Semicircle Law for Hadamard Products

Z.D. Bai ${ }^{1,2, *}$ and L.X. Zhang ${ }^{2}$
${ }^{1}$ College of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China
${ }^{2}$ Department of Statistics and Applied Probability, National University of Singapore, Singapore

In this paper, assuming $p / n \rightarrow 0$ as $n \rightarrow \infty$, we will prove the weak and strong convergence to the semicircle law of the empirical spectral distribution of the Hadamard product of a normalized sample covariance matrix and a sparsing matrix, which is of the form $A_{p}=\frac{1}{\sqrt{n p}}\left(X_{m, n} X_{m, n}^{*}-\sigma^{2} n I_{m}\right) \circ D_{m}$, where the matrices $X_{m, n}$ and D_{m} are independent and the entries of $X_{m, n}(m \times n)$ are independent, the matrix D_{m} $(m \times m)$ is Hermitian with independent entries above and on the diagonal, p is the sum of the second moments of the row (and column) entries of D_{m}, and "o" denotes the Hadamard product of matrices.

[^0]
[^0]: *The work of this author was supported by NSFC Grant 10571020

