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Goals

e Examine linear algebra problems with cardinality constraints
e Develop new formulations, and corresponding convex relaxations
e New formulations may offer insights into problem

e Ultimate objective is to derive estimates of the quality of the convex
relaxations
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Principal component analysis

PCA is a classic tool in multivariate data analysis

e Input: a n X n covariance matrix X
e Output: a sequence of factors ranked by variance

e Each factor is a /inear combination of the problem variables

Typical use: reduce the number of dimensions of a model while maximizing
the information (variance) contained in the simplified model

Principal component analysis



Solving the PCA problem

e The PCA problem can be solved via the eigenvalue decomposition of the

covariance matrix: N
Z T
i=1

e \{ >...> )\, >0 are the eigenvalues of X

e The corresponding eigenvectors x; are called the principal components, or
factors.
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PCA and rank-one approximation
e The first principal component, x1, can be obtained via the solution to the
rank-one approximation problem:

min ||¥ — zz! ||,
z

the solution of which is z = A\jx 21 .

(Here, ||A]|% = Tr AT A denotes the Frobenius norm of a matrix A.)

e Above problem can be reduced to the variational problem:
T . _
max x° Xz : ||zl =1,
e

the solution of which is z = z;.
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Looking for sparse factors

Gene expression data analysis. " explaining data with a few genes”

e PCA is used for clustering and visualizing data (gene responses vs. drugs)

e principal axes represent a combination of genes that are important in
explaining data

e the sparser the axes, the less genes are involved

e ultimately, a short list of genes that explain data could yield a universal
diagnostic chip

The sparse PCA problem



PCA vs. sparse PCA: example

PCA Sparse PCA
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Clustering of gene expression data in the PCA versus sparse PCA basis with
500 genes. The factors f on the left are dense and each use all 500 genes
while the sparse factors g1, g2 and g3 on the right involve 6, 4 and 4 genes
respectively. (Data source: Iconix Pharmaceuticals, Inc.)

The sparse PCA problem



Some previous work

e Vines (2000): restrict the factors’ coefficients in a small set of integers,
such as 0, 1, and —1

e Cadima and Jolliffe (1995): simple threshold approach
e Jolliffe and Udin (2003): SCoTLASS

e Zou, Hastie and Tibshirani (2004): write PCA as a regression problem,
and add a [;-norm penalty to it

e d'Aspremont, El Ghaoui, Jordan, Lanckriet (2004): Direct sparse PCA

The sparse PCA problem
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Direct Sparse PCA

e Cardinality-penalized variational problem:

max z' Xz — pl|z/lo : [zf2 =1

where p > 0, and ||z||p denotes the number of non-zero elements in x

o Let X = 22’ and approximate problem by

max TrYXX —p||X|1 : X =0, TrX =1, Rank(X)=1

(]| - |1 denotes sum of absolute values)

e Dropping the rank constraint leads to an SDP

The sparse PCA problem
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Solving direct sparse PCA

e The direct sparse PCA problem

max TrYXX —pl|X]|1 : X>=0, TrX =1

can be solved as an SDP, via general-purpose interior-point methods

Complexity: O(n®log(1/¢))

e For large-scale problems, first-order methods (Nesterov, 2005) can be used

Complexity: O(n*y/logn/e)
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Problems with direct sparse PCA

e Direct sparse PCA relies on two relaxation steps:

o Lower bound on || - ||g-norm: via Cauchy-Schwartz inequality,

Vo, |zl =1 : [lzllo > lzlly

T

o Rank relaxation: lift xx* — X, and drop rank constraint on X

e Analysis of the quality of the approximation seems to be difficult

The sparse PCA problem
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Equality vs. inequality model

Sparse PCA problem:
6 :=max 2"Sz — plleflo : [lofla=1
We will develop SDP bounds for the related quantity:

§ = max 7S — pllzllp © [zf2<1

Fact: (assume WLOG X171 > ... > X,,)

~

o If p> 311, then p =0, ¢ = 311 — p (with optimizer z*

o If p< X1, thenp =0 >0

In the sequel, assume p < X1

New formulation and SDP relaxation
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Towards a new formulation

Our problem:
6 = max o7 — pllefo ¢ faflo <1 (1)

We have

¢= max max y D(u)XD(u)y —p- 11w, (2)
ue{0,1}" yTy<1

where D(u) := diag(u)
e The boolean vector u represents the sparsity pattern of an optimal solution
e Optimal (y,u) in (2) related to optimal = in (1) by

z = D(u)y
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Towards a new formulation (cont’d)

