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The Replica Method 1

Part I:

The Replica Method
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The Replica Method 2

Thermodynamics vs. Wireless Communications

Since Boltzmann, physicists have studied the behavior of systems with interactions of
many particles.

Particular correspondences can be drawn between spin glasses (amorph magnetic ma-
terials, e.g. the magnetic surface of a hard disk drive) and communication systems.
The binary nature of the bits corresponds to the quantum-mechanical constraints of
electron spins to ±1

2.

Spin glass theory is both very rich and very complicated. Various methods have been
proposed by physicists to analyze them:

• The replica method • The TAP approach

• The cavity method • Gauge Theory

• . . .

This course will be restricted in scope to the replica method.
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Spin Glasses

Energy function (Hamiltonian):

−
∑

i

∑

j<i

rijxixj −
∑

i

hixi
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Spin Glasses

h
external magnetic field

Energy function (Hamiltonian):

−
∑

i

∑

j<i

rijxixj −
∑

i

hixi
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Optimal Detection of Vector Channel

y = Sx + n
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Optimal Detection of Vector Channel

y = Sx + n

Best estimate for transmitted data:

x̂ = argmin
x∈{±1}K

||y − Sx||

argmin
x∈{±1}K

−1

2
x†Rx − h†x + y†y with

R = −2S†S

h = 2S†y
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Optimal Detection of Vector Channel
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Minimization of the energy function of a spin glass!

The Replica Method and Multistage Detection in Wireless Communications c© Ralf R. Müller 2005-2006



The Replica Method 5

A Phase Transition in Random CDMA
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optimal detection K = 2N ≫ 1
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Large Systems

?

/

C
K×K

C

C
K

O
(
K2
)

interactions

↑

O(K) microscopic objects

↓
O(1) macroscopic variables

Macroscopic variables are self-averaging.
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Boltzmann Distribution

The Thermodynamic Equilibrium maximizes the entropy

H(X) = −
∑

i

Pr(xi) log Pr(xi)

for given constant energy

E(X) =
∑

i

||xi||Pr(xi)

yielding the Boltzmann distribution

Pr(xi) =
e−

1
T ||xi||

∑

i

e−
1
T ||xi||

.
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Free Energy

Since the energy is constant, we can minimize the free energy

F (X)
△
= E(X) − TH(X)

instead of maximizing entropy. This is often less complicated.

With the Boltzmann distribution, the free energy is given by

F (X) = −T log

[
∑

i

e−
1
T ||xi||

]

.

It depends only on the partition function.

The free energy is self-averaging.
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Energy vs. Entropy

The following two tasks are dual:

• Minimize the energy for fixed entropy

• Maximize the entropy for fixed energy

Consider free energy
F (X) = E(X) − TH(X)

and read the temperature (or its inverse) as Lagrange multiplier.

For the dual problem have

− 1

T
F (X) = H(X) − 1

T
E(X)
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The Meaning of the Energy Function

In physics, the energy function varies with the force causing the potential.

Theoretically speaking, the choice of the energy function is arbitrary as long as it is
uniformly bounded from below.

Nature maximizes entropy for a given energy.

In communications engineering, the energy function is the metric used by the decoder.

The decoder does the dual job of nature, to minimize the metric for a given output
entropy.

Since the decoder dictates the thermodynamics of our toy universe, the same holds
true if the decoder uses a suboptimal (wrong) or insufficient metric, perhaps due to
lack of knowledge about the channel state.

The free choice of the energy function allows to analyze mismatched receivers.
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LMMSE Detector with Mismatched Powers
Theorem: Let (U1, . . . , UK) be an arbitrary sequence of non-negative numbers such

that, as K → ∞, the empirical joint cdf of the pairs {(Uk, Pk) : k = 1, . . . , K} con-

verges weakly to a given non-random cdf F (u, p). Moreover, let the Pks are uniformly

bounded above and the Uks are uniformly bounded below by a positive number for

all K. Then, the output SINR of the mismatched LMMSE detector assuming pow-

ers {Uk} instead of the true powers {Pk} in the standard random spreading model

converges as K = βN → ∞ almost surely to

ηPk

1 + β

∫
u

(1 + uη)2
dF (u, p)

1 + β

∫
p

(1 + uη)2
dF (u, p)

where η =

(

1 + β

∫
u

1 + uη
dF (u, p)

)−1

is the multiuser efficiency of an LMMSE detector of a “virtual channel” having powers

given by {Uk} instead of {Pk}.
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Average Free Energy

When analyzing a random system, we evaluate the average
free energy

as Shannon analyzed the average performance of all codes.
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Free Energy for a Random Parameter

Consider a self-averaging random parameter, e.g. a spreading matrix.

F (X|yj) = E
Y

F (X|Y )

= −T E
Y

log

[
∑

i

e−
1
T ||xi||

]

The energy function depends on the random parameter yj.

The expectation of a logarithm is a hard problem.
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Replica Continuity

E
Y

log(Y ) = lim
n→0

∂

∂n
E
Y

Y n

Evalute nth moments for integer n and assume analytic continuity for the limit.

