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Applications of Random Matrices

• Condensed Matter Physics

• Statistical Physics

• String Theory

• Quantum Chaos

• Disordered Systems

• Number Theory
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Applications of Random Matrices

• Riemann Hypothesis

• von Neumann and C*-algebra theory

• Multivariate Statistics

• Stochastic Differential Equations

• Numerical Linear Algebra

• Economics
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Engineering Applications of Random Matrices

• Information Theory

• Wireless Communications

• Signal Processing

• Neural Networks

• Small-World Networks
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Typical Random Matrix Questions

• Distribution of λ(H)

• Distribution of λ(H†H)

• Distribution of λmax(H)

• E
[

det
(

Hk
)]

• E[det(I + γW)]

• Joint distribution of λ1(H) . . . λN(H)

• Distribution of the spacings between adjacent eigenvalues

• Distribution of H†H

• Distribution of the matrix of eigenvectors of H†H
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Our Motivation

Vector noisy channels of the form

y = Hx + n (1)

where

• x is the K-dimensional input vector,

• y is the N -dimensional output vector,

• n is the circularly symmetric N -dimensional vector Gaussian noise.
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Why Singular Values?

Shannon Capacity =
1

N

N
∑

i=1

log
(

1 + SNR λi(HH†)
)
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Why Singular Values?

Minimum Mean Square Error =
1

K

K
∑

i=1

1

1 + SNR λi(H†H)
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Asymptotics

• K → ∞

• N → ∞

• K
N → β
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Asymptotics

Shannon Capacity =
1

N

N
∑

i=1

log
(

1 + SNR λi(HH†)
)
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Figure 1: β = 1 for sizes: N = 3, 5, 15, 50
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The Birth of (Nonasymptotic) Random Matrix Theory:
(Wishart, 1928)

J. Wishart, “The generalized product moment distribution in samples from
a normal multivariate population,” Biometrika, vol. 20 A, pp. 32–52, 1928.

Probability density function of the matrix:

v1v
†
1 + . . . + vnv

†
n

where vi are iid Gaussian vectors.
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Wishart Matrices

Definition 1. The m × m random matrix A = HH† is a (central)
real/complex Wishart matrix with n degrees of freedom and covariance
matrix Σ, (A ∼ Wm(n,Σ)), if the columns of the m × n matrix H are zero-
mean independent real/complex Gaussian vectors with covariance matrix
Σ.1

The p.d.f. of a complex Wishart matrix A ∼ Wm(n,Σ) for n ≥ m is

fA(B) =
π−m(m−1)/2

detΣn
∏m

i=1(n − i)!
exp

[

−tr
{

Σ−1B
}]

detBn−m. (2)

1If the entries of H have nonzero mean, HH† is a non-central Wishart matrix.
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Wishart Matrices: Eigenvectors

Theorem 1. The matrix of eigenvectors of Wishart matrices is uniformly
distributed on the manifold of unitary matrices ( Haar measure)
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The Birth of Asymptotic Random Matrix Theory

E. Wigner, “Characteristic vectors of bordered matrices with infinite
dimensions,” The Annals of Mathematics, vol. 62, pp. 546–564, 1955.
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As the matrix dimension n → ∞, the histogram of the eigenvalues
converges to...?

Motivation: bypass the Schrödinger equation and explain the statistics of
experimentally measured atomic energy levels in terms of the limiting
spectrum of those random matrices.
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Wigner Matrices

Definition 2. An n × n Hermitian matrix W is a Wigner matrix if its
upper-triangular entries are independent zero-mean random variables with
identical variance. If the variance is 1

n, then W is a standard Wigner matrix.
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Wigner Matrices: The Semicircle Law

E. Wigner, “On the distribution of roots of certain symmetric matrices,” The
Annals of Mathematics, vol. 67, pp. 325–327, 1958.