Eliminating y in (2), obtain
6 = maxa"Sa—pllely : folls <1

T T
— ma ma, D(uw)XD(uwy —p-1"u
LRx, max (u)XD(u)y —p

— A (D (1) XD —p-17
e (D(u)XD(u)) —p- 1" u

e Optimal y is an eigenvector corresponding to A,.x above

e Optimal z is z = D(u)y

New formulation and SDP relaxation
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Towards a new formulation (cont’d)

o Cholesky decomposition: Let 3 = AT A, where A = [a; ...a,], with
a; € R™, i=1,...,n, and m = Rank(X)

e Our previous formulation leads to a formulation based on eigenvalue
maximization:

¢= max Amax(D(u)AT"AD(u)) —p- 11y
uwef{0,1}7

New formulation and SDP relaxation
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Towards a new formulation (cont’d)

o Cholesky decomposition: Let 3 = AT A, where A = [a; ...a,], with
a; € R™, i=1,...,n, and m = Rank(X)

e Our previous formulation leads to a formulation based on eigenvalue
maximization:

¢= max Amax(D(u)ATAD(u)) —p- 11y
uwef{0,1}7

- Amax(AD(u)?AT) — p- 17
e (AD(u)*A%) —p-1"u

New formulation and SDP relaxation
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Towards a new formulation (cont’d)

o Cholesky decomposition: Let 3 = AT A, where A = [a; ...a,], with
a; € R™, i=1,...,n, and m = Rank(X)

e Our previous formulation leads to a formulation based on eigenvalue
maximization:

¢= max Amax(D(u)ATAD(u)) —p- 11y

ue{0,1}"
— Moo (AD(u)2ATY — p 17
e (AD(u)*A%) —p-1"u
= Amax (AD(w)ATY — p- 17
Jhax (AD(u)A") —p-1"u

New formulation and SDP relaxation
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Eigenvalue maximization problem

e Using the convexity of the largest eigenvalue function, we obtain the
representation

= max Amax U;Q;Q —p-1"u.
¢ uE[O:i( Z P
e Set B, :=aja: —p-1,,,1=1,...,n, and express ¢ as

® = max Amax E u; B; |,

uel0,1]™

e The computation of ¢ can be interpreted as a eigenvalue maximization
problem, where the sparsity pattern wu is the decision variable

New formulation and SDP relaxation
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We have

An alternate expression

uén(?}f Amax <Z u; B )
n
T T T
max max Ui A —p-1"u
uel0,1]™ ¢Te<1 : (zzl Y ) S

n

max > ((al€)* — peTe).,

Te<1 =

max » ((a; €)% —p)y
ehe=1 13

New formulation and SDP relaxation
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Try rank relaxation?

6 = max Y (a7~ p)s
§e=l T

- m)?X;(aiTXai—p)Jr : X =0, TrX =1, Rank(X)=1

INA

m}%x;(a,&r){ai—p)_'_ : X =0, TrX =1

e Rank relaxation is actually exact (< is an equality) . . .

e ... Unfortunately, it is useless as the rank-relaxed problem is still not
convex!

New formulation and SDP relaxation
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Recovering the sparsity pattern

We have obtained
¢ = max ((a] €)* — p)+
Sl T

e An optimal sparsity pattern wu is obtained from an optimal solution & to
the above problem by setting

L if (aj €)% > p,
U; = .
0O otherwise

Thus, for every i such that p > al a;, we can always assume that the
optimal sparsity pattern satisfies u; = 0 (ignore a;)

e In the sequel, we assume WLOG a} a; > p for every i

New formulation and SDP relaxation



SDP relaxa

Our new formulation is (having set B; = a;a

¢ = max Apax
u€el0,1]n
SDP relaxation:
¢ < w = 1min )\max ZYZ

(Yi)ie,

New formulation and SDP relaxation

tion

i = In):

>
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SDP relaxation

Our new formulation is (having set B; = a;al — p- I,,,):

; —

— )\max sz
o= . e ()

1=1

SDP relaxation:

(Yi)izy

¢§¢: min Amax(ZE) . Y;ZBz, EZO, izl,...,n
1=1

Proof: if (Y;)*_; is feasible for the above SDP, then for every £ € R™,
¢1¢ <1, and u € [0,1]", we have

