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Goal: Find the limiting distribution of the largest

eigenvalue of sample covariance matrix for so-called

spiked population model as a way to illustrate a

method (‘Fredholm determinant method’?) from

random matrix theory

• Introduction: sample covariance matrix, spiked

population model.

• Algebraic part: eigenvalue density function, Fred-

holm determinant formula

• Asymptotic analysis: steepest-decent method,

limiting distributions

• Differential equations for limiting distributions

• Other related models: traffic model, queues in

tandem, last passage percolation



Population covariance and sample covariance

(complex) sample vector ~x of dimension p

normalized: mean 0, variance 1

population covariance matrix Tp = E(~x~x∗): p × p

positive Hermitian

n samples, sample matrix X = [~x1, · · · , ~xn]

n= sample size

p= population size (dimension of vectors)

Sample covariance matrix

Bp :=
1

n
[~x1, · · · , ~xn]

[

~x∗1
...

~x∗n

]

=
1

n
XX∗

Bp(a, b) = 1
n

∑n
j=1 ~xj(a)~xj(b)



Population and sample eigenvalues

population eigenvalues (true eigenvalues) t
(p)
1 , . . . , t

(p)
p

sample eigenvalues s
(p)
1 ≥ · · · ≥ s

(p)
p > 0

Is Bp a good approximate of Tp?

Are sj’s good approximate of tj’s?

p << n: yes

p ∼ n: not so



[Marchenko+Pastur 1967] e.g. Tp = I

n = n(p) → ∞, p
n → c

1

p
#{s(p)j : s

(p)
j < x} → F(x),

where

F ′(x) =
1

2πxc

√

(b − x)(x − a), a < x < b,

almost surely when 0 < c ≤ 1. (mean 1, standard

dev.=
√

1 + c)

a = (1 −√
c)2 and b = (1 +

√
c)2

c > 1: Dirac measure at x = 0 of mass 1 − 1
c .
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Marchenko-Pastur interval

IMP :=
[

(1 −
√

c)2, (1 +
√

c)2
]

.

No stray sample eigenvalues!

s
(p)
1 → (1 +

√
c)2 (Geman 1980)

s
(p)
min{p,n} → (1 −√

c)2 (Silverstein 1985)

(s
(p)
n+1 = · · · = s

(p)
p = 0 when n < p)



Spiked population model (Johnstone)

Tp=finite-rank perturbation of I.

For some fixed r,

UTTpU
−1
T = diag(t1, t2, . . . , tr,1,1,1, . . .1)

n = n(p) → ∞, p
n → c, r fixed

Limiting empirical distribution is same as before

(Marchenko-Pastur)

But there may be some sample eigenvalues outside

the Marchenko-Pastur interval.

[Avellaneda + Park] Dynamic Risk Factor model

for the dynamics of the cross correlation of a large

financial system



Real Gaussian, 3 non-unit eigenvalues 1
10,3,4

p = 100, n = 200



p = 1000, n = 2000



Bernoulli samples (values ±1), p = 100, n = 200

Bernoulli p = 1000, n = 2000



Almost sure limits (0 < c = p
n ≤ 1) [B.+Silverstein]

(from [Bai+Silverstein])

Samples of form ~x = T
1/2
p ~z, entries of ~z are inde-

pendent

Critical value of population eigenvalue = 1 ± √
c :

population eigenvalues in [1 − √
c,1 +

√
c] have no

effect on sample eigenvalues.

To each population eigenvalue outside [1−√
c,1 +√

c], there is one corresponding sample eigenvalue

outside IMP = [(1 −√
c)2, (1 +

√
c)2].

Examples (c = 1
2): 1 +

√
c ≃ 1.70711, 1 − √

c ≃
0.29289

s
(p)
p s

(2)
p s

(1)
p

theoretical 0.044 3.750 4.667

Gaussian p = 1000 0.044 3.784 4.591

Gaussian p = 100 0.040 3.554 4.662

Bernoulli p = 1000 0.046 3.757 4.666

Bernoulli p = 100 0.050 3.623 4.708



Limiting distributions: null case Tp = I

Complex Gaussian [Forrester 1993, Johansson 2000]

lim
n→∞P

(

(

smax−(1+
√

c)2
)

· c1/6n2/3

(1 +
√

c)4/3
≤ x

)

= F0(x)

for an explicit distribution function F0(x)

(Note: F0 is usually denoted by F2 or FGUE. Here

we reserve F2 for something else.)

Non-Gaussian rv’s [Soshnikov 2002] (c = 1)

Real Gaussian [Johnstone 2001, Tracy+Widom 1996]:

different limiting distribution

Goal: Spiked model with complex Gaussian

samples. Determine the critical value of popu-

lation eigenvalue. Find the limiting mean and

limiting distribution function. What is the proper

scaling (n2/3 vs n1/2)?
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Things need to be done:

• limiting distribution of other rows for (sub-)critical

case

• limiting distribution for other than complex Gaus-

sian (e.g. real Gaussian) for (sub-)critical case

• other choices of Tp, such as Tp =

(

aIp/2 0

0 bIp/2

)

[Ben Arous+Péché] or ‘random’ Tp


