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Definition: An invertible mapping f : X → Y , where (X , dX ) and
(Y , dY ) are metric spaces, is a C -embedding if there exists a
number r > 0 such that for all x , y ∈ X

r · dX (x , y) ≤ dY (f (x), f (y)) ≤ Cr · dX (x , y).

The infimum of numbers C such that f is a C -embedding is called
the distortion of f and is denoted by dist(f ). Equivalently,
dist(f ) = ||f ||Lip||f −1||Lip where

||f ||Lip = sup

{
dY (f (x), f (y))

dX (x , y)
: x , y ∈ X , x 6= y

}
.



Example

Theorem: (Enflo, 1969) Let Ωk = {0, 1}k be the k-dimensional
hypercube with `1 metric, then any f : Ωk → L2 has distortion at
least

√
k.

Remark: This is tight, as can be easily seen by taking the identity
function from Ωk to `k2 . Enflo’s proof is algebraic, and is hence
fragile: if one edge of the cube is removed, the proof breaks down.



Theorem: (Bourgain, 1985) Every n-point metric space (X , d) can
be embedded in an Euclidean space with an O(log n) distortion.

Remark: Any embedding of an expander graph family into
Euclidean space has distortion at least c log n (Linial, London and
Rabinovich, 1995).

Proof idea for Bourgain’s theorem: For each cardinality k < n
which is a power of 2, randomly pick α log n sets A ⊂ V (G )
independently by including each x ∈ X with probability 1/k. We
have drawn O(log2 n) sets A1, . . . ,AO(log2 n). Map every vertex
x ∈ X to the vector

1

log n
(d(x ,A1), d(x ,A2), . . .).

This mapping has distortion O(log n).



Theorem: (Bourgain, 1986) There is no bounded distortion
embedding of the infinite binary tree into a Hilbert space.
More precisely, any embedding of a binary tree of depth M and
n = 2M+1 − 1 vertices into a Hilbert space has distortion
Ω(
√

log M) = Ω(
√

log log n).



The Markov type of metric spaces

A Markov chain {Zt}∞t=0 with transition probabilities
pij := Pr(Zt+1 = j | Zt = i) on the state space {1, . . . , n} is
stationary if πi := P(Zt = i) does not depend on t and it is (time)
reversible if πipij = πjpji for every i , j ∈ {1, . . . , n}.

Definition (Ball 1992): Given a metric space (X , d) we say that X
has Markov type 2 if there exists a constant M > 0 such that for
every stationary reversible Markov chain {Zt}∞t=0 on {1, . . . , n},
every mapping f : {1, . . . , n} → X and every time t ∈ N,

Ed(f (Zt), f (Z0))
2 ≤ M2tEd(f (Z1), f (Z0))

2.



Theorem: (Ball 1992) R has Markov type 2 with constant M = 1.

Proof: Let P = (pij) be the transition matrix of the Markov chain.
Time reversibility is equivalent to the assertion that P is a
self-adjoint operator in L2(π), hence L2(π) has an orthogonal basis
of eigenfunctions of P with real eigenvalues. Also, since P is a
stochastic matrix ||Pf ||∞ ≤ || f ||∞ and thus if λ is an eigenvalue
of P then |λ| ≤ 1.
We have

Ed(f (Zt), f (Z0))
2 =

∑
i ,j

πip
(t)
ij [f (i)− f (j)]2 = 2〈(I − Pt)f , f 〉 ,

and also
Ed(f (Z1), f (Z0))

2 = 2〈(I − P)f , f 〉 .



So we are left to prove that,

〈(I − Pt)f , f 〉 ≤ t〈(I − P)f , f 〉 .

Indeed, if f is an eigenfunction with eigenvalue λ this reduces to
proving (1− λt) ≤ t(1− λ). Since |λ| ≤ 1, this reduces to

1 + λ+ · · ·+ λt−1 ≤ t ,

which is obviously true. For any other f take f =
∑n

j=1 aj fj where
{fj} is an orthonormal basis of eigenfunctions,

〈(I − Pt)f , f 〉 =
n∑

j=1

a2
j 〈(I − Pt)fj , fj〉 ≤

n∑
j=1

a2
j t〈(I − P)fj , fj〉

= t〈(I − P)f , f 〉 .�

Corollary: Any Hilbert space has Markov type 2 with constant
M = 1.