More general, we have

E
Y

log

∫R f(x, Y )dx = lim
n→0

∂

∂n
E
Y





∫R f(x, Y )dx





n
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Replica Continuity

E
Y

log

∫R f(x, Y )dx = lim
n→0

∂

∂n
E
Y





∫R f(x, Y )dx





n

With 



∫R g(x)dx





n

=
n∏

a=1

∫R g(xa)dxa

we finally get

E
Y

log

∫R f(x, Y )dx = lim
n→0

∂

∂n
E
Y

n∏

a=1

∫R f(xa, Y )dxa
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Replica Symmetry

Throughout the calaculations, we solve integrals of the form

I =
1

K
log

∫

R2

eKf(x1,x2)dx1dx2 → max
x1,x2

f(x1, x2)

for K → ∞ by saddle point integration.

If the maximization is too tedious, we assume replica symmetry:

max
x1,x2

f(x1, x2) = max
x

f(x, x)

Replica symmetry is a strong assumption and not always valid.
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A Counterexample to Replica Symmetry
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  )
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f(x1, x2) = − sin(x1x2)e
−x2

1−x2
2

However, |f(x1, x2)| is replica symmetric.
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Phase Transitions

If the final equations allow for multiple solutions, the correct solution is identified by
minimizing the free energy.
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Phase Transitions and Neural Networks
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Individually Optimum Maximum Likelihood Detector

Let A = {+1;−1}, the chips of any user be i.i.d. random variables with finite variance
and vanishing odd moments, the powers of all users identical, and N,K → ∞, but
β = K/N fixed. Then, the multiuser efficiency is a solution to the fixed point equation

1

ηIO
= 1 +

β

σ2
n



1 −
√

ηIO

2πσ2
n

∫R tanh

(
ηIO

σ2
n

x

)

exp

(

−ηIO(x − 1)2

2σ2
n

)

dx



 .

In case the fixed point equation has multiple solutions, the correct one is that solution
for which the term

ηIO

σ2
n

+
ηIO − log ηIO

2β
−
√

ηIO

2πσ2
n

∫R log

[

cosh

(
ηIO

σ2
n

x

)]

exp

(

−ηIO(x − 1)2

2σ2
n

)

dx

is smallest.
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Example for Replica Calculations

Consider the analysis of an asymptotically large CDMA systems with arbitrary joint
distribution of the variances of the random chips. It includes the practically imporant
case of multi-carrier CDMA transmission with users of arbitrary powers in frequency-
selective fading as a special case.

The vector-valued, real additive white Gaussian noise channel is characterized by the
conditional pdf

py|x,H (y, x, H) =
e
− 1

2σ2
0
(y−Hx)T(y−Hx)

(2πσ2
0)

N
2

. (1)

Moreover, let the detector be characterized by the assumed conditional probability
distribution

p̆y|x,H (y,x,H) =
e
− 1

2σ2 (y−Hx)T(y−Hx)

(2πσ2)
N
2

and the assumed prior distribution p̆x (x).
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Let the entries of H be independent zero-mean with vanishing odd order moments
and variances w2

ck/N for row c and column k.

Applying Bayes’ law, we find

p̆x|y,H (x, y,H) =
e
− 1

2σ2 (y−Hx)T(y−Hx)+log p̆x(x)

∫
e
− 1

2σ2 (y−Hx)T(y−Hx)
dP̆x (x)

.

Since the Boltzmann distribution holds for any temperature T , we set w.l.o.g. T = 1
and find the appropriate energy function to be

||x|| =
1

2σ2
(y − Hx)T (y − Hx) − log p̆x (x) . (2)

This choice of the energy function ensures that the thermodynamic equilibrium models
the detector defined by the assumed conditional and prior distributions.
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With (1) and (2), the definition of free energy, and replica continuity, we find for the
free energy per user

F(x)

K
= − 1

K
E
H

∫ ∫RN

log

(∫

e
− 1

2σ2 (y−Hx)T(y−Hx)
dP̆x (x)

)
e
− 1

2σ2
0
(y−Hx)T(y−Hx)

(2πσ2
0)

N
2

dydPx (x)

= − 1

K
lim
n→0

∂

∂n
log E

H

∫ ∫RN

(∫

e
− 1

2σ2 (y−Hx)T(y−Hx)
dP̆x (x)

)n

e
− 1

2σ2
0
(y−Hx)T(y−Hx)

(2πσ2
0)

N
2

dydPx (x)

= − 1

K
lim
n→0

∂

∂n
log

∫

∫RN

E
H

n∏

a=0

e
− 1

2σ2
a
(y−Hxa)T(y−Hxa)

dy

(2πσ2
0)

N
2

n∏

a=0

dPa (xa)

︸ ︷︷ ︸
△
=Ξn

(3)

with σa = σ, ∀a ≥ 1, P0 (x) = Px (x), and Pa (x) = P̆x (x) ,∀a ≥ 1.
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The integral in (3) is given by

Ξn =

∫ N∏

c=1

∫R E
H

n∏

a=0

exp



− 1

2σ2
a

(

yc −
K∑

k=1

hckxak

)2


 dyc

√
2πσ0

n∏

a=0

dPa (xa) , (4)

with yc, xak, and hck denoting the cth component of y, the kth component of xa, and
the (c, k)th entry of H , respectively. The integrand depends on xa only through

vac
△
=

1√
β

K∑

k=1

hckxak, a = 0, . . . , n.

