Random Matrix Theory and its applications

to Statistics and Wireless Communications

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction

Sergio Verdú Princeton University

National University of Singapore Institute for Mathematical Sciences

February 27, 2006

Applications of Random Matrices

- Condensed Matter Physics
- Statistical Physics
- String Theory
- Quantum Chaos
- Disordered Systems
- Number Theory

Applications of Random Matrices

- Riemann Hypothesis
- von Neumann and C*-algebra theory
- Multivariate Statistics
- Stochastic Differential Equations
- Numerical Linear Algebra
- Economics

Engineering Applications of Random Matrices

- Information Theory
- Wireless Communications
- Signal Processing
- Neural Networks
- Small-World Networks

Typical Random Matrix Questions

- Distribution of $\lambda(\mathbf{H})$
- Distribution of $\lambda(\mathbf{H}^{\dagger}\mathbf{H})$
- Distribution of $\lambda_{\max}(\mathbf{H})$
- $\mathbb{E}\left[\det\left(\mathbf{H}^{k}\right)\right]$
- $\mathbb{E}[\det(\mathbf{I} + \gamma \mathbf{W})]$
- Joint distribution of $\lambda_1(\mathbf{H}) \dots \lambda_N(\mathbf{H})$
- Distribution of the spacings between adjacent eigenvalues
- Distribution of $\mathbf{H}^{\dagger}\mathbf{H}$
- Distribution of the matrix of eigenvectors of $\mathbf{H}^{\dagger}\mathbf{H}$

Our Motivation

Vector noisy channels of the form

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n} \tag{1}$$

where

- x is the *K*-dimensional input vector,
- y is the *N*-dimensional output vector,
- \mathbf{n} is the circularly symmetric N-dimensional vector Gaussian noise.

Why Singular Values?

Shannon Capacity =
$$\frac{1}{N} \sum_{i=1}^{N} \log \left(1 + \operatorname{snr} \lambda_i (\mathbf{H}\mathbf{H}^{\dagger})\right)$$

Why Singular Values?

Minimum Mean Square Error =
$$\frac{1}{K} \sum_{i=1}^{K} \frac{1}{1 + \operatorname{snr} \lambda_i(\mathbf{H}^{\dagger}\mathbf{H})}$$

Asymptotics

Asymptotics

Figure 1: $\beta = 1$ for sizes: N = 3, 5, 15, 50

The Birth of (Nonasymptotic) Random Matrix Theory: (Wishart, 1928)

J. Wishart, "The generalized product moment distribution in samples from a normal multivariate population," *Biometrika*, vol. 20 A, pp. 32–52, 1928.

Probability density function of the matrix:

$$\mathbf{v}_1\mathbf{v}_1^\dagger + \ldots + \mathbf{v}_n\mathbf{v}_n^\dagger$$

where \mathbf{v}_i are iid Gaussian vectors.

Definition 1. The $m \times m$ random matrix $\mathbf{A} = \mathbf{H}\mathbf{H}^{\dagger}$ is a (central) real/complex Wishart matrix with n degrees of freedom and covariance matrix Σ , ($\mathbf{A} \sim \mathcal{W}_m(n, \Sigma)$), if the columns of the $m \times n$ matrix \mathbf{H} are zero-mean independent real/complex Gaussian vectors with covariance matrix Σ .¹

The p.d.f. of a complex Wishart matrix $\mathbf{A} \sim \mathcal{W}_m(n, \Sigma)$ for $n \geq m$ is

$$f_{\mathbf{A}}(\mathbf{B}) = \frac{\pi^{-m(m-1)/2}}{\det \mathbf{\Sigma}^n \prod_{i=1}^m (n-i)!} \exp\left[-\operatorname{tr}\left\{\mathbf{\Sigma}^{-1}\mathbf{B}\right\}\right] \det \mathbf{B}^{n-m}.$$
 (2)

¹If the entries of H have nonzero mean, HH^{\dagger} is a non-central Wishart matrix.