Corollary: Any embedding of the hypercube {0, 1}k into Hilbert
space has distortion at least

√
k/4.

Proof: Let {Xj} be the simple random walk on the hypercube. It
is easy to see that

Ed(X0,Xj) ≥
j

2
∀j ≤ k/4 ,

which by Jensen’s inequality implies Ed2(X0,Xj) ≥ j2/4. Let
f : {0, 1}k → L2 be a map. Assume without loss of generality that
f is non-expanding mapping, i.e., || f || Lip = 1 (otherwise take
f / || f || Lip). Since L2 has Markov type 2 with constant M = 1, for
any j , we have

Ed2[f (X0), f (Xj)] ≤ j .

Take j = k/4, together this yields

|| f −1 || Lip ≥
√

k/4 .

�



Corollary: Any embedding of an (n, d , λ)-expander family has
distortion at least Cd ,λ log n.
Proof: Let {Xj} be the simple random walk on the expander with
transition matrix P. Let g = 1− λ, take α > 0 such that gα < 1
and take t = α log n, it can be shown that

Pt(x , y) ≤ 2e−(1−λ)α log n .

Fix γ > 0 small enough such that dγe−(1−λ)α < 1. We wish to
show that up to time t = α log n, the random walk on the
expander has positive speed. Indeed, for any x ∈ V , since the ball
B(x , γ log n) of radius γ log n around x has at most dγ log n vertices
it follows that

Px [Xt ∈ B(x , γ log n)] ≤ dγ log n2e−(1−λ)α log n → 0 .

This in turn implies that for large enough n

Ed2(X0,Xt) >
γ2 log2 n

2
.



Let f : V → L2, and assume without loss of generality that
|| f || Lip = 1 (otherwise take f / || f || Lip). We have proved in the
previous theorem that

Ed(f (Xt), f (X0))
2 ≤ (1 + λ+ λ2 + · · ·+ λt−1)Ed(f (Z1), f (Z0))

2 .

This immediately implies that

Ed2(f (X0), f (Xt)) ≤
1

1− λ
.

Together this implies

|| f −1 || Lip ≥
√

1− λγ log n .

�



In similar ways one can prove that if a family of graphs have all
degrees at least 3 and girth (size of smallest cycle) at least g then
any embedding into Hilbert space has distortion at least Ω(

√
g).

So if the girth is at least c log n we cannot embed with distortion
smaller than c ′

√
log n, but we can with distortion O(log n)

(Bourgain’s theorem).

Open question: What is the minimal possible distortion for an
embedding of an n vertex graph of girth g = c log(n) in Euclidean
space?



Theorem: (Naor, P., Sheffield, Schramm, 2004) Lp for p > 2,
trees and hyperbolic groups have Markov type 2.

Open question: Do planar graphs (with graph distance) have
Markov type 2?



Key ideas in proofs

Stationary reversible Markov chains in R (and more generally, in
any normed space) are difference of two martingales, a forward
martingale, and a backward martingale; the squared norms of the
martingale increments can be bounded using the original
increments. For martingales, powerful inequalities due to Doob and
Pisier are available.
On a tree, the length of a path can be bounded by twice the
difference between the maximum and the minimum distance to the
root along the path.
We will use a decomposition of a stationary reversible Markov
chain into forward and backward martingales (inspired by a
decomposition due to Lyons and Zhang for stochastic integrals.)



A central Lemma

Lemma: Let {Zt}∞t=0 be a stationary time reversible Markov chain
on {1, . . . , n} and f : {1, . . . , n} → R. Then, for every time t > 0,

E max
0≤s≤t

[f (Zs)− f (Z0)]
2 ≤ 15tE[f (Z1)− f (Z0)]

2 .

Proof: Let P : L2(π) → L2(π) be the Markov operator, i.e.
(Pf )(i) = E[f (Zs+1)|Zs = i ]. For any s ∈ {0, . . . , t − 1} let

Ds = f (Zs+1)− (Pf )(Zs) ,

and
D̃s = f (Zs−1)− (Pf )(Zs) .

The first are martingale differences with respect to the natural
filtration of Z1, . . . ,Zt , and the second, because of reversibility are
martingale differences with respect to the natural filtration on
Zt , . . . ,Z1.



Subtracting,
f (Zs+1)− f (Zs−1) = Ds − D̃s .

