Eigenvalues of large sample covariance matrices; Lecture 1

Jinho Baik

University of Michigan, Ann Arbor

February 2006

Goal: Find the limiting distribution of the largest eigenvalue of sample covariance matrix for so-called spiked population model as a way to illustrate a method ('Fredholm determinant method'?) from random matrix theory

- Introduction: sample covariance matrix, spiked population model.
- Algebraic part: eigenvalue density function, Fredholm determinant formula
- Asymptotic analysis: steepest-decent method, limiting distributions
- Differential equations for limiting distributions
- Other related models: traffic model, queues in tandem, last passage percolation

Population covariance and sample covariance

(complex) sample vector \vec{x} of dimension p

normalized: mean 0, variance 1

population covariance matrix $T_p = \mathbb{E}(\vec{x}\vec{x}^*)$: $p \times p$ positive Hermitian

n samples, sample matrix $X = [\vec{x}_1, \cdots, \vec{x}_n]$

n = sample size p = population size (dimension of vectors)

Sample covariance matrix

$$B_p := \frac{1}{n} [\vec{x}_1, \cdots, \vec{x}_n] \begin{bmatrix} \vec{x}_1^* \\ \vdots \\ \vec{x}_n^* \end{bmatrix} = \frac{1}{n} X X^*$$

$$B_p(a,b) = \frac{1}{n} \sum_{j=1}^n \vec{x}_j(a) \vec{x}_j(b)$$

Population and sample eigenvalues

population eigenvalues (true eigenvalues) $t_1^{(p)}, \ldots, t_p^{(p)}$

sample eigenvalues $s_1^{(p)} \ge \cdots \ge s_p^{(p)} > 0$

Is B_p a good approximate of T_p ?

Are s_i 's good approximate of t_i 's?

p << n: yes

 $p \sim n$: not so

[Marchenko+Pastur 1967] e.g.
$$T_p = I$$

 $n = n(p) \rightarrow \infty, \ \frac{p}{n} \rightarrow c$
 $\frac{1}{p} \# \{s_j^{(p)} : s_j^{(p)} < x\} \rightarrow F(x),$

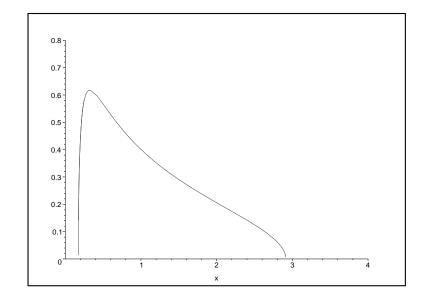
where

$$F'(x) = \frac{1}{2\pi xc} \sqrt{(b-x)(x-a)}, \quad a < x < b,$$

almost surely when $0 < c \leq 1$. (mean 1, standard dev.= $\sqrt{1+c}$)

$$a = (1 - \sqrt{c})^2$$
 and $b = (1 + \sqrt{c})^2$

c > 1: Dirac measure at x = 0 of mass $1 - \frac{1}{c}$.



Marchenko-Pastur interval

$$I_{MP} := [(1 - \sqrt{c})^2, (1 + \sqrt{c})^2].$$

No stray sample eigenvalues!

 $s_1^{(p)} \to (1 + \sqrt{c})^2$ (Geman 1980)

 $s^{(p)}_{\min\{p,n\}} \rightarrow (1 - \sqrt{c})^2$ (Silverstein 1985)

$$(s_{n+1}^{(p)} = \dots = s_p^{(p)} = 0 \text{ when } n < p)$$

Spiked population model (Johnstone)

 T_p =finite-rank perturbation of I.

For some fixed r,

 $U_T T_p U_T^{-1} = diag(t_1, t_2, \dots, t_r, 1, 1, 1, \dots, 1)$

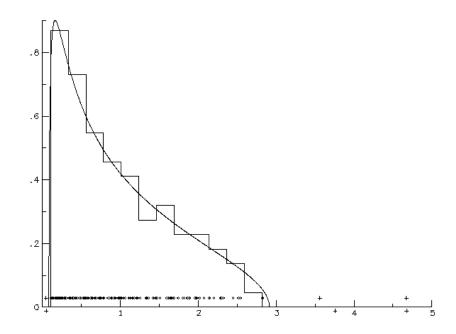
$$n=n(p)
ightarrow\infty$$
, $rac{p}{n}
ightarrow c$, r fixed

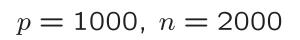
Limiting empirical distribution is same as before (Marchenko-Pastur)

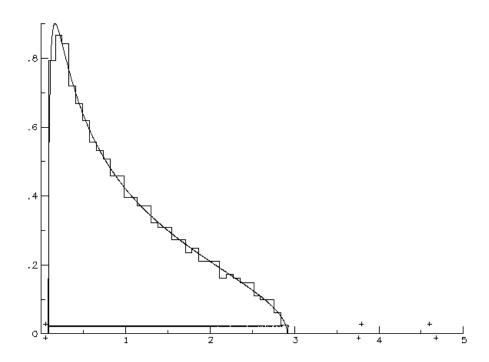
But there may be some sample eigenvalues outside the Marchenko-Pastur interval.