These quantities vac can be regarded, in the limit K → ∞ as jointly Gaussian random
variables with zero mean and covariances

Qab[c] = E
H

vacvbc =
1

K
xa

(c)•xb (5)

where the parametric inner products are defined by xa

(c)•xb
△
=

K∑

k=1

xakxbkw
2
ck.
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In order to perform the integration in (4), the K(n + 1)-dimensional space spanned by
the replicas and the vector x0 is split into subshells

S{Q[·]} △
=

{

x0, . . . , xn

∣
∣
∣
∣
xa

(c)•xb = KQab[c]

}

where the inner product of two different vectors xa and xb is constant.1

The splitting of the K(n+1)-dimensional space is depending on the chip time c. With
this splitting of the space, we find2

Ξn =

∫

RN(n+1)(n+2)/2

eKI{Q[·]}
N∏

c=1

eG{Q[c]}
∏

a≤b

dQab[c], (6)

with appropriate choices of the function I{Q[·]} and G {Q[c]}.

1The notation f{Q[·]} expresses the dependency of the function f(·) on all Qab[c], 0 ≤ a ≤ b ≤ n, 1 ≤ c ≤ N .
2The notation

∏

a≤b
is used as shortcut for

∏n

a=0

∏n

b=a
.
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In (6),

eKI{Q[·]} =

∫



∏

a≤b

N∏

c=1

δ




xa

(c)•xb

N
− βQab[c]









n∏

a=0

dPa(xa)

denotes the probability weight of the subshell and

eG{Q[c]} =
1√

2πσ0

∫R E
H

n∏

a=0

exp

[

− β

2σ2
a

(
yc√
β
− vac{Q[c]}

)2
]

dyc + O(K−1).

This procedure is a change of integration variables in multiple dimensions where the
integration of an exponential function over the replicas has been replaced by integration
over the variables Qab[·]. In the following the blue and green terms in (6) are evaluated
separately.
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First, we calculate the measure eKI{Q[·]}. As for some t ∈ R , we have the Fourier
expansion of the Dirac measure

δ




xa

(c)•xb

N
− βQab[c]



 =
1

2πj

∫

J

exp



Q̃ab[c]




xa

(c)•xb

N
− βQab[c]







 dQ̃ab[c]

with J = (t − j∞; t + j∞), the measure eKI{Q[·]} can be expressed as

eKI{Q[·]} =

∫







N∏

c=1

∏

a≤b

∫

J

e
Q̃ab[c]




xa

(c)
• xb
N −βQab[c]





dQ̃ab[c]

2πj







n∏

a=0

dPa(xa)

=

∫

JN(n+2)(n+1)/2

e
−β

N∑

c=1

∑

a≤b
Q̃ab[c]Qab[c]

(
K∏

k=1

Mk

{
Q̃[·]
}

)
N∏

c=1

∏

a≤b

dQ̃ab[c]

2πj
(7)

with

Mk

{
Q̃[·]
}

=

∫

exp




1

N

∑

a≤b

N∑

c=1

Q̃ab[c]xakxbkw
2
ck





n∏

a=0

dPa(xak).
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In the limit of K → ∞ one of the exponential terms in (6) will dominate over all
others. Only the maximum value of the correlation Qab[c] is relevant for calculation of
the integral.

We assume that the replicas within the dominant subshell are symmetric (replica sym-
metry). Thus, the maximum values of the correlations Qab[c] are identical for all
positive a 6= b. The same applies to the the correlations Qa0[c].

Hereby, we reduce the number of different correlation variables from (n + 1)(n + 2)/2
to four per chip time and set Q00[c] = p0c, Q0a[c] = mc,∀a 6= 0, Qaa[c] = pc, ∀a 6= 0,
Qab[c] = qc, ∀0 6= a 6= b 6= 0.

We apply the same idea to the correlation variables in the Fourier domain and set
Q̃00[c] = G0c/2, Q̃aa[c] = Gc/2, ∀a 6= 0, Q̃0a[c] = Ec,∀a 6= 0, and Q̃ab[c] = Fc,∀0 6=
a 6= b 6= 0.

At this point the crucial benefit of the replica method becomes obvious. Assuming replica continuity,

we have managed to reduce the evaluation of a continuous function to sampling it at integer points.

Assuming replica symmetry we have reduced the task of evaluating infinitely many integer points to

calculating 8 different correlations (4 of them in the original and 4 of them in the Fourier domain).
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The assumption of replica symmetry leads to
∑

a≤b

Q̃ab[c]Qab[c] = nEcmc +
n(n − 1)

2
Fcqc +

G0cp0c

2
+

n

2
Gcpc (8)

and

Mk{E, F,G, G0} =

∫

Rn+1

e
1
N

N∑

c=1
w2

ck

(

G0c
2 x2

0k+
n∑

a=1
Ecx0kxak+Gc

2 x2
ak+

n∑

b=a+1
Fcxakxbk

)

n∏

a=0

dPa(xak)

=

∫

Rn+1

e

G̃0k
2 x2

0k+
n∑

a=1
Ẽkx0kxak+

G̃k
2 x2

ak+
n∑

b=a+1
F̃kxakxbk

n∏

a=0

dPa(xak) (9)

where

Ẽk
△
=

1

N

N∑

c=1

Ecw
2
ck , F̃k

△
=

1

N

N∑

c=1

Fcw
2
ck (10)

G̃k
△
=

1

N

N∑

c=1

Gcw
2
ck , G̃0k

△
=

1

N

N∑

c=1

G0cw
2
ck. (11)

(9) cannot be simplified further for a general prior distribution dPa(xak).
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Second, we evaluate eG{Q[c]} in (6). We use the replica symmetry to construct the
correlated Gaussian random variables vac out of independent zero-mean, unit-variance
Gaussian random variables uc, tc, zac by

v0c = uc

√

p0c −
m2

c

qc
− tc

mc√
qc

vac = zac

√
pc − qc − tc

√
qc, a > 0.