Theorem 1. The matrix of eigenvectors of Wishart matrices is uniformly distributed on the manifold of unitary matrices (Haar measure)

The Birth of Asymptotic Random Matrix Theory

E. Wigner, "Characteristic vectors of bordered matrices with infinite dimensions," *The Annals of Mathematics*, vol. 62, pp. 546–564, 1955.

$$\frac{1}{\sqrt{n}} \begin{bmatrix} 0 & +1 & +1 & -1 & -1 & +1 \\ +1 & 0 & -1 & -1 & +1 & +1 \\ +1 & -1 & 0 & +1 & +1 & -1 \\ -1 & -1 & +1 & 0 & +1 & +1 \\ -1 & +1 & +1 & +1 & 0 & -1 \\ +1 & +1 & -1 & +1 & -1 & 0 \end{bmatrix}$$

As the matrix dimension $n \to \infty$, the histogram of the eigenvalues converges to...?

Motivation: bypass the Schrödinger equation and explain the statistics of experimentally measured atomic energy levels in terms of the limiting spectrum of those random matrices.

Definition 2. An $n \times n$ Hermitian matrix W is a Wigner matrix if its upper-triangular entries are independent zero-mean random variables with identical variance. If the variance is $\frac{1}{n}$, then W is a standard Wigner matrix.

E. Wigner, "On the distribution of roots of certain symmetric matrices," *The Annals of Mathematics*, vol. 67, pp. 325–327, 1958.

Theorem 2. Consider an $N \times N$ standard Wigner matrix W such that, for some constant κ , and sufficiently large N

$$\max_{1 \le i \le j \le N} \mathbb{E}\left[|\mathsf{W}_{i,j}|^4 \right] \le \frac{\kappa}{N^2} \tag{3}$$

Then, the empirical distribution of W converges almost surely to the semicircle law whose density is

$$w(x) = \frac{1}{2\pi}\sqrt{4 - x^2}$$
 (4)

with $|x| \leq 2$.

Wigner Matrices: The Semicircle Law

Figure 2: The semicircle law density function (4) compared with the histogram of the average of 100 empirical density functions for a Wigner matrix of size n = 100.

Wigner's original proof of the convergence to the semicircle law:

the empirical moments $\frac{1}{N} \operatorname{tr} \{ \mathbf{W}^{2k} \} \rightarrow$ the Catalan numbers:

$$\lim_{N \to \infty} \frac{1}{N} \operatorname{tr} \left\{ \mathbf{W}^{2k} \right\} = \int_{-2}^{2} x^{2k} w(x) \, dx$$
$$= \frac{1}{k+1} \binom{2k}{k}.$$
(5)

- **Distribution Insensitivity:** The asymptotic eigenvalue distribution does not depend on the distribution with which the independent matrix coefficients are generated.
- "Ergodicity": The eigenvalue histogram of one matrix realization converges almost surely to the asymptotic eigenvalue distribution.
- Speed of Convergence: $8 = \infty$.

Gaussian case: Nonasymptotic joint distribution of eigenvalues known.

M. L. Mehta and M. Gaudin, "On the density of the eigenvalues of a random matrix," *Nuclear Physics*, vol. 18, pp. 420–427, 1960.

Theorem 3. Let W be an $n \times n$ Wigner matrix whose entries are i.i.d. zeromean Gaussian with unit variance. Then, its p.d.f. is

$$2^{-n/2}\pi^{-n^2/2}\exp\left[-\frac{\operatorname{tr}\{\mathbf{W}^2\}}{2}\right]$$
(6)

while the joint p.d.f. of its ordered eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$ is

$$\frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2}\sum_{i=1}^{n}\lambda_i^2} \prod_{i=1}^{n-1} \frac{1}{i!} \prod_{i< j}^{n} (\lambda_i - \lambda_j)^2.$$
(7)

E. Wigner, "Distribution laws for the roots of a random Hermitian matrix," in *Statistical Theories of Spectra: Fluctuations*, (C. E. Porter, ed.), New York: Academic, 1965.

