Eigenvalues of large sample covariance matrices; Lecture 4

Jinho Baik
University of Michigan, Ann Arbor

March 2006

Limiting distribution functions

(a) $t_{1} \leq 1+\sqrt{c}$:

$$
F_{d}(x)=\operatorname{det}\left(1-\mathcal{A}_{x}^{(d)}\right)
$$

$d=0$: Airy kernel
$d>0$: a generalization
(b) $t_{1}>1+\sqrt{c}$:

$$
G_{d}(x)=\operatorname{det}\left(1-\mathcal{H}_{x}^{(d)}\right)
$$

Distribution $G_{d}(x)$

$d=1: \quad N(0,1)$

$$
G_{1}(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} a^{2}} d a
$$

$d>1$: compare with the case $T_{p}=T_{d}=t_{1} I$ when $p=d$ fixed, $n \rightarrow \infty$,

Recall: eigenvalue density of $B_{p}=B_{d}$:

$$
\mathbb{P}(s \max \leq t)=c \cdot \int_{0}^{t} \cdots \int_{0}^{t} p(s) d s
$$

where

$$
\begin{aligned}
p(s) & =c \cdot \prod_{j<k}\left(s_{j}-s_{k}\right)^{2} \prod_{j=1}^{d} s_{j}^{n-d} e^{-n t_{1}^{-1} s_{j}} \\
& =c \cdot \Delta(s)^{2} \prod_{j} e^{-n f\left(s_{j}\right)} s_{j}^{-d}
\end{aligned}
$$

and

$$
f(s)=t_{1}^{-1} s-\log s
$$

Critical point $f^{\prime}(s)=t_{1}^{-1}-\frac{1}{s}$.
Hence $s_{c}=t_{1}$ and $f^{\prime \prime}\left(t_{1}\right)=t_{1}^{-2}$.

For d fixed, $n \rightarrow \infty$, setting $\frac{n^{1 / 2}}{t_{1}}\left(s_{j}-t_{1}\right)=a_{j}$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mathbb{P}\left(\left(s_{\max }-t_{1}\right) \frac{n^{1 / 2}}{t_{1}} x\right) \\
& \quad=c^{\prime} \cdot \int_{-\infty}^{x} \cdots \int_{-\infty}^{x} \Delta(y)^{2} \prod_{j=1}^{d} e^{-\frac{1}{2} a_{j}^{2}} s_{j}^{-d}
\end{aligned}
$$

The largest eigenvalue of $d \times d$ GUE (Gaussian unitary ensemble).

Compare with $n, p \rightarrow \infty, \frac{p}{n} \rightarrow \infty$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left(s \max -\left(t_{1}+\frac{c t_{1}}{t_{1}-1}\right)\right) \frac{n^{1 / 2}}{\nu^{\prime}} \leq x\right)=G_{d}(x)
$$

with $\nu^{\prime}=\frac{t_{1} \sqrt{\left(t_{1}-(1-\sqrt{c})\right)\left(t_{1}-(1+\sqrt{c})\right)}}{t_{1}-1}$

Extra $\frac{c t_{1}}{t_{1}-1}$ in the mean is the effect of infinitely many unit eigenvalues of T_{p}

But the limiting distribution $G_{d}(x)$ turns out to be the same as finite d case.

	mean	variance
G_{1}	0	1
G_{2}	1.12838	0.72676
G_{3}	2.52811	0.61474
G_{4}	3.06327	0.50426

Distribution $F_{d}(x)$
$d=0: F_{0}(x)$ is the limiting distribution of the null case

Universality in random matrix theory: F_{0} is also the limiting distribution of GUE and other random matrix models [Soshnikov, Bleher-Its, Deift+Gioev]

Note that the Fredholm determinant formula of F_{0} is not practical to plot the graph. Alternative formula [Tracy+Widom]