Theorem 2. Consider an N × N standard Wigner matrix W such that, for
some constant κ, and sufficiently large N

max
1≤i≤j≤N

E
[

|Wi,j|4
]

≤ κ

N2
(3)

Then, the empirical distribution of W converges almost surely to the
semicircle law whose density is

w(x) =
1

2π

√

4 − x2 (4)

with |x| ≤ 2.
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Wigner Matrices: The Semicircle Law
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Figure 2: The semicircle law density function (4) compared with the
histogram of the average of 100 empirical density functions for a Wigner
matrix of size n = 100.
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Wigner Matrices: The Semicircle Law

Wigner’s original proof of the convergence to the semicircle law:

the empirical moments 1
N tr

{

W2k
}

→ the Catalan numbers:

lim
N→∞

1

N
tr

{

W2k
}

=

∫ 2

−2

x2kw(x) dx

=
1

k + 1

(

2k

k

)

. (5)
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Asymptotics

Distribution Insensitivity: The asymptotic eigenvalue distribution does
not depend on the distribution with which the independent matrix
coefficients are generated.

“Ergodicity”: The eigenvalue histogram of one matrix realization
converges almost surely to the asymptotic eigenvalue distribution.

Speed of Convergence: 8 = ∞.

Gaussian case: Nonasymptotic joint distribution of eigenvalues known.
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Gaussian Wigner Matrices: Nonasymptotic

M. L. Mehta and M. Gaudin, “On the density of the eigenvalues of a
random matrix,” Nuclear Physics, vol. 18, pp. 420–427, 1960.

Theorem 3. Let W be an n×n Wigner matrix whose entries are i.i.d. zero-
mean Gaussian with unit variance. Then, its p.d.f. is

2−n/2π−n2/2 exp

[

−tr{W2}
2

]

(6)

while the joint p.d.f. of its ordered eigenvalues λ1 ≥ . . . ≥ λn is

1

(2π)n/2
e−

1
2

∑n
i=1 λ2

i

n−1
∏

i=1

1

i!

n
∏

i<j

(λi − λj)
2. (7)
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Gaussian Wigner Matrices: Nonasymptotic

E. Wigner, “Distribution laws for the roots of a random Hermitian matrix,” in
Statistical Theories of Spectra: Fluctuations, (C. E. Porter, ed.), New York:
Academic, 1965.

Theorem 4. Let W be an n × n Gaussian Wigner matrix. The marginal
p.d.f. of the unordered eigenvalues is

1

n

n−1
∑

i=0

1

2i i!
√

2π

(

e−
x2

4 Hi(x)

)2

(8)

with Hi(·) the ith Hermite polynomial.
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Square matrix of iid coefficients
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Figure 3: The full-circle law and the eigenvalues of a realization of a 500 × 500 matrix
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Full Circle Law

V. L. Girko, “Circular law,” Theory Prob. Appl., vol. 29, pp. 694–706, 1984.
Z. D. Bai, “The circle law,” The Annals of Probability, pp. 494–529, 1997.

Theorem 5. Let H be an N × N complex random matrix whose entries
are independent random variables with identical mean and variance and
finite kth moments for k ≥ 4. Assume that the joint distributions of the
real and imaginary parts of the entries have uniformly bounded densities.
Then, the asymptotic spectrum of H converges almost surely to the circular
law, namely the uniform distribution over the unit disk on the complex plane
{ζ ∈ C : |ζ| ≤ 1} whose density is given by

fc(ζ) =
1

π
|ζ| ≤ 1 (9)

(also holds for real matrices replacing the assumption on the joint
distribution of real and imaginary parts with the one-dimensional
distribution of the real-valued entries.)
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Singular Values: Fisher-Hsu-Girshick-Roy

• R. A. Fisher, “The sampling distribution of some statistics obtained from
non-linear equations,” The Annals of Eugenics, vol. 9, pp. 238–249, 1939.

• M. A. Girshick, “On the sampling theory of roots of determinantal
equations,” The Annals of Math. Statistics, vol. 10, pp. 203–204, 1939.

• P. L. Hsu, “On the distribution of roots of certain determinantal equations,”
The Annals of Eugenics, vol. 9, pp. 250–258, 1939.

• S. N. Roy, “p-statistics or some generalizations in the analysis of variance
appropriate to multivariate problems,” Sankhya, vol. 4, pp. 381–396,
1939.