[Avellaneda + Park] Dynamic Risk Factor model for the dynamics of the cross correlation of a large financial system Real Gaussian, 3 non-unit eigenvalues $\frac{1}{10}$, 3, 4

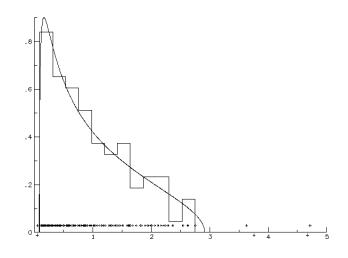
p = 100, n = 200



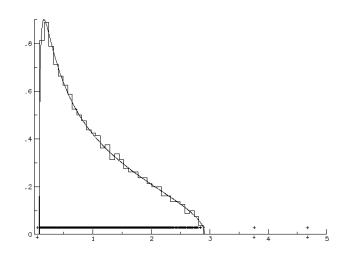




Bernoulli samples (values ± 1), p = 100, n = 200



Bernoulli p = 1000, n = 2000



Almost sure limits ($0 < c = \frac{p}{n} \le 1$) [B.+Silverstein] (from [Bai+Silverstein])

Samples of form $\vec{x} = T_p^{1/2} \vec{z}$, entries of \vec{z} are independent

Critical value of population eigenvalue = $1 \pm \sqrt{c}$: population eigenvalues in $[1 - \sqrt{c}, 1 + \sqrt{c}]$ have no effect on sample eigenvalues.

To each population eigenvalue outside $[1 - \sqrt{c}, 1 + \sqrt{c}]$, there is one corresponding sample eigenvalue outside $I_{MP} = [(1 - \sqrt{c})^2, (1 + \sqrt{c})^2]$.

Examples ($c = \frac{1}{2}$ **):** $1 + \sqrt{c} \simeq 1.70711$, $1 - \sqrt{c} \simeq 0.29289$

	$s_p^{(p)}$	$s_p^{(2)}$	$s_p^{(1)}$
theoretical	0.044	3.750	4.667
Gaussian $p = 1000$	0.044	3.784	4.591
Gaussian $p = 100$	0.040	3.554	4.662
Bernoulli $p = 1000$	0.046	3.757	4.666
Bernoulli $p = 100$	0.050	3.623	4.708

Limiting distributions: null case $T_p = I$

Complex Gaussian [Forrester 1993, Johansson 2000]

$$\lim_{n \to \infty} \mathbb{P}\left(\left(s_{\max} - (1 + \sqrt{c})^2 \right) \cdot \frac{c^{1/6} n^{2/3}}{(1 + \sqrt{c})^{4/3}} \le x \right) = F_0(x)$$

for an explicit distribution function $F_0(x)$

(Note: F_0 is usually denoted by F_2 or F_{GUE} . Here we reserve F_2 for something else.)

Non-Gaussian rv's [Soshnikov 2002] (c = 1)

Real Gaussian [Johnstone 2001, Tracy+Widom 1996]: different limiting distribution

Goal: Spiked model with complex Gaussian samples. Determine the critical value of population eigenvalue. Find the limiting mean and limiting distribution function. What is the proper scaling $(n^{2/3} \text{ vs } n^{1/2})$?

References

[Johnstone (2001) Ann. Stat.] Spiked models

[Péché (2003) Thesis] Complex Gaussian, s_{max} , lower bound of critical value + limiting distributions

[Baik+Ben Arous+Péché (2004) Ann. Prob. 33] Complex Gaussian, s_{max} , full phase transition, limiting distributions.

[Baik (2005) DMJ] Differential equations for limiting distributions.

[Baik+Silverstein (2004) JMVA] Real & complex, general rv, almost sure limits. [Z. Bai + Silverstein 1998, 1999]

[Paul 2004] Real Gaussian, above critical value, normal distribution for multiplicity 1 [Maida+Péché]

[Baik+Silverstein 2005] Real & complex, general rv, above critical value, limiting distribution for higher multiplicity

Things need to be done:

- limiting distribution of other rows for (sub-)critical case
- limiting distribution for other than complex Gaussian (e.g. real Gaussian) for (sub-)critical case

• other choices of T_p , such as $T_p = \begin{pmatrix} aI_{p/2} & 0 \\ 0 & bI_{p/2} \end{pmatrix}$ [Ben Arous+Péché] or 'random' T_p