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Goals

• Examine linear algebra problems with cardinality constraints

• Develop new formulations, and corresponding convex relaxations

• New formulations may offer insights into problem

• Ultimate objective is to derive estimates of the quality of the convex
relaxations
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Principal component analysis

PCA is a classic tool in multivariate data analysis

• Input: a n × n covariance matrix Σ

• Output: a sequence of factors ranked by variance

• Each factor is a linear combination of the problem variables

Typical use: reduce the number of dimensions of a model while maximizing
the information (variance) contained in the simplified model
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Solving the PCA problem

• The PCA problem can be solved via the eigenvalue decomposition of the
covariance matrix:

Σ =

n
∑

i=1

λixix
T
i

• λ1 ≥ . . . ≥ λn ≥ 0 are the eigenvalues of Σ

• The corresponding eigenvectors xi are called the principal components, or
factors.
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PCA and rank-one approximation

• The first principal component, x1, can be obtained via the solution to the
rank-one approximation problem:

min
z

‖Σ − zzT‖F ,

the solution of which is z = λ1x1x
T
1 .

(Here, ‖A‖2
F = TrATA denotes the Frobenius norm of a matrix A.)

• Above problem can be reduced to the variational problem:

max
x

xTΣx : ‖x‖2 = 1,

the solution of which is x = x1.
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Looking for sparse factors

Gene expression data analysis: ”explaining data with a few genes”

• PCA is used for clustering and visualizing data (gene responses vs. drugs)

• principal axes represent a combination of genes that are important in
explaining data

• the sparser the axes, the less genes are involved

• ultimately, a short list of genes that explain data could yield a universal
diagnostic chip

The sparse PCA problem 8



PCA vs. sparse PCA: example
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Clustering of gene expression data in the PCA versus sparse PCA basis with
500 genes. The factors f on the left are dense and each use all 500 genes
while the sparse factors g1, g2 and g3 on the right involve 6, 4 and 4 genes
respectively. (Data source: Iconix Pharmaceuticals, Inc.)
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Some previous work

• Vines (2000): restrict the factors’ coefficients in a small set of integers,
such as 0, 1, and −1

• Cadima and Jolliffe (1995): simple threshold approach

• Jolliffe and Udin (2003): SCoTLASS

• Zou, Hastie and Tibshirani (2004): write PCA as a regression problem,
and add a l1-norm penalty to it

• d’Aspremont, El Ghaoui, Jordan, Lanckriet (2004): Direct sparse PCA
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Direct Sparse PCA

• Cardinality-penalized variational problem:

max
x

xTΣx − ρ‖x‖0 : ‖x‖2 = 1

where ρ > 0, and ‖x‖0 denotes the number of non-zero elements in x

• Let X = xxT , and approximate problem by

max
X

TrΣX − ρ‖X‖1 : X º 0, TrX = 1, Rank(X) = 1

(‖ · ‖1 denotes sum of absolute values)

• Dropping the rank constraint leads to an SDP
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Solving direct sparse PCA

• The direct sparse PCA problem

max
X

TrΣX − ρ‖X‖1 : X º 0, TrX = 1

can be solved as an SDP, via general-purpose interior-point methods

Complexity: O(n6 log(1/ǫ))

• For large-scale problems, first-order methods (Nesterov, 2005) can be used

Complexity: O(n4
√

log n/ǫ)
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Problems with direct sparse PCA

• Direct sparse PCA relies on two relaxation steps:

◦ Lower bound on ‖ · ‖0-norm: via Cauchy-Schwartz inequality,

∀ x, ‖x‖2 = 1 : ‖x‖0 ≥ ‖x‖2
1

◦ Rank relaxation: lift xxT → X, and drop rank constraint on X

• Analysis of the quality of the approximation seems to be difficult
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Equality vs. inequality model

Sparse PCA problem:

φ := max
x

xTΣx − ρ‖x‖0 : ‖x‖2=1

We will develop SDP bounds for the related quantity:

φ̃ := max
x

xTΣx − ρ‖x‖0 : ‖x‖2≤1

Fact: (assume WLOG Σ11 ≥ . . . ≥ Σnn)

• If ρ ≥ Σ11, then φ̃ = 0, φ = Σ11 − ρ (with optimizer x∗ = e1)

• If ρ < Σ11, then φ̃ = φ > 0

In the sequel, assume ρ < Σ11
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Towards a new formulation

Our problem:
φ := max

x
xTΣx − ρ‖x‖0 : ‖x‖2 ≤ 1 (1)

We have

φ = max
u∈{0,1}n

max
yT y≤1

yTD(u)ΣD(u)y − ρ · 1Tu, (2)

where D(u) := diag(u)

• The boolean vector u represents the sparsity pattern of an optimal solution

• Optimal (y, u) in (2) related to optimal x in (1) by

x = D(u)y
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Towards a new formulation (cont’d)