Theorem 4. Let W be an $n \times n$ Gaussian Wigner matrix. The marginal *p.d.f.* of the unordered eigenvalues is

$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{2^{i} \, i! \sqrt{2\pi}} \left(e^{-\frac{x^{2}}{4}} H_{i}(x) \right)^{2} \tag{8}$$

with $H_i(\cdot)$ the *i*th Hermite polynomial.

Square matrix of iid coefficients

Figure 3: The full-circle law and the eigenvalues of a realization of a 500×500 matrix

V. L. Girko, "Circular law," *Theory Prob. Appl.*, vol. 29, pp. 694–706, 1984. Z. D. Bai, "The circle law," *The Annals of Probability*, pp. 494–529, 1997.

Theorem 5. Let **H** be an $N \times N$ complex random matrix whose entries are independent random variables with identical mean and variance and finite *k*th moments for $k \ge 4$. Assume that the joint distributions of the real and imaginary parts of the entries have uniformly bounded densities. Then, the asymptotic spectrum of **H** converges almost surely to the circular law, namely the uniform distribution over the unit disk on the complex plane $\{\zeta \in \mathbb{C} : |\zeta| \le 1\}$ whose density is given by

$$f_c(\zeta) = \frac{1}{\pi} \qquad |\zeta| \le 1 \tag{9}$$

(also holds for real matrices replacing the assumption on the joint distribution of real and imaginary parts with the one-dimensional distribution of the real-valued entries.)

Singular Values: Fisher-Hsu-Girshick-Roy

- R. A. Fisher, "The sampling distribution of some statistics obtained from non-linear equations," *The Annals of Eugenics*, vol. 9, pp. 238–249, 1939.
- M. A. Girshick, "On the sampling theory of roots of determinantal equations," *The Annals of Math. Statistics*, vol. 10, pp. 203–204, 1939.
- P. L. Hsu, "On the distribution of roots of certain determinantal equations," The Annals of Eugenics, vol. 9, pp. 250–258, 1939.
- S. N. Roy, "p-statistics or some generalizations in the analysis of variance appropriate to multivariate problems," *Sankhya*, vol. 4, pp. 381–396, 1939.

The joint p.d.f. of the ordered strictly positive eigenvalues of the Wishart matrix HH^{\dagger} , where the entries of H are i.i.d. complex Gaussian with zero mean and unit variance.

Singular Values²: **Fisher-Hsu-Girshick-Roy**

Theorem 6. Let the entries of **H** be *i.i.d.* complex Gaussian with zero mean and unit variance. The joint p.d.f. of the ordered strictly positive eigenvalues of the Wishart matrix \mathbf{HH}^{\dagger} , $\lambda_1 \geq \ldots \geq \lambda_t$, equals

$$e^{-\sum_{i=1}^{t} \lambda_i} \prod_{i=1}^{t} \frac{\lambda_i^{r-t}}{(t-i)! (r-i)!} \prod_{i< j}^{t} (\lambda_i - \lambda_j)^2$$
(10)

where t and r are the minimum and maximum of the dimensions of H. The marginal p.d.f. of the unordered eigenvalues is

$$g_{r,t}(\lambda) = \frac{1}{t} \sum_{k=0}^{t-1} \frac{k!}{(k+r-t)!} \left[L_k^{r-t}(\lambda) \right]^2 \lambda^{r-t} e^{-\lambda}$$
(11)

where the Laguerre polynomials are

$$L_k^n(\lambda) = \frac{e^{\lambda}}{k!\lambda^n} \frac{d^k}{d\lambda^k} \left(e^{-\lambda} \lambda^{n+k} \right).$$
(12)

Singular Values²: **Fisher-Hsu-Girshick-Roy**

Figure 4: Joint p.d.f. of the unordered positive eigenvalues of the Wishart matrix $\mathbf{H}\mathbf{H}^{\dagger}$ with n = 3 and m = 2. (Scaled version of (10).)