With that substitution, we get

eG(mc,qc,pc,p0c) =
1√

2πσ0

∫R2

∫R exp




−

β

2σ2
0



uc

√

p0c −
m2

c

qc
− tcmc√

qc
− yc√

β





2



Duc

×





∫R exp

[

− β

2σ2

(

zc

√
pc − qc − tc

√
qc −

yc√
β

)2
]

Dzc





n

Dtc dyc

=

√
√
√
√

(1 + β
σ2(pc − qc))1−n

1 + β
σ2(pc − qc) + n β

σ2

(
σ2
0
β + p0c − 2mc + qc

) (12)

with the Gaussian measure Dz = exp(−z2/2) dz/
√

2π.
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Since the integral in (6) is dominated by the maximum argument of the exponential
function, the derivatives of

1

N

N∑

c=1



G{Q[c]}−β
∑

a≤b

Q̃ab[c]Qab[c]



 (13)

with respect to mc, qc, pc and p0c must vanish as N → ∞. Taking derivatives after
plugging (8) and (12) into (13), solving for Ec, Fc, Gc, and G0c and letting n → 0
yields for all c

Ec =
1

σ2 + β(pc − qc)
(14)

Fc =
σ2

0 + β (p0c − 2mc + qc)

[σ2 + β(pc − qc)]2

Gc = Fc − Ec (15)

G0c = 0. (16)

In order to proceed with the calculations, a prior distribution needs to be specified.
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Gaussian Prior Distribution

Assume the Gaussian prior

pa (xak) =
1√
2π

e−x2
ak/2 ∀a.

The integration in (9) can be performed explicitly and we find

Mk

(
Ẽk, F̃k, G̃k, G̃0k

)
=

√
√
√
√

(
1 + F̃k − G̃k

)1−n

(
1 − G̃0k

) (
1 + F̃k − G̃k − nF̃k

)
− nẼ2

k

. (17)

In the large system limit, the integral in (7) is dominated by that value of the integration
variable which maximizes the argument of the exponential function. Thus, partial
derivations of

log
K∏

k=1

Mk

(
Ẽk, F̃k, G̃k, G̃0k

)
−β

N∑

c=1

nEcmc+
n(n − 1)

2
Fcqc+

G0cp0c

2
+

n

2
Gcpc (18)

with respect to Ec, Fc, Gc, G0c must vanish for all c as N → ∞.
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An explicit calculation of these derivatives yields

mc =
1

K

K∑

k=1

w2
ck

Ẽk

1 + Ẽk

(19)

qc =
1

K

K∑

k=1

w2
ck

Ẽ2
k + F̃k

(
1 + Ẽk

)2 (20)

pc =
1

K

K∑

k=1

w2
ck

Ẽ2
k + Ẽk + F̃k + 1
(
1 + Ẽk

)2 (21)

p0c =
1

K

K∑

k=1

w2
ck (22)

in the limit n → 0 with (15) and (16).

Surprisingly, if we let the true prior to be binary and only the replicas to be Gaussian
we also find (19) to (22). Note from Chapter 1 that this setting corresponds to linear
MMSE detection.
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Collecting our previous results to evaluate the free energy, we find

− 1

K

∂

∂n
log Ξn=

1

K

∂

∂n

N∑

c=1

[

−G(mc, qc, pc, p0c) + βnEcmc +
βn(n − 1)

2
Fcqc +

βn

2
Gcpc

]

−
K∑

k=1

log Mk

(
Ẽk, F̃k, G̃k, 0

)

=
1

2K

[
N∑

c=1

log

(

1 +
β

σ2
(pc − qc)

)

+ 2βEcmc + β(2n − 1)Fcqc + βGcpc

+
σ2

0 + β(p0c − 2mc + qc)

σ2 + β(pc − qc) + nσ2
0 + nβ(p0c − 2mc + qc)

]

+
1

2K

K∑

k=1

log
(
1 + Ẽk

)
− Ẽ2

k + F̃k

1 + Ẽk − nẼ2
k − nF̃k

n→0−→ 1

2K

[
N∑

c=1

log

(

1 +
β

σ2
(pc − qc)

)

+
Ec

Fc
+ 2βEcmc − βFcqc + βGcpc

]

+
1

2K

K∑

k=1

log
(
1 + Ẽk

)
− Ẽ2

k + F̃k

1 + Ẽk

=
F(x)

K
.
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This is the final result for the mismatched detector. The six macroscopic parameters
Ec, Fc, Gc,mc, qc, pc are implicitly given by the simultaneous solution of the system of
equations (14) to (15) and (19) to (21) with the definitions (10) to (11) for all chip
times c. This system of equations can only be solved numerically.