Eliminating y in (2), obtain

φ = max
x

xTΣx − ρ‖x‖0 : ‖x‖2 ≤ 1

= max
u∈{0,1}n

max
yT y≤1

yTD(u)ΣD(u)y − ρ · 1Tu

= max
u∈{0,1}n

λmax(D(u)ΣD(u)) − ρ · 1Tu

• Optimal y is an eigenvector corresponding to λmax above

• Optimal x is x = D(u)y
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Towards a new formulation (cont’d)

• Cholesky decomposition: Let Σ = ATA, where A = [a1 . . . an], with
ai ∈ R

m, i = 1, . . . , n, and m = Rank(Σ)

• Our previous formulation leads to a formulation based on eigenvalue
maximization:

φ = max
u∈{0,1}n

λmax(D(u)ATAD(u)) − ρ · 1Tu
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Towards a new formulation (cont’d)

• Cholesky decomposition: Let Σ = ATA, where A = [a1 . . . an], with
ai ∈ R

m, i = 1, . . . , n, and m = Rank(Σ)

• Our previous formulation leads to a formulation based on eigenvalue
maximization:

φ = max
u∈{0,1}n

λmax(D(u)ATAD(u)) − ρ · 1Tu

= max
u∈{0,1}n

λmax(AD(u)2AT ) − ρ · 1Tu
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Towards a new formulation (cont’d)

• Cholesky decomposition: Let Σ = ATA, where A = [a1 . . . an], with
ai ∈ R

m, i = 1, . . . , n, and m = Rank(Σ)

• Our previous formulation leads to a formulation based on eigenvalue
maximization:

φ = max
u∈{0,1}n

λmax(D(u)ATAD(u)) − ρ · 1Tu

= max
u∈{0,1}n

λmax(AD(u)2AT ) − ρ · 1Tu

= max
u∈{0,1}n

λmax(AD(u)AT ) − ρ · 1Tu
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Eigenvalue maximization problem

• Using the convexity of the largest eigenvalue function, we obtain the
representation

φ = max
u∈[0,1]n

λmax

(

n
∑

i=1

uiaia
T
i

)

− ρ · 1Tu.

• Set Bi := aia
T
i − ρ · Im, i = 1, . . . , n, and express φ as

φ = max
u∈[0,1]n

λmax

(

n
∑

i=1

uiBi

)

,

• The computation of φ can be interpreted as a eigenvalue maximization
problem, where the sparsity pattern u is the decision variable
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An alternate expression

We have

φ = max
u∈[0,1]n

λmax

(

n
∑

i=1

uiBi

)

= max
u∈[0,1]n

max
ξT ξ≤1

ξT

(

n
∑

i=1

uiaia
T
i

)

ξ − ρ · 1Tu

= max
ξT ξ≤1

n
∑

i=1

((aT
i ξ)2 − ρξTξ)+

= max
ξT ξ=1

n
∑

i=1

((aT
i ξ)2 − ρ)+
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Try rank relaxation?

φ = max
ξT ξ=1

n
∑

i=1

((aT
i ξ)2 − ρ)+

= max
X

n
∑

i=1

(

aT
i Xai − ρ

)

+
: X º 0, TrX = 1, Rank(X) = 1

≤ max
X

n
∑

i=1

(

aT
i Xai − ρ

)

+
: X º 0, TrX = 1

• Rank relaxation is actually exact (≤ is an equality) . . .

• . . . Unfortunately, it is useless as the rank-relaxed problem is still not
convex!
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Recovering the sparsity pattern

We have obtained

φ = max
ξT ξ=1

n
∑

i=1

((aT
i ξ)2 − ρ)+

• An optimal sparsity pattern u is obtained from an optimal solution ξ to
the above problem by setting

ui =

{

1 if (aT
i ξ)2 > ρ,

0 otherwise

Thus, for every i such that ρ ≥ aT
i ai, we can always assume that the

optimal sparsity pattern satisfies ui = 0 (ignore ai)

• In the sequel, we assume WLOG aT
i ai > ρ for every i
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SDP relaxation

Our new formulation is (having set Bi = aia
T
i − ρ · Im):

φ = max
u∈[0,1]n

λmax

(

n
∑

i=1

uiBi

)

SDP relaxation:

φ ≤ ψ := min
(Yi)

n
i=1

λmax

(

n
∑

i=1

Yi

)

: Yi º Bi, Yi º 0, i = 1, . . . , n
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SDP relaxation

Our new formulation is (having set Bi = aia
T
i − ρ · Im):

φ = max
u∈[0,1]n

λmax

(

n
∑

i=1

uiBi

)

SDP relaxation:

φ ≤ ψ := min
(Yi)

n
i=1

λmax

(

n
∑

i=1

Yi

)

: Yi º Bi, Yi º 0, i = 1, . . . , n

Proof: if (Yi)
n
i=1 is feasible for the above SDP, then for every ξ ∈ R

m,
ξTξ ≤ 1, and u ∈ [0, 1]n, we have

ξT

(

n
∑

i=1

uiBi

)