Let $u(x)$ be the solution of $u^{\prime \prime}=2 u^{3}+x u$ (Painlevé II equation) satisfying $u(x) \sim-\operatorname{Ai}(x)$ as $x \rightarrow+\infty$. Then

$$
F_{0}(x)=e^{-\int_{x}^{\infty}(y-x) u^{2}(y) d y}
$$

$$
\begin{aligned}
& F_{0}(x)=1+O\left(e^{-c x^{3 / 2}}\right) \text { as } x \rightarrow+\infty \\
& F_{0}(x)=O\left(e^{-c|x|^{3}}\right) \text { as } x \rightarrow-\infty
\end{aligned}
$$

$d>0$: Similar formula? [Baik]

Set $\mathcal{E}(x)=e^{\int_{x}^{\infty} u(s) d s}$.

$$
\begin{aligned}
F_{1}(x) & = \\
F_{0}(x) & (x) \mathcal{E}(x) \\
F_{3}(x)= & F_{0}(x) \mathcal{E}(x)^{2}\left\{1+u\left(x+2 u^{2}+2 u^{\prime}\right)\right\} \\
& \quad+\frac{1}{2}(x)^{3}\left\{1+2 u\left(x+2 u^{2}-u^{\prime}\right)\left(x+2 u^{\prime}\right)\right. \\
& \left.\left.2 u^{2}+2 u^{\prime}\right)^{2}\right\}
\end{aligned}
$$

	mean	standard deviation
F_{0}	$-1.771 \ldots$	$0.90 \ldots$
F_{1}	$-0.494 \ldots$	$1.11 \ldots$
F_{2}	$0.543 \ldots$	$1.18 \ldots$
F_{3}	$1.445 \ldots$	$1.21 \ldots$

Observation: $F_{1}(x)=\left(F_{G O E}(x)\right)^{2}$
$F_{G O E}(x)$ is also the limiting distribution function of the largest sample eigenvalue of real Gaussian samples when $T_{p}=I$

Note: Consider two sets of eigenvalues from GOE, and superimpose them. The largest of them converges in distribution to $F_{1}=F_{G O E}^{2}$ and the second largest converges to F_{0}. [Baik+Rains]
(1) Define

$$
C_{w}(u)=\frac{1}{2 \pi} \int e^{i\left(\frac{1}{3} a^{3}+u a\right)} \frac{1}{w+i a} d a
$$

Let

$$
f(x ; w)=1-\int_{x}^{\infty}\left(\frac{1}{1-\mathcal{A}_{x}} C_{w}\right)(u) \operatorname{Ai}(u) d u
$$

Then $F_{d}(x)=F_{d}(x ; 0,0, \ldots, 0)$ where
$F_{d}\left(x ; w_{1}, \ldots, w_{d}\right)=F_{0}(x) \cdot \frac{\operatorname{det}\left(\left(w_{j}+\frac{\partial}{\partial x}\right)^{k-1} f\left(x, w_{j}\right)\right)_{d \times d}}{\Pi_{j<k}\left(w_{k}-w_{j}\right)}$
(2) $f(x, w)$ satisfies

$$
-\frac{\partial^{2} f}{\partial x^{2}}+\left(\frac{u^{\prime}}{u}-w\right) \frac{\partial f}{\partial x}+u^{2} f=0
$$

and

$$
\begin{aligned}
& -\frac{\partial^{2} f}{\partial w^{2}}+\left(\frac{u}{w u+u^{\prime}}+w^{2}-x\right) \frac{\partial f}{\partial w} \\
& \quad+\left(-\frac{u^{3}}{w u+u^{\prime}}+u^{4}+x u^{2}-\left(u^{\prime}\right)^{2}\right) f=0
\end{aligned}
$$

And

$$
\begin{aligned}
& f(x, 0)=\mathcal{E}(x), \quad \frac{\partial f}{\partial x}(x, 0)=-u(x) \mathcal{E}(x), \\
& \frac{\partial f}{\partial w}(x, 0)=\left(u+u^{\prime}\right) \mathcal{E}
\end{aligned}
$$

Transition around $t_{1}=1+\sqrt{c}$

For $j=1, \ldots, d$,

$$
t_{j}=1+\sqrt{c}-\frac{c^{1 / 6}(1+\sqrt{c})^{2 / 3} w_{j}}{n^{2 / 3}}
$$

then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left((s \max -\mu) \frac{n^{2 / 3}}{\nu} \leq x\right)=F_{d}\left(x ; w_{1}, \ldots, w_{d}\right)
$$

Curious coincidence?