The joint p.d.f. of the ordered strictly positive eigenvalues of the Wishart
matrix HH†, where the entries of H are i.i.d. complex Gaussian with zero
mean and unit variance.
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Singular Values2: Fisher-Hsu-Girshick-Roy

Theorem 6. Let the entries of H be i.i.d. complex Gaussian with zero
mean and unit variance. The joint p.d.f. of the ordered strictly positive
eigenvalues of the Wishart matrix HH†, λ1 ≥ . . . ≥ λt, equals

e−
∑t

i=1 λi

t
∏

i=1

λr−t
i

(t − i)! (r − i)!

t
∏

i<j

(λi − λj)
2 (10)

where t and r are the minimum and maximum of the dimensions of H. The
marginal p.d.f. of the unordered eigenvalues is

gr,t(λ) =
1

t

t−1
∑

k=0

k!

(k + r − t)!

[

Lr−t
k (λ)

]2
λr−te−λ (11)

where the Laguerre polynomials are

Ln
k(λ) =

eλ

k!λn

dk

dλk

(

e−λλn+k
)

. (12)
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Singular Values2: Fisher-Hsu-Girshick-Roy
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Figure 4: Joint p.d.f. of the unordered positive eigenvalues of the Wishart
matrix HH† with n = 3 and m = 2. (Scaled version of (10).)
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Asymptotic Distribution of Singular Values:
Quarter circle law

Consider an N × N matrix H whose entries are independent zero-mean
complex (or real) random variables with variance 1

N , the asymptotic
distribution of the singular values converges to

q(x) =
1

π

√

4 − x2, 0 ≤ x ≤ 2 (13)
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Asymptotic Distribution of Singular Values:
Quarter circle law
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Figure 5: The quarter circle law compared a histogram of the average of 100 empirical
singular value density functions of a matrix of size 100 × 100.
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Minimum Singular Value of Gaussian Matrix

• A. Edelman, Eigenvalues and condition number of random matrices. PhD
thesis, Dept. Mathematics, MIT, Cambridge, MA, 1989.

• J. Shen, “On the singular values of Gaussian random matrices,” Linear
Algebra and its Applications, vol. 326, no. 1-3, pp. 1–14, 2001.

Theorem 7. The minimum singular value of an N × N standard complex
Gaussian matrix H satisfies

lim
N→∞

P [Nσmin ≥ x] = e−x−x2/2. (14)
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The Marc̆enko-Pastur Law

V. A. Marc̆enko and L. A. Pastur, “Distributions of eigenvalues for some
sets of random matrices,” Math USSR-Sbornik, vol. 1, pp. 457–483, 1967.

Theorem 8. Consider an N × K matrix H whose entries are independent
zero-mean complex (or real) random variables with variance 1

N and fourth
moments of order O( 1

N2). As K,N → ∞ with K
N → β, the empirical

distribution of H†H converges almost surely to a nonrandom limiting
distribution with density

fβ(x) =

(

1 − 1

β

)+

δ(x) +

√

(x − a)+(b − x)+

2πβx
(15)

where
a = (1 −

√

β)2 b = (1 +
√

β)2.
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The Marc̆enko-Pastur Law
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Figure 6: The Marc̆enko-Pastur density function for β = 1, 0.5, 0.2.
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Rediscovering/Strenghtening the Marc̆enko-Pastur Law

• U. Grenander and J. W. Silverstein, “Spectral analysis of networks with
random topologies,” SIAM J. of Applied Mathematics, vol. 32, pp. 449–
519, 1977.

• K. W. Wachter, “The strong limits of random matrix spectra for sample
matrices of independent elements,” The Annals of Probability, vol. 6,
no. 1, pp. 1–18, 1978.

• J. W. Silverstein and Z. D. Bai, “On the empirical distribution of
eigenvalues of a class of large dimensional random matrices,” J. of
Multivariate Analysis, vol. 54, pp. 175–192, 1995.

• Y. L. Cun, I. Kanter, and S. A. Solla, “Eigenvalues of covariance matrices:
Application to neural-network learning,” Physical Review Letters, vol. 66,
pp. 2396–2399, 1991.
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Generalizations needed!

• W = HTH†

• W = W0 + HH†

• W = W0 + HTH†

32



Transforms

1. Stieltjes transform

2. η transform

3. Shannon transform

4. Mellin transform

5. R-transform

6. S-transform
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Stieltjes Transform

Let X be a real-valued random variable with distribution FX(·). Its Stieltjes
transform is defined for complex arguments as

SX(z) = E

[

1

X − z

]

=

∫ ∞

−∞

1

λ − z
dFX(λ). (16)
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Stieltjes Transform and Moments

SX(z) = −1

z

∞
∑

k=0

E[Xk]

zk
. (17)
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Inverse Stieltjes Transform

T. J. Stieltjes, “Recherches sur les fractions continues,” Annales de la
Faculte des Sciences de Toulouse, vol. 8 (9), no. A (J), pp. 1–47 (1–122),
1894 (1895).

fX(λ) = lim
ω→0+

1

π
Im

[

SX(λ + j ω)

]

. (18)
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Stieltjes Transform of Semicircle law

w(x) =

{

1
2π

√
4 − x2 if |x| ≤ 2

0 if |x| > 2
(19)

Sw(z) =
1

2π

∫ 2

−2

√
4 − λ2

λ − z
dλ =

1

2

[

− z ±
√

z2 − 4

]

. (20)
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Stieltjes Transform of Marc̆enko-Pastur law

fβ(x) =

(

1 − 1

β

)+

δ(x) +

√

(x − a)+(b − x)+

2πβx
(21)

Sfβ(z) =

∫ b

a

1

λ − z
fβ(λ) dλ

=
1 − β − z ±

√

z2 − 2(β + 1)z + (β − 1)2

2βz
. (22)
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η transform

S. Verdú, “Large random matrices and wireless communications,” 2002
MSRI Information Theory Workshop, Feb 25–Mar 1, 2002.

Definition 3. The η-transform of a nonnegative random variable X is

ηX(γ) = E

[

1

1 + γX

]

(23)

where γ ≥ 0.

Note: 0 < ηX(γ) ≤ 1.
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Why Singular Values?

Minimum Mean Square Error =
1

K

K
∑

i=1

1

1 + SNR λi(H†H)
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η transform and Stieltjes transform

ηX(γ) =
SX(−1

γ)

γ
(24)

ηX(γ) =

∞
∑

k=0

(−γ)k
E[Xk], (25)
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η-Transform of Marc̆enko-Pastur law

Example: The η-transform of the Marc̆enko-Pastur law is

η(γ) = 1 − F(γ, β)

4 β γ
(26)

with

F(x, z) =

(

√

x(1 +
√

z)2 + 1 −
√

x(1 −
√

z)2 + 1

)2

. (27)
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Random Quadratic Forms

Z. D. Bai and J. W. Silverstein, “No eigenvalues outside the support of the
limiting spectral distribution of large dimensional sample covariance
matrices,” The Annals of Probability, vol. 26, pp. 316–345, 1998.

Theorem 9. Let the components of the N -dimensional vector x be zero-
mean and independent with variance 1

N . For any N × N nonnegative
definite random matrix B independent of x whose spectrum converges
almost surely,

lim
N→∞

x† (I + γB)
−1

x = ηB(γ) a.s. (28)

lim
N→∞

x† (B − zI)
−1

x = SB(z) a.s. (29)
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Shannon transform

S. Verdú, “Random matrices in wireless communication, proposal to the
National Science Foundation,” Feb. 1999.

Definition 4. The Shannon transform of a nonnegative random variable X

is defined as

VX(γ) = E[log(1 + γX)]. (30)

where γ ≥ 0
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Why Singular Values?

Shannon Capacity =
1

N

N
∑

i=1

log
(

1 + SNR λi(HH†)
)
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Stieltjes, Shannon and η

γ

log e

d

dγ
VX(γ) = 1 − 1

γ
SX

(

−1

γ

)

= 1 − ηX(γ) (31)
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Shannon transform of Marc̆enko-Pastur law

Example: The Shannon transform of the Marc̆enko-Pastur law is

V(γ) = log

(

1 + γ − 1

4
F (γ, β)

)

+
1

β
log

(

1 + γβ − 1

4
F (γ, β)

)

− log e

4 β γ
F (γ, β) (32)
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Mellin transform

Definition 5. The Mellin transform of a positive random variable X is given
by

MX(z) = E[Xz−1] (33)

where z belongs to a strip of the complex plane where the expectation is
finite.
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Mellin and Shannon transforms

R. Janaswamy, “Analytical expressions for the ergodic capacities of certain
MIMO systems by the Mellin transform,” Proc. of IEEE Global Telecomm.
Conf., vol. 1, pp. 287–291, Dec. 2003.