Thus for any m

f (Z2m)− f (Z0) =
m∑

k=1

D2k−1 −
m∑

k=1

D̃2k−1 .

So,

max
0≤s≤t

f (Zs)− f (Z0) ≤ max
m≤t/2

m∑
k=1

D2k−1 + max
m≤t/2

m∑
k=1

−D̃2k−1

+ max
`≤t/2

|f (Z2`+1)− f (Z2`)| .



Take squares and use the fact (a + b + c)2 ≤ 3(a2 + b2 + c2),
which is implied by the Cauchy-Schwarz inequality, to get

max
0≤s≤t

|f (Zs)− f (Z0)|2 ≤ 3 max
m≤t/2

∣∣∣ m∑
k=1

D2k−1

∣∣∣2
+ 3 max

m≤t/2

∣∣∣ m∑
k=1

D̃2k−1

∣∣∣2
+ 3

∑
`≤t/2

∣∣∣f (Z2`+1)− f (Z2`)
∣∣∣2 .



We will use Doob’s L2 maximum inequality for martingales (see,
e.g., Durrett 1996)

E max
0≤s≤t

M2
s ≤ 4E|Mt |2 .

Consider
Ms+1 =

∑
j≤s,j odd

Dj .

Since Ms is still a martingale, we have

E max
0≤s≤t

|f (Zs)− f (Z0)|2 ≤ 12 E
∣∣∣ bt/2c∑

k=1

D2k−1

∣∣∣2
+ 12E

∣∣∣ bt/2c∑
k=1

D̃2k−1

∣∣∣2
+ 3

∑
0≤`≤t/2

E
∣∣∣f (Z2`+1)− f (Z2`)

∣∣∣2 .



Denote V = E[|f (Z1)− f (Z0)|2], and notice that

D0 = f (Z1)− f (Z0)− E[f (Z1)− f (Z0) | Z0] ,

which implies that D0 is orthogonal to E[f (Z1)− f (Z0) | Z0] in
L2(π). So, by the Pythagorian law, for any s we have
E[D2

s ] = E[D2
0 ] ≤ V . Summing everything up gives

E max
0≤s≤t

|f (Zs)− f (Z0)|2 ≤ 6tV + 6tV + 3(t/2 + 1)V ≤ 15tV ,

which concludes the proof of the Lemma. �



Trees have Markov Type 2

Theorem: (Naor, P., Sheffield, Schramm, 2004) Trees have
Markov Type 2.

Proof: Let T be a weighted tree, {Zj} be a reversible Markov
chain on {1, . . . , n} and F : {1, . . . , n} → T . Choose an arbitrary
root and set for any vertex v , ψ(v) = d(root, v). If v0, . . . , vt is a
path in the tree, then

d(v0, vt) ≤ max
0≤j≤t

(
|ψ(v0)− ψ(vj)|+ |ψ(vt)− ψ(vj)|

)
,

since choosing the closest vertex to the root on the path yields
equality.



Let Xj = F (Zj). Connect Xi to Xi+1 by the shortest path for any
0 ≤ i ≤ t − 1 to get a path between X0 and Xt . Since now the
closest vertex to the root can be on any of the shortest paths
between Xj and Xj+1, we get

d(X0,Xt) ≤ max
0≤j<t

(
|ψ(X0)−ψ(Xj)|+|ψ(Xt)−ψ(Xj)|+2d(Xj ,Xj+1)

)
.

Square, and use Cauchy-Schwarz again,

d(X0,Xt)
2 ≤ 3 max

0≤j≤t

(
|ψ(X0)− ψ(Xj)|2 + |ψ(Xt)− ψ(Xj)|2

)
+ 12

∑
0≤j<t

d2(Xj ,Xj+1) .



By our central Lemma with f = ψF we get,

Ed(X0,Xt)
2 ≤ 90tE|ψ(X0)− ψ(X1)|2 + 6

∑
0≤j≤t

Ed2(Xj ,Xj+1) .

Since in any metric space |ψ(X1)− ψ(X0)| ≤ d(X0,X1) and since
the Markov chain is stationary we have Ed(X0,X1) = Ed(Xj ,Xj+1)
for any j . So

Ed(X0,Xt)
2 ≤ 96tEd(X0,X1)

2 ,

which concludes our proof. �


