a self-adjoint operator in $L^{2}(\pi)$, hence $L^{2}(\pi)$ has an orthogonal basis of eigenfunctions of P with real eigenvalues. Also, since P is a stochastic matrix $\|P f\|_{\infty} \leq\|f\|_{\infty}$ and thus if λ is an eigenvalue of P then $|\lambda| \leq 1$.
We have

$$
\mathbf{E d} d\left(f\left(Z_{t}\right), f\left(Z_{0}\right)\right)^{2}=\sum_{i, j} \pi_{i} p_{i j}^{(t)}[f(i)-f(j)]^{2}=2\left\langle\left(I-P^{t}\right) f, f\right\rangle
$$

and also

$$
\mathbf{E d} d\left(f\left(Z_{1}\right), f\left(Z_{0}\right)\right)^{2}=2\langle(I-P) f, f\rangle
$$

So we are left to prove that,

$$
\left\langle\left(I-P^{t}\right) f, f\right\rangle \leq t\langle(I-P) f, f\rangle
$$

Indeed, if f is an eigenfunction with eigenvalue λ this reduces to proving $\left(1-\lambda^{t}\right) \leq t(1-\lambda)$. Since $|\lambda| \leq 1$, this reduces to

$$
1+\lambda+\cdots+\lambda^{t-1} \leq t
$$

which is obviously true. For any other f take $f=\sum_{j=1}^{n} a_{j} f_{j}$ where $\left\{f_{j}\right\}$ is an orthonormal basis of eigenfunctions,

$$
\begin{aligned}
\left\langle\left(I-P^{t}\right) f, f\right\rangle & =\sum_{j=1}^{n} a_{j}^{2}\left\langle\left(I-P^{t}\right) f_{j}, f_{j}\right\rangle \leq \sum_{j=1}^{n} a_{j}^{2} t\left\langle(I-P) f_{j}, f_{j}\right\rangle \\
& =t\langle(I-P) f, f\rangle . \square
\end{aligned}
$$

Corollary: Any Hilbert space has Markov type 2 with constant $M=1$.

Corollary: Any embedding of the hypercube $\{0,1\}^{k}$ into Hilbert space has distortion at least $\sqrt{k} / 4$.
Proof: Let $\left\{X_{j}\right\}$ be the simple random walk on the hypercube. It is easy to see that

$$
\operatorname{Ed}\left(X_{0}, X_{j}\right) \geq \frac{j}{2} \quad \forall j \leq k / 4
$$

which by Jensen's inequality implies $\mathbf{E} d^{2}\left(X_{0}, X_{j}\right) \geq j^{2} / 4$. Let $f:\{0,1\}^{k} \rightarrow L^{2}$ be a map. Assume without loss of generality that f is non-expanding mapping, i.e., $\|f\|_{\text {Lip }}=1$ (otherwise take $f /\|f\|_{\text {Lip }}$). Since L^{2} has Markov type 2 with constant $M=1$, for any j, we have

$$
\mathbf{E} d^{2}\left[f\left(X_{0}\right), f\left(X_{j}\right)\right] \leq j
$$

Take $j=k / 4$, together this yields

$$
\left\|f^{-1}\right\|_{\text {Lip }} \geq \sqrt{k} / 4
$$

Corollary: Any embedding of an (n, d, λ)-expander family has distortion at least $C_{d, \lambda} \log n$.
Proof: Let $\left\{X_{j}\right\}$ be the simple random walk on the expander with transition matrix P. Let $g=1-\lambda$, take $\alpha>0$ such that $g \alpha<1$ and take $t=\alpha \log n$, it can be shown that

$$
P^{t}(x, y) \leq 2 e^{-(1-\lambda) \alpha \log n}
$$

Fix $\gamma>0$ small enough such that $d^{\gamma} e^{-(1-\lambda) \alpha}<1$. We wish to show that up to time $t=\alpha \log n$, the random walk on the expander has positive speed. Indeed, for any $x \in V$, since the ball $B(x, \gamma \log n)$ of radius $\gamma \log n$ around x has at most $d^{\gamma \log n}$ vertices it follows that

$$
\mathbf{P}_{x}\left[X_{t} \in B(x, \gamma \log n)\right] \leq d^{\gamma \log n} 2 e^{-(1-\lambda) \alpha \log n} \rightarrow 0
$$

This in turn implies that for large enough n

$$
E d^{2}\left(X_{0}, X_{t}\right)>\frac{\gamma^{2} \log ^{2} n}{2}
$$

Let $f: V \rightarrow L^{2}$, and assume without loss of generality that $\|f\|_{\text {Lip }}=1$ (otherwise take $f /\|f\|_{\text {Lip }}$). We have proved in the previous theorem that

$$
\mathbf{E} d\left(f\left(X_{t}\right), f\left(X_{0}\right)\right)^{2} \leq\left(1+\lambda+\lambda^{2}+\cdots+\lambda^{t-1}\right) \mathbf{E} d\left(f\left(Z_{1}\right), f\left(Z_{0}\right)\right)^{2}
$$

This immediately implies that

$$
E d^{2}\left(f\left(X_{0}\right), f\left(X_{t}\right)\right) \leq \frac{1}{1-\lambda}
$$

Together this implies

$$
\left\|f^{-1}\right\|_{\text {Lip }} \geq \sqrt{1-\lambda} \gamma \log n
$$

In similar ways one can prove that if a family of graphs have all degrees at least 3 and girth (size of smallest cycle) at least g then any embedding into Hilbert space has distortion at least $\Omega(\sqrt{g})$. So if the girth is at least $c \log n$ we cannot embed with distortion smaller than $c^{\prime} \sqrt{\log n}$, but we can with distortion $O(\log n)$ (Bourgain's theorem).

Open question: What is the minimal possible distortion for an embedding of an n vertex graph of girth $g=c \log (n)$ in Euclidean space?

Theorem: (Naor, P., Sheffield, Schramm, 2004) L_{p} for $p>2$, trees and hyperbolic groups have Markov type 2.

Open question: Do planar graphs (with graph distance) have Markov type 2?

Key ideas in proofs

Stationary reversible Markov chains in \mathbf{R} (and more generally, in any normed space) are difference of two martingales, a forward martingale, and a backward martingale; the squared norms of the martingale increments can be bounded using the original increments. For martingales, powerful inequalities due to Doob and Pisier are available.
On a tree, the length of a path can be bounded by twice the difference between the maximum and the minimum distance to the root along the path.
We will use a decomposition of a stationary reversible Markov chain into forward and backward martingales (inspired by a decomposition due to Lyons and Zhang for stochastic integrals.)

A central Lemma

Lemma: Let $\left\{Z_{t}\right\}_{t=0}^{\infty}$ be a stationary time reversible Markov chain on $\{1, \ldots, n\}$ and $f:\{1, \ldots, n\} \rightarrow \mathbf{R}$. Then, for every time $t>0$,

$$
\mathbf{E} \max _{0 \leq s \leq t}\left[f\left(Z_{s}\right)-f\left(Z_{0}\right)\right]^{2} \leq 15 t \mathbf{E}\left[f\left(Z_{1}\right)-f\left(Z_{0}\right)\right]^{2}
$$

Proof: Let $P: L^{2}(\pi) \rightarrow L^{2}(\pi)$ be the Markov operator, i.e. $(P f)(i)=\mathbf{E}\left[f\left(Z_{s+1}\right) \mid Z_{s}=i\right]$. For any $s \in\{0, \ldots, t-1\}$ let

$$
D_{s}=f\left(Z_{s+1}\right)-(P f)\left(Z_{s}\right)
$$

and

$$
\widetilde{D}_{s}=f\left(Z_{s-1}\right)-(P f)\left(Z_{s}\right)
$$

The first are martingale differences with respect to the natural filtration of Z_{1}, \ldots, Z_{t}, and the second, because of reversibility are martingale differences with respect to the natural filtration on Z_{t}, \ldots, Z_{1}.

Subtracting,

$$
f\left(Z_{s+1}\right)-f\left(Z_{s-1}\right)=D_{s}-\widetilde{D}_{s}
$$

Thus for any m

$$
f\left(Z_{2 m}\right)-f\left(Z_{0}\right)=\sum_{k=1}^{m} D_{2 k-1}-\sum_{k=1}^{m} \widetilde{D}_{2 k-1}
$$

So,

$$
\begin{aligned}
\max _{0 \leq s \leq t} f\left(Z_{s}\right)-f\left(Z_{0}\right) & \leq \max _{m \leq t / 2} \sum_{k=1}^{m} D_{2 k-1}+\max _{m \leq t / 2} \sum_{k=1}^{m}-\widetilde{D}_{2 k-1} \\
& +\max _{\ell \leq t / 2}\left|f\left(Z_{2 \ell+1}\right)-f\left(Z_{2 \ell}\right)\right|
\end{aligned}
$$

Take squares and use the fact $(a+b+c)^{2} \leq 3\left(a^{2}+b^{2}+c^{2}\right)$, which is implied by the Cauchy-Schwarz inequality, to get

$$
\begin{aligned}
\max _{0 \leq s \leq t}\left|f\left(Z_{s}\right)-f\left(Z_{0}\right)\right|^{2} \leq & 3 \max _{m \leq t / 2}\left|\sum_{k=1}^{m} D_{2 k-1}\right|^{2} \\
& +3 \max _{m \leq t / 2}\left|\sum_{k=1}^{m} \widetilde{D}_{2 k-1}\right|^{2} \\
& +3 \sum_{\ell \leq t / 2}\left|f\left(Z_{2 \ell+1}\right)-f\left(Z_{2 \ell}\right)\right|^{2}
\end{aligned}
$$

We will use Doob's L^{2} maximum inequality for martingales (see, e.g., Durrett 1996)

$$
\mathbf{E} \max _{0 \leq s \leq t} M_{s}^{2} \leq 4 \mathbf{E}\left|M_{t}\right|^{2}
$$

Consider

$$
M_{s+1}=\sum_{j \leq s, j \text { odd }} D_{j}
$$

Since M_{s} is still a martingale, we have

$$
\begin{aligned}
\mathbf{E} \max _{0 \leq s \leq t}\left|f\left(Z_{s}\right)-f\left(Z_{0}\right)\right|^{2} \leq & 12 \mathbf{E}\left|\sum_{k=1}^{\lfloor t / 2\rfloor} D_{2 k-1}\right|^{2} \\
& +12 \mathbf{E}\left|\sum_{k=1}^{\lfloor t / 2\rfloor} \widetilde{D}_{2 k-1}\right|^{2} \\
& +3 \sum_{0 \leq \ell \leq t / 2} \mathbf{E}\left|f\left(Z_{2 \ell+1}\right)-f\left(Z_{2 \ell}\right)\right|^{2}
\end{aligned}
$$

Denote $V=\mathbf{E}\left[\left|f\left(Z_{1}\right)-f\left(Z_{0}\right)\right|^{2}\right]$, and notice that

$$
D_{0}=f\left(Z_{1}\right)-f\left(Z_{0}\right)-\mathbf{E}\left[f\left(Z_{1}\right)-f\left(Z_{0}\right) \mid Z_{0}\right]
$$

which implies that D_{0} is orthogonal to $\mathbf{E}\left[f\left(Z_{1}\right)-f\left(Z_{0}\right) \mid Z_{0}\right]$ in $L^{2}(\pi)$. So, by the Pythagorian law, for any s we have $\mathbf{E}\left[D_{s}^{2}\right]=\mathbf{E}\left[D_{0}^{2}\right] \leq V$. Summing everything up gives

$$
\mathbf{E} \max _{0 \leq s \leq t}\left|f\left(Z_{s}\right)-f\left(Z_{0}\right)\right|^{2} \leq 6 t V+6 t V+3(t / 2+1) V \leq 15 t V,
$$

which concludes the proof of the Lemma.

Trees have Markov Type 2

Theorem: (Naor, P., Sheffield, Schramm, 2004) Trees have Markov Type 2.

Proof: Let T be a weighted tree, $\left\{Z_{j}\right\}$ be a reversible Markov chain on $\{1, \ldots, n\}$ and $F:\{1, \ldots, n\} \rightarrow T$. Choose an arbitrary root and set for any vertex $v, \psi(v)=d($ root, $v)$. If v_{0}, \ldots, v_{t} is a path in the tree, then

$$
d\left(v_{0}, v_{t}\right) \leq \max _{0 \leq j \leq t}\left(\left|\psi\left(v_{0}\right)-\psi\left(v_{j}\right)\right|+\left|\psi\left(v_{t}\right)-\psi\left(v_{j}\right)\right|\right)
$$

since choosing the closest vertex to the root on the path yields equality.

Let $X_{j}=F\left(Z_{j}\right)$. Connect X_{i} to X_{i+1} by the shortest path for any $0 \leq i \leq t-1$ to get a path between X_{0} and X_{t}. Since now the closest vertex to the root can be on any of the shortest paths between X_{j} and X_{j+1}, we get

$$
d\left(X_{0}, X_{t}\right) \leq \max _{0 \leq j<t}\left(\left|\psi\left(X_{0}\right)-\psi\left(X_{j}\right)\right|+\left|\psi\left(X_{t}\right)-\psi\left(X_{j}\right)\right|+2 d\left(X_{j}, X_{j+1}\right)\right)
$$

Square, and use Cauchy-Schwarz again,

$$
\begin{aligned}
d\left(X_{0}, X_{t}\right)^{2} \leq & 3 \max _{0 \leq j \leq t}\left(\left|\psi\left(X_{0}\right)-\psi\left(X_{j}\right)\right|^{2}+\left|\psi\left(X_{t}\right)-\psi\left(X_{j}\right)\right|^{2}\right) \\
& +12 \sum_{0 \leq j<t} d^{2}\left(X_{j}, X_{j+1}\right)
\end{aligned}
$$

By our central Lemma with $f=\psi F$ we get,

$$
\mathbf{E} d\left(X_{0}, X_{t}\right)^{2} \leq 90 t \mathbf{E}\left|\psi\left(X_{0}\right)-\psi\left(X_{1}\right)\right|^{2}+6 \sum_{0 \leq j \leq t} \mathbf{E} d^{2}\left(X_{j}, X_{j+1}\right)
$$

Since in any metric space $\left|\psi\left(X_{1}\right)-\psi\left(X_{0}\right)\right| \leq d\left(X_{0}, X_{1}\right)$ and since the Markov chain is stationary we have $\mathbf{E} d\left(X_{0}, X_{1}\right)=\mathbf{E} d\left(X_{j}, X_{j+1}\right)$ for any j. So

$$
\mathbf{E d}\left(X_{0}, X_{t}\right)^{2} \leq 96 t \mathbf{E} d\left(X_{0}, X_{1}\right)^{2}
$$

which concludes our proof.