Asymptotic Distribution of Singular Values: Quarter circle law

Consider an $N \times N$ matrix **H** whose entries are independent zero-mean complex (or real) random variables with variance $\frac{1}{N}$, the asymptotic distribution of the singular values converges to

$$q(x) = \frac{1}{\pi}\sqrt{4 - x^2}, \quad 0 \le x \le 2$$
 (13)

Asymptotic Distribution of Singular Values: Quarter circle law

Figure 5: The quarter circle law compared a histogram of the average of 100 empirical singular value density functions of a matrix of size 100×100 .

Minimum Singular Value of Gaussian Matrix

- A. Edelman, *Eigenvalues and condition number of random matrices*. PhD thesis, Dept. Mathematics, MIT, Cambridge, MA, 1989.
- J. Shen, "On the singular values of Gaussian random matrices," *Linear Algebra and its Applications*, vol. 326, no. 1-3, pp. 1–14, 2001.

Theorem 7. The minimum singular value of an $N \times N$ standard complex Gaussian matrix **H** satisfies

$$\lim_{N \to \infty} P[N\sigma_{\min} \ge x] = e^{-x - x^2/2}.$$
(14)

V. A. Marčenko and L. A. Pastur, "Distributions of eigenvalues for some sets of random matrices," *Math USSR-Sbornik*, vol. 1, pp. 457–483, 1967.

Theorem 8. Consider an $N \times K$ matrix **H** whose entries are independent zero-mean complex (or real) random variables with variance $\frac{1}{N}$ and fourth moments of order $O(\frac{1}{N^2})$. As $K, N \to \infty$ with $\frac{K}{N} \to \beta$, the empirical distribution of $\mathbf{H}^{\dagger}\mathbf{H}$ converges almost surely to a nonrandom limiting distribution with density

$$f_{\beta}(x) = \left(1 - \frac{1}{\beta}\right)^{+} \delta(x) + \frac{\sqrt{(x-a)^{+}(b-x)^{+}}}{2\pi\beta x}$$
(15)

where

$$a = (1 - \sqrt{\beta})^2$$
 $b = (1 + \sqrt{\beta})^2.$

The Marčenko-Pastur Law

Figure 6: The Marčenko-Pastur density function for $\beta = 1, 0.5, 0.2$.

Rediscovering/Strenghtening the Marčenko-Pastur Law

- U. Grenander and J. W. Silverstein, "Spectral analysis of networks with random topologies," *SIAM J. of Applied Mathematics*, vol. 32, pp. 449–519, 1977.
- K. W. Wachter, "The strong limits of random matrix spectra for sample matrices of independent elements," *The Annals of Probability*, vol. 6, no. 1, pp. 1–18, 1978.
- J. W. Silverstein and Z. D. Bai, "On the empirical distribution of eigenvalues of a class of large dimensional random matrices," *J. of Multivariate Analysis*, vol. 54, pp. 175–192, 1995.
- Y. L. Cun, I. Kanter, and S. A. Solla, "Eigenvalues of covariance matrices: Application to neural-network learning," *Physical Review Letters*, vol. 66, pp. 2396–2399, 1991.

Generalizations needed!

- $\mathbf{W} = \mathbf{H}\mathbf{T}\mathbf{H}^{\dagger}$
- $\mathbf{W} = \mathbf{W}_0 + \mathbf{H}\mathbf{H}^{\dagger}$
- $\mathbf{W} = \mathbf{W}_0 + \mathbf{H}\mathbf{T}\mathbf{H}^{\dagger}$

Transforms

- 1. Stieltjes transform
- 2. η transform
- 3. Shannon transform
- 4. Mellin transform
- 5. R-transform
- 6. S-transform

Stieltjes Transform

Let X be a real-valued random variable with distribution $F_X(\cdot)$. Its Stieltjes transform is defined for complex arguments as

$$\mathcal{S}_X(z) = \mathbb{E}\left[\frac{1}{X-z}\right] = \int_{-\infty}^{\infty} \frac{1}{\lambda - z} \, dF_X(\lambda). \tag{16}$$

Stieltjes Transform and Moments

$$\mathcal{S}_X(z) = -\frac{1}{z} \sum_{k=0}^{\infty} \frac{\mathbb{E}[X^k]}{z^k}.$$
(17)

T. J. Stieltjes, "Recherches sur les fractions continues," *Annales de la Faculte des Sciences de Toulouse*, vol. 8 (9), no. A (J), pp. 1–47 (1–122), 1894 (1895).

$$f_X(\lambda) = \lim_{\omega \to 0^+} \frac{1}{\pi} \operatorname{Im} \left[S_X(\lambda + j\omega) \right].$$
(18)

Stieltjes Transform of Semicircle law

$$w(x) = \begin{cases} \frac{1}{2\pi}\sqrt{4 - x^2} & \text{if } |x| \le 2\\ 0 & \text{if } |x| > 2 \end{cases}$$
(19)

$$S_w(z) = \frac{1}{2\pi} \int_{-2}^{2} \frac{\sqrt{4 - \lambda^2}}{\lambda - z} d\lambda = \frac{1}{2} \left[-z \pm \sqrt{z^2 - 4} \right].$$
 (20)

Stieltjes Transform of Marčenko-Pastur law

$$f_{\beta}(x) = \left(1 - \frac{1}{\beta}\right)^{+} \delta(x) + \frac{\sqrt{(x-a)^{+}(b-x)^{+}}}{2\pi\beta x}$$
(21)

$$S_{f_{\beta}}(z) = \int_{a}^{b} \frac{1}{\lambda - z} f_{\beta}(\lambda) d\lambda$$

=
$$\frac{1 - \beta - z \pm \sqrt{z^{2} - 2(\beta + 1)z + (\beta - 1)^{2}}}{2\beta z}.$$
 (22)

S. Verdú, "Large random matrices and wireless communications," 2002 MSRI Information Theory Workshop, Feb 25–Mar 1, 2002.

Definition 3. The η -transform of a nonnegative random variable X is

$$\eta_X(\gamma) = \mathbb{E}\left[\frac{1}{1+\gamma X}\right]$$
(23)

where $\gamma \geq 0$.

Note: $0 < \eta_X(\gamma) \leq 1$.

Why Singular Values?

Minimum Mean Square Error
$$= \frac{1}{K} \sum_{i=1}^{K} \frac{1}{1 + \operatorname{snr} \lambda_i(\mathbf{H}^{\dagger}\mathbf{H})}$$

η transform and Stieltjes transform

$$\eta_X(\gamma) = \frac{\mathcal{S}_X(-\frac{1}{\gamma})}{\gamma} \tag{24}$$

$$\eta_X(\gamma) = \sum_{k=0}^{\infty} (-\gamma)^k \mathbb{E}[X^k],$$
(25)

η -Transform of Marčenko-Pastur law

Example: The η -transform of the Marčenko-Pastur law is

$$\eta(\gamma) = 1 - \frac{\mathcal{F}(\gamma, \beta)}{4\beta\gamma}$$
(26)

with

$$\mathcal{F}(x,z) = \left(\sqrt{x(1+\sqrt{z})^2 + 1} - \sqrt{x(1-\sqrt{z})^2 + 1}\right)^2.$$
 (27)

Z. D. Bai and J. W. Silverstein, "No eigenvalues outside the support of the limiting spectral distribution of large dimensional sample covariance matrices," *The Annals of Probability*, vol. 26, pp. 316–345, 1998.

Theorem 9. Let the components of the *N*-dimensional vector \mathbf{x} be zeromean and independent with variance $\frac{1}{N}$. For any $N \times N$ nonnegative definite random matrix \mathbf{B} independent of \mathbf{x} whose spectrum converges almost surely,

$$\lim_{N \to \infty} \mathbf{x}^{\dagger} \left(\mathbf{I} + \gamma \mathbf{B} \right)^{-1} \mathbf{x} = \eta_{\mathbf{B}}(\gamma) \quad a.s.$$
(28)

$$\lim_{N \to \infty} \mathbf{x}^{\dagger} \left(\mathbf{B} - z \mathbf{I} \right)^{-1} \mathbf{x} = \mathcal{S}_{\mathbf{B}}(z) \quad a.s.$$
(29)

S. Verdú, "Random matrices in wireless communication, proposal to the National Science Foundation," Feb. 1999.

Definition 4. The Shannon transform of a nonnegative random variable *X* is defined as

$$\mathcal{V}_X(\gamma) = \mathbb{E}[\log(1 + \gamma X)]. \tag{30}$$

where $\gamma \geq 0$

Why Singular Values?

Shannon Capacity =
$$\frac{1}{N} \sum_{i=1}^{N} \log \left(1 + \operatorname{snr} \lambda_i (\mathbf{H}\mathbf{H}^{\dagger})\right)$$

Stieltjes, Shannon and η

$$\frac{\gamma}{\log e} \frac{d}{d\gamma} \mathcal{V}_X(\gamma) = 1 - \frac{1}{\gamma} \mathcal{S}_X\left(-\frac{1}{\gamma}\right) = 1 - \eta_X(\gamma)$$
(31)

Shannon transform of Marčenko-Pastur law

Example: The Shannon transform of the Marčenko-Pastur law is

$$\mathcal{V}(\gamma) = \log\left(1 + \gamma - \frac{1}{4}\mathcal{F}(\gamma,\beta)\right) + \frac{1}{\beta}\log\left(1 + \gamma\beta - \frac{1}{4}\mathcal{F}(\gamma,\beta)\right) - \frac{\log e}{4\beta\gamma}\mathcal{F}(\gamma,\beta)$$
(32)

Mellin transform

Definition 5. The Mellin transform of a positive random variable X is given by

$$\mathcal{M}_X(z) = \mathbb{E}[X^{z-1}] \tag{33}$$

where z belongs to a strip of the complex plane where the expectation is finite.

R. Janaswamy, "Analytical expressions for the ergodic capacities of certain MIMO systems by the Mellin transform," *Proc. of IEEE Global Telecomm. Conf.*, vol. 1, pp. 287–291, Dec. 2003.

Theorem 10.

$$\mathcal{V}_X(\gamma) = \mathcal{M}_{\Upsilon}^{-1}(\gamma) \tag{34}$$

where $\mathcal{M}_{\Upsilon}^{-1}$ is the inverse Mellin transform of

$$\Upsilon(z) = z^{-1} \Gamma(z) \Gamma(1-z) \mathcal{M}_X(1-z)$$
(35)

D. Voiculescu, "Addition of certain non-commuting random variables," *J. Funct. Analysis*, vol. 66, pp. 323–346, 1986.

Definition 6.

$$\mathsf{R}_X(z) = \mathcal{S}_X^{-1}(-z) - \frac{1}{z}.$$
 (36)

R-transform and η **-transform**

$$\eta_X(\gamma) = \frac{1}{1 + \gamma \mathsf{R}_X(-\gamma \eta_X(\gamma))}$$
(37)

R-transform of the semicircle law

$$\mathsf{R}(z) = z. \tag{38}$$

R-transform of the Marčenko-Pastur law

$$\mathsf{R}(z) = \frac{1}{1 - \beta z}.$$
(39)

D. Voiculescu, "Addition of certain non-commuting random variables," *J. Funct. Analysis*, vol. 66, pp. 323–346, 1986.

Theorem 11. If A and B are asymptotically free random matrices, then the *R*-transform of their sum satisfies

$$\mathsf{R}_{\mathbf{A}+\mathbf{B}}(z) = \mathsf{R}_{\mathbf{A}}(z) + \mathsf{R}_{\mathbf{B}}(z)$$
(40)

free analog of the log-moment generating function

D. Voiculescu, "Multiplication of certain non-commuting random variables," *J. Operator Theory*, vol. 18, pp. 223–235, 1987.

Definition 7. The S-transform of a nonnegative random variable X is

$$\Sigma_X(x) = -\frac{x+1}{x} \eta_X^{-1}(1+x),$$
(41)

which maps (-1, 0) onto the positive real line.

S-transform of the Marčenko-Pastur law

$$\Sigma(x) = \frac{1}{1 + \beta x}.$$

(42)

D. Voiculescu, "Multiplication of certain non-commuting random variables," *J. Operator Theory*, vol. 18, pp. 223–235, 1987.

