Semicircle Law for Hadamard Products

Z.D. $Bai^{1,2,*}$ and L.X. $Zhang^2$

¹ College of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

² Department of Statistics and Applied Probability, National University of Singapore, Singapore

In this paper, assuming $p/n \to 0$ as $n \to \infty$, we will prove the weak and strong convergence to the semicircle law of the empirical spectral distribution of the Hadamard product of a normalized sample covariance matrix and a sparsing matrix, which is of the form $A_p = \frac{1}{\sqrt{np}} (X_{m,n} X_{m,n}^* - \sigma^2 n I_m) \circ D_m$, where the matrices $X_{m,n}$ and D_m are independent and the entries of $X_{m,n}$ $(m \times n)$ are independent, the matrix D_m $(m \times m)$ is Hermitian with independent entries above and on the diagonal, p is the sum of the second moments of the row (and column) entries of D_m , and " \circ " denotes the Hadamard product of matrices.

^{*}The work of this author was supported by NSFC Grant 10571020 $\,$