¢t (Z uiBi> § < Z(‘STBig)-l- <¢r (Z YL> <y
i—1 i—1 i—1

New formulation and SDP relaxation
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Dual of SDP relaxation

Dual problem is

p = max Y TrPB; : X=P=0, i=1..n TrX=1
= max Tr()(1/26%-61?)(1/2 pX) : X >0, Tr X =1,
+

where Tr B = sum of non-negative eigenvalues of symmetric matrix B

New formulation and SDP relaxation
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Dual of SDP relaxation (cont’d)

The bound ¢ < can also be inferred directly from the dual:

¢ = max » ((a;€)"—p)+
§he=1 i

- m)?x;(af)(ai—p)+ . X >0, TrX =1, Rank(X) =1

= max 3 Tr (Xl/Zaianl/Z - pX) . X0, TrX =1, Rank(X) =

i=1 +
< max {ZTr(Xlﬂaia;TleﬂpX) : X =0, TrX:l}:¢
x i=1 +

If Rank(X) = 1 at the optimum of the dual problem, then < becomes an
equality, and ¢ = 1

New formulation and SDP relaxation 28
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Quality of SDP relaxation (1)

(Inspired by Ben-Tal & Nemirovski, 2002)

Upper bound: ¢ < = o JBAX Z Tr (X1/2az TXl/2 pX)

,I:_

_|_

o Let X >0, Tr X =1, be optimal for 1), so that

n
¢ — § Qg
i=1
where

Bi(X) := XYV2B,; X112 = XY2(q;aT — pI) X2, o := Tr(B;(X)4)
e Let k:= Rank(X), assume k > 1
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Quality of SDP relaxation (2)
(Fixi € {1,...,n}, drop subscript on a;, B;(X) = X'2(a;al — pI) X'/?)

T

e In view of our assumption min; a; a; > p, B(X) has exactly one positive

eigenvalue, equal to a = Tr B

e Denote by —3; (8, > 0) the remaining non-zero eigenvalues; one can
show that
k—1
Zﬁj < p.
=1

e Assume & ~ N(0, I,,,); by rotational invariance of the normal distribution:

k—1
E("B(X)¢), =E | a&f - > B;&
j=1

_|_
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Quality of SDP relaxation (3)

Thus
k—1
E(TB(X > min E | a&? — £2
B = min B ag ;%H
p k—1
= E af%‘meﬁq
g=1 I
2 p?
> _ _ 2
- “ p+7r\/@ +k—1
+

Here we have used a result in Ben-Tal & Nemirovski (2002):

d
> i
i=1

2
VyeR! B > 2|yl

Quality estimate

+

32



Quality of SDP relaxation (4)

Summing over ¢, and with «; := Tr(B;(X)4), ¥ = >, o, we get:

n n 9
E;(ﬁTBi(X)fh > Z(aip+i\/a§+kp1)
_I_

1=1

1 9 2 2
> 2<¢n,0—|—7r\/¢2—|—;§p1>
_I_
1 1
> — (= ¢ E(£ X)),
7 s

provided ¢ > np.

Quality estimate
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Quality of SDP relaxation (5)

Assuming 1 > np:
e The previous bound implies that there exist £ € R™ such that
- Y
> _(E7Bi(X)8)+ > —(7X¢).

1=1

e Thus, with u; = 1 if £1'B;(X)€ > 0, u; = 0 otherwise, we obtain that
there exist £ € R™ and u € [0, 1]™ such that

7 (Z uiB@(X)) £ > %(ﬁTXg).
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Quality of SDP relaxation (5)

e With z = X1/2¢:

<§:uz )z>w (z12).

e We conclude that there exist u € [0, 1] such that

- 1
(w Z (,b 2) )\max <; usz> 2 ;’Qb

Quality estimate
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Quality of SDP relaxation (6)

When is condition 1) > np met?

Find a lower bound on %:

(¥ 2)¢ =max » (af Xai—p), + X =0, TrX =1
1=1

> maxaj a; — p (choose X = aja; /(ajaj), where j := arg max a; a;)
1 (]

1 T
maxa; a; . . .

n+1 i

Thus, condition ¥ > np is met when p <

... Don't forget we assumed p < a! a; for everyi . . .

Quality estimate 36



Quality of SDP relaxation: summary

Theorem: Assume

1
<min| min X,,.,—— max 2. |.
P <1gz‘gn Tn+1 1<i<n “’)

Then, .
;@b <o <.