Theorem 12. Let A and B be nonnegative asymptotically free random matrices. The S-transform of their product satisfies

$$\Sigma_{\mathbf{AB}}(x) = \Sigma_{\mathbf{A}}(x)\Sigma_{\mathbf{B}}(x)$$
(43)

Generalizations needed!

- $\mathbf{W} = \mathbf{H}\mathbf{T}\mathbf{H}^{\dagger}$
- $\mathbf{W} = \mathbf{W}_0 + \mathbf{H}\mathbf{H}^{\dagger}$
- $\mathbf{W} = \mathbf{W}_0 + \mathbf{H}\mathbf{T}\mathbf{H}^{\dagger}$

V. A. Marčenko and L. A. Pastur, "Distributions of eigenvalues for some sets of random matrices," *Math USSR-Sbornik*, vol. 1, pp. 457–483, 1967.

Theorem 13.

- Let **H** be an $N \times K$ matrix whose entries are i.i.d. complex random variables with variance $\frac{1}{N}$.
- Let T be a K × K Hermitian nonnegative random matrix, independent of H, whose empirical eigenvalue distribution converges almost surely to a nonrandom limit.

The empirical eigenvalue distribution of \mathbf{HTH}^{\dagger} converges almost surely, as $K, N \to \infty$ with $\frac{K}{N} \to \beta$, with $\eta_{\mathbf{HTH}^{\dagger}}(\gamma) = \eta$ the solution of:

$$\beta = \frac{1 - \eta}{1 - \eta_{\mathbf{T}}(\gamma \eta)} \tag{44}$$

Example

Further, if T = I, we have $\eta_T(\gamma) = \frac{1}{1+\gamma}$, and (44) becomes:

$$\eta = 1 - \beta + \frac{\beta}{1 + \gamma \eta}$$

Theorem 14.

- Let **H** be an $N \times K$ matrix whose entries are i.i.d. complex random variables with variance $\frac{1}{N}$.
- Let T be a K × K Hermitian nonnegative random matrix, independent of H, whose empirical eigenvalue distribution converges almost surely to a nonrandom limit.

The empirical eigenvalue distribution of \mathbf{HTH}^{\dagger} converges almost surely, as $K, N \to \infty$ with $\frac{K}{N} \to \beta$, with Shannon transform

$$\mathcal{V}_{\mathbf{H}\mathbf{T}\mathbf{H}^{\dagger}}(\gamma) = \beta \mathcal{V}_{\mathbf{T}}(\eta\gamma) + \log \frac{1}{\eta} + (\eta - 1)\log e$$
(45)

A. Tulino and S. Verdú, *Random Matrix Theory and Wireless Communications,* Now Publishers, 2004

Theorem 15.

- Let **H** be an $N \times K$ matrix whose entries are i.i.d. complex random variables with zero-mean and variance $\frac{1}{N}$.
- Let T be a $K \times K$ positive definite random matrix whose empirical eigenvalue distribution converges almost surely to a nonrandom limit.
- Let \mathbf{W}_0 be an $N \times N$ nonnegative definite diagonal random matrix with empirical eigenvalue distribution converging almost surely to a nonrandom limit.
- **H**, **T**, and \mathbf{W}_0 are independent

The empirical eigenvalue distribution of

$$\mathbf{W} = \mathbf{W}_0 + \mathbf{H}\mathbf{T}\mathbf{H}^{\dagger} \tag{46}$$

converges almost surely, as $K, N \to \infty$ with $\frac{K}{N} \to \beta$, to a nonrandom limiting distribution whose η -transform is the solution of the following pair of equations:

$$\gamma \eta = \varphi \eta_0 \left(\varphi\right) \tag{47}$$

$$\eta = \eta_0 \left(\varphi\right) - \beta \left(1 - \eta_{\mathbf{T}}(\gamma \eta)\right) \tag{48}$$

with η_0 and η_T the η -transforms of \mathbf{W}_0 and \mathbf{T} respectively.