Specializing our result to the matched detector by letting σ → σ0, we have Fc → Ec,
Gc → G0c, qc → mc, pc → p0c. This makes the free energy simplify to

F(x)

K
=

1

2K

[
N∑

c=1

log

(

1 +
β

σ2
0

(p0c − mc)

)

+ 1 + βEcmc

]

+
1

2K

K∑

k=1

log
(
1 + Ẽk

)
− Ẽk

=
1

2K

[
N∑

c=1

σ2
0Ec − log

(
σ2

0Ec

)

]

+
1

2K

K∑

k=1

log
(
1 + Ẽk

)

with

Ec =
1

σ2
0 + β

K

K∑

k=1

w2
ck

1+Ẽk

. (23)

This result is more compact and it requires only to solve (23) numerically which is
conveniently done by fixed-point iteration.
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Girko’s Law

Let the N × K random matrix H be composed of independent entries (H)ij with
zero-mean and variances wij/N such that all wij are uniformly bounded from above.
Assume that the empirical joint distribution of variances w : [0, 1]× [0, β] 7→ R defined
by w(x, y) = wij for i, j satisfying

i

N
≤ x ≤ i + 1

N
and

j

N
≤ y ≤ j + 1

N

converges to a bounded joint limit distribution w(x, y) as K = βN → ∞. Then, for
each a, b ∈ [0, 1], a < b, and ℑ(s) > 0

1

N

⌈bN⌉
∑

i=⌈aN⌉

(
HHH − sI

)−1

ii
−→

b∫

a

u(x, s)dx
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where convergence is in probability and u(x, s) satisfies the fixed point equation

u(x, s) =







−s +

β∫

0

w(x, y) dy

1 +
1∫

0

u(x′, s)w(x′, y) dx′








−1

for every x ∈ [0, 1]. The solution always exists and is unique in the class of functions
u(x, s) ≥ 0, analytic for ℑ(s) > 0 and continuous on x ∈ [0, 1].

Moreover, almost surely, the empirical eigenvalue distribution of HHH converges
weakly to a limiting distribution whose Stieltjes transform is given by

GHHH(s) =

1∫

0

u(x, s) dx.
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Comparing (23) to Girko’s law, Ẽk is recognized as the signal-to-interference and noise
ratio of user k.

Using the similarity of free energy and the entropy of the channel output allows for the
simple relationship

I(x,y)

K
=

F(x)

K
− 1

2β
(24)

between the (normalized) free energy and the (normalized) mutual information between
channel input signal x and channel output signal y given the channel matrix H .
Assuming that the channel is perfectly known to the receiver, but totally unknown to
the transmitter, (24) gives the channel capacity per user.
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Binary Prior Distribution

Consider a non-uniform binary prior

pa (xak) =
1 + tk

2
δ(xak − 1) +

1 − tk
2

δ(xak + 1). (25)

Plugging the prior distribution into (9), we find

Mk

(
Ẽk, F̃k, G̃k, G̃0k

)
=

∫Rn+1

e

G̃0k+nG̃k
2 +

n∑

a=1
Ẽkx0kxak+

n∑

b=a+1
F̃kxakxbk

n∏

a=0

dPa(xak)

= e
1
2(G̃0k+nG̃k)

∑

{xak,a=1,...,n}

{

1+tk
2

exp

[
n∑

a=1
Ẽkxak +

n∑

b=a+1

F̃kxakxbk

]

+1−tk
2

exp

[
n∑

a=1
−Ẽkxak +

n∑

b=a+1

F̃kxakxbk

]}
n∏

a=1
Pr(xak)

= e
1
2(G̃0k+nG̃k−nF̃k) ∑

{xak,a=1,...,n}

{

1+tk
2 exp

[

F̃k
2

(
n∑

a=1
xak

)2

+ Ẽk

n∑

a=1
xak

]

+1−tk
2

exp

[

F̃k
2

(
n∑

a=1
xak

)2

− Ẽk

n∑

a=1
xak

]}
n∏

a=1
Pr(xak). (26)
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We can use the following property of the Gaussian measure

exp

(

F̃k
S2

2

)

=

∫

exp

(

±
√

F̃kzS

)

Dz ∀S ∈ R

to linearize the exponents

Mk

(
Ẽk, F̃k, G̃k, G̃0k

)
= e

1
2(G̃0k+nG̃k−nF̃k) ∑

{xak,a=1,...,n}

∫ 1+tk
2

exp

[(

z
√

F̃k + Ẽk

) n∑

a=1
xak

]

+1−tk
2

exp

[

−
(

z
√

F̃k + Ẽk

) n∑

a=1
xak

]

Dz
n∏

a=1
Pr(xak).

Since

fn
△
=

∑

{xka,a=1,...,n}
exp

[(

z

√

F̃k + Ẽk

) n∑

a=1

xka

]
n∏

a=1

Pr(xka)

=
∑

xkn

Pr(xkn)fn−1 exp

[(

z

√

F̃k + Ẽk

)

xkn

]

= fn−1

cosh
[

λk/2 + z
√

F̃k + Ẽk

]

cosh (λk/2)
=

coshn
[

λk/2 + z
√

F̃k + Ẽk

]

coshn (λk/2)
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with tk
△
= tanh(λk/2), we find

Mk

(
Ẽk, F̃k, G̃k, G̃0k

)
=

∫ 1+tk
2 coshn

(

z
√

F̃k + Ẽk + λk
2

)

+ 1−tk
2 coshn

(

z
√

F̃k + Ẽk − λk
2

)

Dz

coshn
(

λk
2

)

exp
(

nF̃k−G̃0k−nG̃k
2

) .