Quality estimate

(3)
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Quality of SDP relaxation: summary

Theorem: Assume

1
<min| min X,,.,—— max 2. |.
P <1§7§§n Tn+1 1<i<n “’)

Then, .
;@b <o <. (4)

Corollary: Assume (WLOG) X171 > ... > X,,. If X satisfies
1
Vpe {2, .,n} : pr < —max Diiis
p 1

Then (4) holds for every p < ¥99.

Quality estimate 38
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Sparse solutions of linear equations

Minimum cardinality problem:

¢ :=min ||z|g : Ax =0b
where
e m<n, A=lay,...,a,] € RT*" hecR™

e ||z||p denotes the number of non-zero elements of x

Sparsity in linear systems
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The minimum cardinality problem

e Problem arises in a number of fields (compression, signal processing, etc)
e Problem is NP-hard

e A vast body of literature is attached to it

A classical approach: obtain a suboptimal solution by solving the LP
min ||z|; : Ax =b

In signal processing, approach is called "basis pursuit”
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Some previous approaches

e Convex approximation methods:

o Chen, Donoho (1994): basis pursuit
o Tropp (2004-5): analyze [1-norm approximation using QP duality

e Bayesian methods: Lewicki & Sejnowski (2000), Miller (2002)
e Greedy methods: e.g. Orthogonal Matching Pursuit, see Miller (2002)
e Global optimization: see Miller (2002)

e Nonlinear optimization: Rao, Kreutz-Delgado (1999)

Sparsity in linear systems
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A modified problem

We consider a slightly modified problem:
o(o) = mxin |zllo : Az =0, ||z|2 < o,
where o > 0 Is given.

e ¢ =lim,_ 1o ¢(0)

e Assume that A is full row rank, and that the above problem is feasible,i.e.

b (AAT) b < o7
e Norm constraint often makes sense from a practical point of view
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A boolean SDP formulation

The problem can be formulated as

(o) =min 17u : AD(u)y =b, |lylla <o, ue {0,1}",

U, T

where D(u) := diag(u), and x = D(u)y
Lemma: Jy € R, ||yl <1, By = b <= BB = bb!

Thus

¢(0) = min 17w : 0?AD(u)*A" = bb", v e {0,1}"

u

= min 17y : o7 Zuiaia? = bb', u € {0,1}"

U
1=1
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SDP bound

Relax the boolean constraint and obtain the lower bound

¢(0) > ¢(0) :=min 17u : ¢®> wa;a] = bb", ue[0,1)"

U
1=1

This an SDP, with dual:

n

(o) = max (b"Xb)/o® =) (a] Xa; — 1)

X0 :
1=1

Sparsity in linear systems
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An SOCP representation of the bound

The SDP bound can be expressed as

u

. ~1
(o) = (o) :=min 17u : b (Z uiaiaiT> b<o? wucl0,1]"
i=1

Usign QCQP duality, we obtain the equivalent representation

n

(o) = max 27z — o’ — ;((af2)2/u — 1)

e Above problem can be expressed as a (rotated cone) SOCP

e As such, can be efficiently solved

Sparsity in linear systems
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Link with the /{-norm approximation

We can also express the previous SOCP as the (non-convex) QCQP

n

(o) = max (b7€)*/o® = Y ((a]€)* — 1)+

: 1=1

For 0 — o0, the solution set to above problem converges to that of the LP

Y =max b’ ¢ : |a) €| <1, i=1,...,n,
)

which is the (dual of) the classical LP relaxation

Sparsity in linear systems
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Extensions

New formulations and bounds can be extended to other problems:
e sparse solutions to linear inequalities:
¢ :=min ||z||p : Ax <b
(Hint: previous formulation is convex inb . . . )

e penalized versions, such as

6 = min || Az — b|3 + pllz]|

Sparsity in linear systems
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Challenges

e Evaluate the quality of the SOCP bound

e Investigate the results for 0 — oo

Sparsity in linear systems
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Wrap-up

e \We investigated problems involving sparsity and linear systems
e We devised new formulations and corresponding SDP relaxations

e For the sparse PCA problem we obtained a quality estimate valid for small
penalty p

e Refined results in

L. El Ghaoui, Eigenvalue Maximization in Sparse PCA,
http://arxiv.org/abs/math.0C/0601448
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