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Limiting distribution functions

(a) t1 ≤ 1 +
√

c :

Fd(x) = det(1 −A(d)
x )

d = 0: Airy kernel

d > 0: a generalization

(b) t1 > 1 +
√

c:

Gd(x) = det(1 −H(d)
x )



Distribution Gd(x)

d = 1: N(0,1)

G1(x) =

∫ x

−∞
1√
2π

e−
1
2a2

da

d > 1: compare with the case Tp = Td = t1I when

p = d fixed, n → ∞,

Recall: eigenvalue density of Bp = Bd:

P(smax ≤ t) = c ·
∫ t

0
· · ·

∫ t

0
p(s)ds

where

p(s) = c ·
∏

j<k

(sj − sk)
2

d
∏

j=1

sn−d
j e−nt−1

1 sj

= c · ∆(s)2
∏

j

e−nf(sj)s−d
j

and

f(s) = t−1
1 s − log s

Critical point f ′(s) = t−1
1 − 1

s .

Hence sc = t1 and f ′′(t1) = t−2
1 .



For d fixed, n → ∞, setting n1/2

t1
(sj − t1) = aj,

lim
n→∞P

(

(smax − t1)
n1/2

t1
x

)

= c′ ·
∫ x

−∞
· · ·

∫ x

−∞
∆(y)2

d
∏

j=1

e
−1

2a2
j s−d

j

The largest eigenvalue of d× d GUE (Gaussian uni-

tary ensemble).

Compare with n, p → ∞, p
n → ∞,

lim
n→∞P

(

(

smax − (t1 +
ct1

t1 − 1
)
)n1/2

ν′
≤ x

)

= Gd(x)

with ν′ = t1
√

(t1−(1−√
c))(t1−(1+

√
c))

t1−1

Extra ct1
t1−1 in the mean is the effect of infinitely

many unit eigenvalues of Tp

But the limiting distribution Gd(x) turns out to be

the same as finite d case.



mean variance

G1 0 1

G2 1.12838 0.72676

G3 2.52811 0.61474

G4 3.06327 0.50426



Distribution Fd(x)

d = 0: F0(x) is the limiting distribution of the null

case

Universality in random matrix theory: F0 is also

the limiting distribution of GUE and other random

matrix models [Soshnikov, Bleher-Its, Deift+Gioev]

Note that the Fredholm determinant formula of F0

is not practical to plot the graph. Alternative for-

mula [Tracy+Widom]

Let u(x) be the solution of u′′ = 2u3+xu (Painlevé

II equation) satisfying u(x) ∼ −Ai(x) as x → +∞.

Then

F0(x) = e−
∫∞
x (y−x)u2(y)dy

F0(x) = 1 + O(e−cx3/2
) as x → +∞

F0(x) = O(e−c|x|3) as x → −∞



d > 0: Similar formula? [Baik]

Set E(x) = e
∫∞
x u(s)ds.

F1(x) = F0(x) E(x)

F2(x) = F0(x) E(x)2{1 + u(x + 2u2 + 2u′)}
F3(x) = F0(x) E(x)3{1 + 2u(x + 2u2 + 2u′)

+
1

2
(u2 − u′)(x + 2u2 + 2u′)2}
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F3 1.445. . . 1.21. . .



Observation: F1(x) = (FGOE(x))2

FGOE(x) is also the limiting distribution function

of the largest sample eigenvalue of real Gaussian

samples when Tp = I

Note: Consider two sets of eigenvalues from GOE,

and superimpose them. The largest of them con-

verges in distribution to F1 = F2
GOE and the second

largest converges to F0. [Baik+Rains]

(1) Define

Cw(u) =
1

2π

∫

ei(1
3a3+ua) 1

w + ia
da

Let

f(x;w) = 1 −
∫ ∞

x

(

1

1 −Ax
Cw

)

(u)Ai(u)du

Then Fd(x) = Fd(x; 0,0, . . . ,0) where

Fd(x;w1, . . . , wd) = F0(x) ·
det

(

(wj + ∂
∂x)

k−1f(x, wj)
)

d×d
∏

j<k(wk − wj)



(2) f(x, w) satisfies

−∂2f

∂x2
+

(

u′

u
− w

)

∂f

∂x
+ u2f = 0

and

− ∂2f

∂w2
+

(

u

wu + u′ + w2 − x

)

∂f

∂w

+

(

− u3

wu + u′ + u4 + xu2 − (u′)2
)

f = 0

And

f(x,0) = E(x),
∂f

∂x
(x,0) = −u(x) E(x),

∂f

∂w
(x,0) = (u + u′) E



Transition around t1 = 1 +
√

c

For j = 1, . . . , d,

tj = 1 +
√

c − c1/6(1 +
√

c)2/3wj

n2/3
,

then

lim
n→∞P

(

(smax − µ)
n2/3

ν
≤ x

)

= Fd(x;w1, . . . , wd)



Curious coincidence?

The distribution of smax describes other probabilis-

tic models: last passage percolation, queues in tan-

dem, interacting particle systems

[Johansson 2000 CMP] [Okounkov] [BBP, Baik]

Queues in tandem

n customers, p servers; each customer go through

all servers.

X(i, j)= service time for ith customer at jth server

Initial condition (N = n, k = p):

Q1

C1

C2

QN

CN

Q2



D(n, p) := departure time of nth customer from all

p queues

Service time: X(i, j) is exponential of rate t−1
j

It turned out for each n ≥ p,

D(n, p) =d smax(n, p)

Not from a mapping between models, but from in-

dependent computation of the distribution function

Hence even if a few servers are slower than others,

the total departure time is not changed (to the

second order) as long as the rate of the service

time is not slower by a factor larger than 1 +
√

c

(Symmetry: the results also apply to slow cus-

tomers)



Interacting particle systems in 1D

• discrete space Z, continuous time

• at most one particle at each site

• all jumps are to the right neighboring site

• when the right next site becomes vacant, the

particle waits random time then jumps

1 0 011 0

1 0 011 0011

1 0

01

11 0

• Initial configuration (· · · ,1,1,1,0,0,0, · · · )

jth particle jumps with rate t−1
j

=waiting time for a jump is exponential of rate tj

tj = 1 for all j: totally asymmetric simple exclu-

sion process



T(n, p):= time for the pth particle to perform total

n jumps (i.e. arrives at site N + 1 − k)

It turned out for n ≥ p,

T(n, p) =d smax(n, p)

Integrated density of particles at a given location

#(t; k) := number of particles to the right of the

site k at time t = integrated current

#(t; k) > p ⇔ xp(t) ≥ k + 1 ⇔ T(k + p, p) ≤ t



tj = 1 for all j

Global profile [Rost 1981] t → ∞
1

t
#(t; [ut]) → 1

4
(1 − u)2 =: I(u), |u| < 1.
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Current density: −I ′(u) = 1
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Fluctuation [Johansson 2000]: 1 − F0(−x)



A few slow cars

All but first a few cars jump at rate 1

r := smallest jump rate (slowest car)

Global profile: when r < 1,

1

t
#(t; [ut]) →







1
4(1 − u)2, −1 < u < 2r − 1

(1 − r)(r − u), 2r − 1 < u < r.
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Fluctuation: Fm(x) or Gm(x)



Slow start from stop

There is a symmetry of L(i, j) and L(j, i)

Cars jump with slower rates for the first j0 than the

subsequent jumps

Global profile: when r < 1,

1

t
#(t; [ut]) →







1
4(1 − u)2, 1 − 2r < u < 1

r − r2 − ru, −r < u < 1 − 2r.
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