The distribution of s max describes other probabilistic models: last passage percolation, queues in tandem, interacting particle systems
[Johansson 2000 CMP] [Okounkov] [BBP, Baik]

Queues in tandem
n customers, p servers; each customer go through all servers.
$X(i, j)=$ service time for i th customer at j th server

Initial condition $(N=n, k=p)$:

$\mathrm{D}(\mathbf{n}, \mathbf{p}):=$ departure time of nth customer from all p queues

Service time: $X(i, j)$ is exponential of rate t_{j}^{-1}
It turned out for each $n \geq p$,

$$
D(n, p)={ }^{d} s_{\max }(n, p)
$$

Not from a mapping between models, but from independent computation of the distribution function

Hence even if a few servers are slower than others, the total departure time is not changed (to the second order) as long as the rate of the service time is not slower by a factor larger than $1+\sqrt{c}$
(Symmetry: the results also apply to slow customers)

Interacting particle systems in 1D

- discrete space \mathbb{Z}, continuous time
- at most one particle at each site
- all jumps are to the right neighboring site
- when the right next site becomes vacant, the particle waits random time then jumps

$$
\begin{array}{lllllllllll}
1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}
$$

- Initial configuration ($\cdots, 1,1,1,0,0,0, \cdots)$
j th particle jumps with rate t_{j}^{-1}
$=$ waiting time for a jump is exponential of rate t_{j}
$t_{j}=1$ for all j : totally asymmetric simple exclusion process
$T(n, p):=$ time for the p th particle to perform total n jumps (i.e. arrives at site $N+1-k$)

It turned out for $n \geq p$,

$$
T(n, p)={ }^{d} s_{\max }(n, p)
$$

Integrated density of particles at a given location
$\#(t ; k):=$ number of particles to the right of the site k at time $t=$ integrated current
$\#(t ; k)>p \Leftrightarrow x_{p}(t) \geq k+1 \Leftrightarrow T(k+p, p) \leq t$

$\underline{t_{j}=1 \text { for all } j}$

Global profile [Rost 1981] $t \rightarrow \infty$

$$
\frac{1}{t} \#(t ;[u t]) \rightarrow \frac{1}{4}(1-u)^{2}=: I(u), \quad|u|<1 .
$$

Current density: $-I^{\prime}(u)=\frac{1}{2}(1-u),-1<u<1$.

Fluctuation [Johansson 2000]: $1-F_{0}(-x)$

A few slow cars

All but first a few cars jump at rate 1

$r:=$ smallest jump rate (slowest car)

Global profile: when $r<1$,
$\frac{1}{t} \#(t ;[u t]) \rightarrow \begin{cases}\frac{1}{4}(1-u)^{2}, & -1<u<2 r-1 \\ (1-r)(r-u), & 2 r-1<u<r .\end{cases}$

Fluctuation: $F_{m}(x)$ or $G_{m}(x)$

Slow start from stop

There is a symmetry of $L(i, j)$ and $L(j, i)$

Cars jump with slower rates for the first j_{0} than the subsequent jumps

Global profile: when $r<1$,

$$
\frac{1}{t} \#(t ;[u t]) \rightarrow \begin{cases}\frac{1}{4}(1-u)^{2}, & 1-2 r<u<1 \\ r-r^{2}-r u, & -r<u<1-2 r\end{cases}
$$