Theorem 10.
VX(γ) = M−1

Υ (γ) (34)

where M−1
Υ is the inverse Mellin transform of

Υ(z) = z−1Γ(z)Γ(1 − z)MX(1 − z) (35)
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R-transform

D. Voiculescu, “Addition of certain non-commuting random variables,” J.
Funct. Analysis, vol. 66, pp. 323–346, 1986.

Definition 6.

RX(z) = S−1
X (−z) − 1

z
. (36)
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R-transform and η-transform

ηX(γ) =
1

1 + γ RX(−γ ηX(γ))
(37)
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R-transform of the semicircle law

R(z) = z. (38)
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R-transform of the Marc̆enko-Pastur law

R(z) =
1

1 − βz
. (39)
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R-transform: Key theorem

D. Voiculescu, “Addition of certain non-commuting random variables,” J.
Funct. Analysis, vol. 66, pp. 323–346, 1986.

Theorem 11. If A and B are asymptotically free random matrices, then
the R-transform of their sum satisfies

RA+B(z) = RA(z) + RB(z) (40)

free analog of the log-moment generating function
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S-transform

D. Voiculescu, “Multiplication of certain non-commuting random variables,”
J. Operator Theory, vol. 18, pp. 223–235, 1987.

Definition 7. The S-transform of a nonnegative random variable X is

ΣX(x) = −x + 1

x
η−1

X (1 + x), (41)

which maps (−1, 0) onto the positive real line.
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S-transform of the Marc̆enko-Pastur law

Σ(x) =
1

1 + βx
. (42)
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S-transform: Key Theorem

D. Voiculescu, “Multiplication of certain non-commuting random variables,”
J. Operator Theory, vol. 18, pp. 223–235, 1987.

Theorem 12. Let A and B be nonnegative asymptotically free random
matrices. The S-transform of their product satisfies

ΣAB(x) = ΣA(x)ΣB(x) (43)
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Generalizations needed!

• W = HTH†

• W = W0 + HH†

• W = W0 + HTH†
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Asymptotic Spectrum of HTH†

V. A. Marc̆enko and L. A. Pastur, “Distributions of eigenvalues for some
sets of random matrices,” Math USSR-Sbornik, vol. 1, pp. 457–483, 1967.

Theorem 13.

• Let H be an N × K matrix whose entries are i.i.d. complex random
variables with variance 1

N .

• Let T be a K ×K Hermitian nonnegative random matrix, independent of
H, whose empirical eigenvalue distribution converges almost surely to a
nonrandom limit.

The empirical eigenvalue distribution of HTH† converges almost surely, as
K,N → ∞ with K

N → β, with ηHTH†(γ) = η the solution of:

β =
1 − η

1 − ηT(γη)
(44)
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Example

Further, if T = I, we have ηT (γ) = 1
1+γ , and (44) becomes:

η = 1 − β +
β

1 + γη
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Asymptotic Spectrum of HTH†

Theorem 14.

• Let H be an N × K matrix whose entries are i.i.d. complex random
variables with variance 1

N .

• Let T be a K ×K Hermitian nonnegative random matrix, independent of
H, whose empirical eigenvalue distribution converges almost surely to a
nonrandom limit.

The empirical eigenvalue distribution of HTH† converges almost surely, as
K,N → ∞ with K

N → β, with Shannon transform

VHTH†(γ) = βVT(ηγ) + log
1

η
+ (η − 1) log e (45)

61



Asymptotic Spectrum of W0 + HTH†

A. Tulino and S. Verdú, Random Matrix Theory and Wireless
Communications, Now Publishers, 2004

Theorem 15.

• Let H be an N × K matrix whose entries are i.i.d. complex random
variables with zero-mean and variance 1

N .

• Let T be a K × K positive definite random matrix whose empirical
eigenvalue distribution converges almost surely to a nonrandom limit.

• Let W0 be an N × N nonnegative definite diagonal random matrix
with empirical eigenvalue distribution converging almost surely to a
nonrandom limit.

• H, T, and W0 are independent

62



The empirical eigenvalue distribution of

W = W0 + HTH† (46)

converges almost surely, as K,N → ∞ with K
N → β, to a nonrandom

limiting distribution whose η-transform is the solution of the following pair
of equations:

γ η = ϕ η0 (ϕ) (47)

η = η0 (ϕ) − β (1 − ηT(γ η)) (48)

with η0 and ηT the η-transforms of W0 and T respectively.
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