In the large system limit, the integral in (7) is dominated by that value of the integration
variable which maximizes the argument of the exponential function. Thus, partial
derivations of

log

K∏

k=1

Mk

(
Ẽk, F̃k, G̃k, G̃0k

)
− β

N∑

c=1

nEcmc +
n(n − 1)

2
Fcqc +

G0cp0c

2
+

n

2
Gcpc

with respect to Ec, Fc, Gc, G0c must vanish for all c as N → ∞.
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An explicit calculation of these derivatives gives

mc =
1

K

K∑

k=1

w2
ck

∫

1+tk
2

tanh
(

z
√

F̃k + Ẽk + λk
2

)

+ 1−tk
2

tanh
(

z
√

F̃k + Ẽk − λk
2

)

Dz (27)

qc =
1

K

K∑

k=1

w2
ck

∫

1+tk
2

tanh2
(

z
√

F̃k + Ẽk + λk
2

)

+ 1−tk
2

tanh2
(

z
√

F̃k + Ẽk − λk
2

)

Dz (28)

pc = p0c =
1

K

K∑

k=1

w2
ck (29)

in the limit n → 0.

In order to obtain (28), note from (26) that the first order derivative of Mk exp(nF̃k/2) with respect to

F̃k is identical to half of the second order derivative of Mk exp(nF̃k/2) with respect to Ẽk.
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Collecting our previous results to evaluate the free energy, we find

− 1

K

∂

∂n
log Ξn=

1

K

∂

∂n

N∑

c=1

[

−G(mc, qc, pc, p0c) + βnEcmc +
βn(n − 1)

2
Fcqc +

βn

2
Gcpc

]

−
K∑

k=1

log Mk

(
Ẽk, F̃k, G̃k, 0

)

n→0−→ 1

2K

N∑

c=1

[

log

(

1 +
β

σ2
(pc − qc)

)

+
Ec

Fc
+ 2βEcmc − βFcqc + βGcpc

]

− 1

K

K∑

k=1

∫
1 + tk

2
log cosh

(

z

√

F̃k + Ẽk +
λk

2

)

+
1 − tk

2
log cosh

(

z

√

F̃k + Ẽk −
λk

2

)

Dz +
1

2
log
(
1 − t2k

)
− F̃k + G̃k

2

=
F(x)

K
.

This is the final result for the free energy of the mismatched detector. The six macro-
scopic parameters Ec, Fc, Gc, mc, qc, pc are implicitly given by the simultaneous solution
of the system of equations (14) to (15) and (27) to (29) with the definitions (10) to
(11) for all chip times c. This system of equations can only be solved numerically.

In case of multiple solutions, the correct solution is that one which minimizes the free energy.
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Specializing our result to the matched detector by letting σ → σ0, we have Fc → Ec,
Gc → G0c, qc → mc. This makes the free energy simplify to

F(x)

K
=

1

2K

N∑

c=1

[

log

(

1 +
β

σ2
0

(p0c − mc)

)

+ 1 + βEcmc

]

− 1

K

K∑

k=1

log
√

1 − t2k −
Ẽk

2

+

∫

1+tk
2 log cosh

(

z
√

Ẽk + Ẽk + λk
2

)

+ 1−tk
2 log cosh

(

z
√

Ẽk + Ẽk − λk
2

)

Dz

=
1

2K

N∑

c=1

[
σ2

0Ec − log
(
σ2

0Ec

)]
− 1

K

K∑

k=1

log
√

1 − t2k − Ẽk

+

∫

1+tk
2

log cosh
(

z
√

Ẽk + Ẽk + λk
2

)

+ 1−tk
2

log cosh
(

z
√

Ẽk + Ẽk − λk
2

)

Dz

where the macroscopic parameters Ec are given by

1

Ec
= σ2

0 +
β

K

K∑

k=1

w2
ck

[

1 −
∫

1 + tk
2

tanh

(

z

√

Ẽk + Ẽk +
λk

2

)

+
1 − tk

2
tanh

(

z

√

Ẽk + Ẽk −
λk

2

)

Dz

]

= σ2
0 +

β

K

K∑

k=1

w2
ck

(
1 − t2k

)
∫ 1 − tanh

(

z
√

Ẽk + Ẽk

)

1 − t2k tanh2
(

z
√

Ẽk + Ẽk

) Dz.
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Similar to the case of Gaussian priors, Ẽk can be shown to be a kind of signal-to-
interference and noise ratio, in the sense that the bit error probability of user k is given
by

Pr(x̂k 6= xk) =

∞∫

√
Ẽk

Dz.

An equivalent additive white Gaussian noise channel can be defined to model the
multiuser interference for any prior.

For any input alphabet to the channel mutual information is given by (24) with the
free energy corresponding to that input alphabet.
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MC-CDMA in Multipath Fading

Equivalent baseband vector channel in frequency domain:

y =
(

W ⊙ S
)

x + n

N × 1 N × K N × K K × 1 N × 1

frequency channel Hadamard spreading users’ noise
chips matrix product matrix data vector

• The noise n has i.i.d. Gaussian entries with zero-mean and unit variance.

• The columns of S are the random spreading sequences of the users.

