Eigenvalues of large sample covariance matrices; Lecture 4

Jinho Baik

University of Michigan, Ann Arbor

March 2006

Limiting distribution functions

(a) $t_1 \leq 1 + \sqrt{c}$: $F_d(x) = \det(1 - \mathcal{A}_x^{(d)})$ d = 0: Airy kernel

d > 0: a generalization

(b) $t_1 > 1 + \sqrt{c}$:

$$G_d(x) = \det(1 - \mathcal{H}_x^{(d)})$$

Distribution $G_d(x)$

d = 1: N(0, 1)

$$G_1(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}a^2} da$$

d>1: compare with the case $T_p=T_d=t_1I$ when p=d fixed, $n\rightarrow\infty$,

Recall: eigenvalue density of $B_p = B_d$:

$$\mathbb{P}(s_{\max} \le t) = c \cdot \int_0^t \cdots \int_0^t p(s) ds$$

where

$$p(s) = c \cdot \prod_{j < k} (s_j - s_k)^2 \prod_{j=1}^d s_j^{n-d} e^{-nt_1^{-1}s_j}$$
$$= c \cdot \Delta(s)^2 \prod_j e^{-nf(s_j)} s_j^{-d}$$

and

$$f(s) = t_1^{-1}s - \log s$$

Critical point $f'(s) = t_1^{-1} - \frac{1}{s}$. Hence $s_c = t_1$ and $f''(t_1) = t_1^{-2}$.

For
$$d$$
 fixed, $n \to \infty$, setting $\frac{n^{1/2}}{t_1}(s_j - t_1) = a_j$,

$$\lim_{n \to \infty} \mathbb{P}\left((s_{\max} - t_1)\frac{n^{1/2}}{t_1}x\right)$$

$$= c' \cdot \int_{-\infty}^x \cdots \int_{-\infty}^x \Delta(y)^2 \prod_{j=1}^d e^{-\frac{1}{2}a_j^2}s_j^{-d}$$

The largest eigenvalue of $d \times d$ GUE (Gaussian unitary ensemble).

Compare with
$$n, p \to \infty$$
, $\frac{p}{n} \to \infty$,

$$\lim_{n \to \infty} \mathbb{P}\left(\left(s_{\max} - (t_1 + \frac{ct_1}{t_1 - 1})\right) \frac{n^{1/2}}{\nu'} \le x\right) = G_d(x)$$
with $\nu' = \frac{t_1\sqrt{(t_1 - (1 - \sqrt{c}))(t_1 - (1 + \sqrt{c}))}}{t_1 - 1}$

Extra $\frac{ct_1}{t_1-1}$ in the mean is the effect of infinitely many unit eigenvalues of T_p

But the limiting distribution $G_d(x)$ turns out to be the same as finite d case.

	mean	variance
G_1	0	1
<i>G</i> ₂	1.12838	0.72676
G ₃	2.52811	0.61474
G_4	3.06327	0.50426

Distribution $F_d(x)$

d = 0: $F_0(x)$ is the limiting distribution of the null case

Universality in random matrix theory: F_0 is also the limiting distribution of GUE and other random matrix models [Soshnikov, Bleher-Its, Deift+Gioev]

Note that the Fredholm determinant formula of F_0 is not practical to plot the graph. Alternative formula [Tracy+Widom]

Let u(x) be the solution of $u'' = 2u^3 + xu$ (Painlevé II equation) satisfying $u(x) \sim -\operatorname{Ai}(x)$ as $x \to +\infty$. Then

$$F_0(x) = e^{-\int_x^\infty (y-x)u^2(y)dy}$$

$$F_0(x) = 1 + O(e^{-cx^{3/2}}) \text{ as } x \to +\infty$$

$$F_0(x) = O(e^{-c|x|^3}) \text{ as } x \to -\infty$$

d > 0: Similar formula? [Baik]

Set $\mathcal{E}(x) = e^{\int_x^\infty u(s)ds}$. $F_1(x) = F_0(x) \mathcal{E}(x)$ $F_2(x) = F_0(x) \mathcal{E}(x)^2 \{1 + u(x + 2u^2 + 2u')\}$ $F_3(x) = F_0(x) \mathcal{E}(x)^3 \{1 + 2u(x + 2u^2 + 2u') + \frac{1}{2}(u^2 - u')(x + 2u^2 + 2u')^2\}$

Observation: $F_1(x) = (F_{GOE}(x))^2$

 $F_{GOE}(x)$ is also the limiting distribution function of the largest sample eigenvalue of *real* Gaussian samples when $T_p = I$

Note: Consider two sets of eigenvalues from GOE, and superimpose them. The largest of them converges in distribution to $F_1 = F_{GOE}^2$ and the second largest converges to F_0 . [Baik+Rains]

(1) Define

$$C_w(u) = \frac{1}{2\pi} \int e^{i(\frac{1}{3}a^3 + ua)} \frac{1}{w + ia} da$$

Let

$$f(x;w) = 1 - \int_x^\infty \left(\frac{1}{1 - A_x}C_w\right)(u)\operatorname{Ai}(u)du$$

Then $F_d(x) = F_d(x; 0, 0, ..., 0)$ where

 $F_d(x; w_1, \dots, w_d) = F_0(x) \cdot \frac{\det\left((w_j + \frac{\partial}{\partial x})^{k-1} f(x, w_j)\right)_{d \times d}}{\prod_{j < k} (w_k - w_j)}$

(2)
$$f(x, w)$$
 satisfies

$$-\frac{\partial^2 f}{\partial x^2} + \left(\frac{u'}{u} - w\right)\frac{\partial f}{\partial x} + u^2 f = 0$$

and

$$-\frac{\partial^2 f}{\partial w^2} + \left(\frac{u}{wu+u'} + w^2 - x\right)\frac{\partial f}{\partial w} + \left(-\frac{u^3}{wu+u'} + u^4 + xu^2 - (u')^2\right)f = 0$$

And

$$f(x,0) = \mathcal{E}(x), \quad \frac{\partial f}{\partial x}(x,0) = -u(x) \mathcal{E}(x),$$
$$\frac{\partial f}{\partial w}(x,0) = (u+u') \mathcal{E}$$

Transition around $t_1 = 1 + \sqrt{c}$

For
$$j = 1, \dots, d$$
,

$$t_j = 1 + \sqrt{c} - \frac{c^{1/6}(1 + \sqrt{c})^{2/3}w_j}{n^{2/3}},$$

then

$$\lim_{n \to \infty} \mathbb{P}\left((s_{\max} - \mu) \frac{n^{2/3}}{\nu} \le x \right) = F_d(x; w_1, \dots, w_d)$$

Curious coincidence?

The distribution of s_{max} describes other probabilistic models: last passage percolation, queues in tandem, interacting particle systems

[Johansson 2000 CMP] [Okounkov] [BBP, Baik]

Queues in tandem

 \boldsymbol{n} customers, \boldsymbol{p} servers; each customer go through all servers.

X(i,j) = service time for *i*th customer at *j*th server

Initial condition (N = n, k = p):

D(n, p) := departure time of nth customer from all p queues

Service time: X(i, j) is exponential of rate t_i^{-1}

It turned out for each $n \ge p$,

 $D(n,p) =^{d} s_{max}(n,p)$

Not from a mapping between models, but from independent computation of the distribution function

Hence even if a few servers are slower than others, the total departure time is not changed (to the second order) as long as the rate of the service time is not slower by a factor larger than $1 + \sqrt{c}$

(Symmetry: the results also apply to slow customers)

Interacting particle systems in 1D

- \bullet discrete space $\mathbb Z,$ continuous time
- at most one particle at each site
- all jumps are to the right neighboring site
- when the right next site becomes vacant, the particle waits random time then jumps

• Initial configuration $(\cdots, 1, 1, 1, 0, 0, 0, \cdots)$

*j*th particle jumps with rate t_j^{-1} =waiting time for a jump is exponential of rate t_j

 $t_j = 1$ for all *j*: totally asymmetric simple exclusion process

T(n,p):= time for the *p*th particle to perform total *n* jumps (i.e. arrives at site N + 1 - k)

It turned out for $n \ge p$,

$$T(n,p) =^d s_{\max}(n,p)$$

Integrated density of particles at a given location

#(t; k) := number of particles to the right of the site k at time t = integrated current

 $\#(t;k) > p \Leftrightarrow x_p(t) \ge k+1 \Leftrightarrow T(k+p,p) \le t$

$$t_j = 1$$
 for all j

Global profile [Rost 1981] $t \to \infty$

$$\frac{1}{t} \#(t; [ut]) \to \frac{1}{4} (1-u)^2 =: I(u), \quad |u| < 1.$$

Current density: $-I'(u) = \frac{1}{2}(1-u), -1 < u < 1.$

Fluctuation [Johansson 2000]: $1 - F_0(-x)$

A few slow cars

All but first a few cars jump at rate 1

r := smallest jump rate (slowest car)

Global profile: when r < 1,

$$\frac{1}{t} \#(t; [ut]) \to \begin{cases} \frac{1}{4}(1-u)^2, & -1 < u < 2r - 1 \\ (1-r)(r-u), & 2r - 1 < u < r. \end{cases}$$

Fluctuation: $F_m(x)$ or $G_m(x)$

Slow start from stop

There is a symmetry of L(i, j) and L(j, i)

Cars jump with slower rates for the first j_0 than the subsequent jumps

Global profile: when r < 1,

$$\frac{1}{t} \#(t; [ut]) \to \begin{cases} \frac{1}{4}(1-u)^2, & 1-2r < u < 1\\ r-r^2 - ru, & -r < u < 1-2r. \end{cases}$$