• The columns of W are the random frequency responses of the users.
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Minimum Probability of Error for MAP Detector

Maximum a-posteriori detector:

x̂k = arg max
xk

Pr(xk|y, W )

In the large system limit, there is an equivalent AWGN channel with SINR Ẽk such
that

Pr(x̂k 6= xk|W ) =

∞∫

√
Ẽk

Dz = Q

(√

Ẽk

)

and

Pr(x̂k 6= xk) = E
W

Pr(x̂k 6= xk|W ) = E
W

Q

(√

Ẽk

)
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SINR of Equivalent AWGN Channel

For N,K large, solve the fixed-point system of equations

Ẽk =
1

N

N∑

c=1

Ecw
2
ck

Ec =
1

σ2
n +

β

K

K∑

k=1

(1 − tk)
2w2

ck

∫ 1 − tanh
(

z
√

Ẽk + Ẽk

)

1 − t2k tanh2
(

z
√

Ẽk + Ẽk

)Dz

In practice, the fading statistics obey some structure:

• Asymptotic frequency-invariance on the uplink (reverse link)

• Rank-1 statistics on the downlink (forward link)
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Asymptotic Frequency Invariance (Uplink)

Ec = E ∀c

The fading is ergodic across the user population for each frequency c.

Ẽk =
Pk

σ2
n +

β

K

K∑

n=1

(1 − tn)
2Pn

∫ 1 − tanh
(

z
√

Ẽn + Ẽn

)

1 − t2n tanh2
(

z
√

Ẽn + Ẽn

)Dz

with

Pk =
1

N

N∑

c=1

w2
ck

The spectrum of the received signal is white (frequency-invariant).
Full diversity is achieved.
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Rank 1 Statistics (Downlink)

W = fuT ⇐⇒ wck = fcuk

All users experience the same fading channel except for a scalar factor uk.

Ẽk =
u2

k

N

N∑

c=1

1

σ2
n

f 2
c

+
β

K

K∑

n=1

(1 − tn)
2u2

n

∫ 1 − tanh
(

z
√

Ẽn + Ẽn

)

1 − t2n tanh2
(

z
√

Ẽn + Ẽn

)Dz

Full diversity is achieved.
The spectrum of the received signal is colored =⇒ degradation.
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Uplink vs. Downlink
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Part II:

Multistage Detection
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Matrix Inversion

Let R be non–singular.

Let λi denote the eigenvalues of R.

Then,

K∏

k=1

(

R − λk I

)

= 0 =⇒ −I +
K∑

k=1

αkR
k = 0

Cayley–Hamilton Theorem with appropriate αk s.

Solution to matrix inversion problem given the eigenvalues:

R−1 = −
K∑

k=1

αkR
k−1
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Linear Multistage Detection

Linear MMSE filter: LMMSE =
(

R + σ2
nI

)−1

Approximation by power series:

Cayley–Hamilton theorem yields:

(
R + σ2

nI
)−1

=

K−1∑

i=0

w̃iR
i

≈
D−1∑

i=0

wiR
i for D < K.

For random spreading the optimum weights converge almost surely, as K, N → ∞
with β = K

N , and can be given in closed form.
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Semi-Universal Weights

Filter shall be independent from the realization of the random matrix S, but may use
its statistics.

For most large random matrices, as K = βN → ∞, many finite dimensional functions
of the eigenvalues, e.g. the filter coefficients, freeze.

The asymptotic limits depend only on parts of the statistics of the random matrix.

The weights can be calculated off-line with the help of random matrix and free proba-
bility theory.
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Weight Design

is given by Yule–Walker equations:









m1

m2

...

mD+1









=









m2 + σ2m1 m3 + σ2m2 . . . mD+2 + σ2mD+1

m3 + σ2m2 m4 + σ2m3 . . . mD+3 + σ2mD+2

... ... . . . ...

mD+2 + σ2mD+1 mD+3 + σ2mD+2 . . . m2D+2 + σ2m2D+1

















w0

w1

...

wD









with the total moments
mn

△
= E {λn}= Tr

(
SHS

)n
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Example for Asymptotic Weight Design
Random matrix with i.i.d. entries:

mn =
1

n

n∑

i=1

(

n

i

)(

n

i − 1

)

βi.

D = 2
w0 = −σ2w1 + 2 + 2β

w1 = −1

D = 3

w0 = −σ2w1 + 3 + 4β + 3β2

w1 = −σ2w2 − 3 − 3β

w2 = 1

D = 4

w0 = −σ2w1 + 4 + 6β + 6β2 + 4β3

w1 = −σ2w2 − 6 − 9β − 6β2

w2 = −σ2w3 + 4 + 4β

w3 = −1

D = 5

w0 = −σ2w1 + 5 + 8β + 9β2 + 8β3 + 5β4

w1 = −σ2w2 − 10 − 18β − 18β2 − 10β3

w2 = −σ2w3 + 10 + 16β + 10β2

w3 = −σ2w4 − 5 − 5β

w4 = 1
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Rate of Convergence

Theorem 1 Let A = I and the chips of any user be i.i.d. zero–mean random variables

with finite fourth moment and the sequences of all users jointly independent. Then, the

multi–user efficiencies of all users converge almost surely, as N,K → ∞ but β = K
N

fixed, to

ηWLPIC,D+1 =
1

1 +
β

σ2
n + ηWLPIC,D

with η0 = 0 for optimally chosen weights.

The approximation converges to the exact MMSE performance as a continued fraction.

For optimal coefficients wi, the approximation error ǫ decreases exponentially with the
number of stages D:

ǫ < const. (1 + SNR)−D

There are even tighter bounds.
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Individual Weight Design

Allow for different weights for different users

(
R + σ2

nI
)−1

=

K−1∑

i=0

w̃iR
i

≈
D−1∑

i=0

WiR
i for D < K and all Wi diagonal.

Weight design by the same Yule-Walker equations, but with the k-partial moments

m(k)
n =

[(
SHS

)n
]

kk
.

For users with different powers, individual weight design is better.

Do the k-partial moments convergence asymptotically?
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Convergence of Partial Moments

Let the random matrix H fufill the same conditions as needed for the deformed quarter
circle law. Let A be an K×K diagonal matrix such that its singular value distribution
converges almost surely, as K → ∞ to a non-random limit distribution. Let

R = AHHHHA.

Then,
(
Rℓ
)

kk
, the kth diagonal element of Rℓ converges, conditioned on akk, the kth

diagonal element of A, almost surely, as K = βN → ∞ to

R
(ℓ)
kk = |akk|2β

ℓ∑

q=1

R
(q−1)
kk m

(R)
ℓ−q, ℓ > 1

with
m(R)

q = Tr(Rq).

The total moments of R are conveniently given by the recursion

m
(R)
ℓ = β

ℓ∑

q=1

m
(R)
ℓ−q lim

K→∞

1

K

K∑

k=1

|akk|2R(q−1)
kk .
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Structure of Proof
Let

R = AHHHHA, T = HAAHHH

• Bound the difference between the quadratic form and the trace as Silverstein
and Bai did.

• Use Lyapunov inequality to bound the forth moment of the entries of the random
matrix H .

• Recursively proof convergence of the diagonal elements of (R)k and the traces
of (T )k flipping between the two.
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Multipath Fading Channels

Let the path differences be only a few chip intervals. Approximate the linear time shift
by a cyclic shift modulo N . For large N this becomes more and more accurate.

2 paths: All odd column of the N × 2K matrix H are i.i.d. Each even column of H is
a cyclically shifted version of the adjacent column to the left.

E
{
bbH
}

= I ⊗
[

1 1

1 1

]

and (A)kk are independent zero-mean and complex Gaussian.

This setting is equivalent to the full i.i.d. setting in all asymptotic aspects if the users’
powers follow the same distribution.

Equivalence holds for an arbitrary number of paths.
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Asynchronous Users

yn+1

yn

bn

bn+2

yn+2

yn+3

Sn

Sn+2

Sn+1 An

An+1

An+2

Y =SA︸︷︷︸B + N

H

Convergence
of k-partial
moments proven.
Recursive expres-
sions to construct
them known.
Proof follows the
same lines.
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Detector Structure for Asynchronous Users

D

D

D

D

D

D

D

DD

M-1

W0 WMW1

M-2

1st Stage M-th Stage

y(n+1)

b̂n−M

Filtering

H(n−1)H

Filtering

H(n) H(n−M+1) H(n−M)H

HHHHHY

Filtering
H

H(n)

HHY

HH(HHH)MY

MatchedMatched Matched Re-
Spreading Spreading

Re-

No truncation effects.
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Chip-Asynchronous Users

• Convergence of k-partial moments proven.

• Recursive expressions to construct them known.

• Proof follows the same lines, but makes use of properties of circulant matrices
to cope with shifted bandlimited chip waveforms.

For non-zero roll-off factor, chip-asynchronicity gives significant improvements at high SNR.
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CDMA with Dual Antenna Arrays

The system is described by the virtual NR × K spreading matrix

S̃ =









h11s1 h12s2 . . . h1KsK

h21s1 h22s2 . . . h2KsK

... ... . . . ...

hR1s1 hR2s2 . . . hRKsK









Note that with the Kronecker product ⊗:

s̃k = hk⊗sk

Note also that the entries of S̃ are not jointly independent even if those ones of S and
H are.
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A Resource Pooling Result

Theorem 2 Let the chips of any user be i.i.d. zero–mean random variables with finite

6th moment, the sequences of all users jointly independent, and the antenna array

channel hrk follow the i.i.d. complex Gaussian model. Then, the multi–user efficiency

of the linear MMSE detector converges for all users almost surely, as N, K → ∞ but

β
△
= K

N and R fixed, to the deterministic unique positive solution of the fixed–point

equation
1

ηMMSE
= 1 +

β

R

∫
x

σ2
n + ηMMSE x

dPÃ2(x),

if the powers of the users converge weakly to the limit distribution PÃ2(x) with

|Ãk|2 = |Ak|2
R∑

r=1

|hrk|2.
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Resource Pooling for Correlated MIMO Channels

Theorem 3 Let the chips of any user be i.i.d. zero–mean random variables with finite

6th moment, the sequences of all users jointly independent, and the empirical distribu-

tions of the channel gains hrk across the users converge, jointly for all receive antennas

r to an R-dimensional joint limit distribution PH (x). Then, with linear MMSE detec-

tion, the SINR of user k converges, as N,K → ∞ but β
△
= K

N
and R fixed, conditioned

on the channel gains of user k to

hH
k Ahk

σ2

where A is the deterministic unique positive definite solution of the matrix-valued

fixed–point equation

A−1 = I + β

∫
xxH

σ2
n + xHAx

dPH(x),

Asymptotic performance is characterized by an R × R matrix.
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MS Detection for Correlated Resource Pooling

Let

• S̃ = [s̃1, s̃2, . . . , s̃K] with s̃k = hk ⊗ sk where S is i.i.d.

• the entries of H may be arbitrarily dependent as long as the rows have a joint
limit distribution and are finite in number.

Then, as the dimensions of S grow

• the k-partial moments conditioned on hk converge,

• recursive expressions for them are known,

• the proof follows along the same lines as before.
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