ξ ≤
n

∑

i=1

(ξTBiξ)+ ≤ ξT

(

n
∑

i=1

Yi

)

ξ ≤ ψ
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Dual of SDP relaxation

Dual problem is

ψ = max
X,(Pi)

n
i=1

n
∑

i=1

TrPiBi : X º Pi º 0, i = 1, . . . , n, TrX = 1

= max
X

n
∑

i=1

Tr
(

X1/2aia
T
i X1/2 − ρX

)

+
: X º 0, TrX = 1,

where TrB+ = sum of non-negative eigenvalues of symmetric matrix B
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Dual of SDP relaxation (cont’d)

The bound φ ≤ ψ can also be inferred directly from the dual:

φ = max
ξT ξ=1

n
∑

i=1

((aT
i ξ)2 − ρ)+

= max
X

n
∑

i=1

(

aT
i Xai − ρ

)

+
: X º 0, TrX = 1, Rank(X) = 1

= max
X

n
∑

i=1

Tr
(

X1/2aia
T
i X1/2 − ρX

)

+
: X º 0, TrX = 1, Rank(X) =

≤ max
X

{

n
∑

i=1

Tr
(

X1/2aia
T
i X1/2 − ρX

)

+
: X º 0, TrX = 1

}

= ψ

If Rank(X) = 1 at the optimum of the dual problem, then ≤ becomes an
equality, and φ = ψ

New formulation and SDP relaxation 28



Outline

• Principal component analysis

• The sparse PCA problem

• New formulation and SDP relaxation

• Quality estimate

• Sparsity in linear systems

29



Quality of SDP relaxation (1)

(Inspired by Ben-Tal & Nemirovski, 2002)

Upper bound: φ ≤ ψ = max
Xº0, Tr X=1

n
∑

i=1

Tr
(

X1/2aia
T
i X1/2 − ρX

)

+

• Let X º 0, TrX = 1, be optimal for ψ, so that

ψ =
n

∑

i=1

αi,

where

Bi(X) := X1/2BiX
1/2 = X1/2(aia

T
i − ρI)X1/2, αi := Tr(Bi(X)+)

• Let k := Rank(X), assume k > 1
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Quality of SDP relaxation (2)

(Fix i ∈ {1, . . . , n}, drop subscript on αi, Bi(X) = X1/2(aia
T
i − ρI)X1/2)

• In view of our assumption mini a
T
i ai > ρ, B(X) has exactly one positive

eigenvalue, equal to α = TrB+

• Denote by −βj (βj > 0) the remaining non-zero eigenvalues; one can
show that

k−1
∑

j=1

βj ≤ ρ.

• Assume ξ ∼ N (0, Im); by rotational invariance of the normal distribution:

E(ξTB(X)ξ)+ = E



αξ2
1 −

k−1
∑

j=1

βjξ
2
j−1





+
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Quality of SDP relaxation (3)

Thus

E(ξTB(X)ξ)+ ≥ min
β≥0,

∑

j βj≤ρ
E



αξ2
1 −

k−1
∑

j=1

βjξ
2
j+1





+

= E



αξ2
1 −

ρ

k − 1

k−1
∑

j=1

ξ2
j+1





+

≥



α − ρ +
2

π

√

α2 +
ρ2

k − 1





+

Here we have used a result in Ben-Tal & Nemirovski (2002):

∀ γ ∈ R
d : E

∣

∣

∣

∣

∣

d
∑

i=1

γiξ
2
i

∣

∣

∣

∣

∣

≥ 2

π
‖γ‖2
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Quality of SDP relaxation (4)

Summing over i, and with αi := Tr(Bi(X)+), ψ =
∑n

i=1 αi, we get:

E

n
∑

i=1

(ξTBi(X)ξ)+ ≥
n

∑

i=1



αi − ρ +
2

π

√

α2
i +

ρ2

k − 1





+

≥ 1

2



ψ − nρ +
2

π

√

ψ2 +
n2ρ2

k − 1





+

≥ 1

π
ψ (=

1

π
ψ E(ξTXξ)),

provided ψ ≥ nρ.
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Quality of SDP relaxation (5)

Assuming ψ ≥ nρ:

• The previous bound implies that there exist ξ ∈ R
m such that

n
∑

i=1

(ξTBi(X)ξ)+ ≥ ψ

π
(ξTXξ).

• Thus, with ui = 1 if ξTBi(X)ξ > 0, ui = 0 otherwise, we obtain that
there exist ξ ∈ R

m and u ∈ [0, 1]n such that

ξT

(

n
∑

i=1

uiBi(X)

)

ξ ≥ ψ

π
(ξTXξ).
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Quality of SDP relaxation (5)

• With z = X1/2ξ:

zT

(

n
∑

i=1

uiBi

)

z ≥ ψ

π
· (zTz).

• We conclude that there exist u ∈ [0, 1]n such that

(ψ ≥ φ ≥) λmax

(

n
∑

i=1

uiBi

)

≥ 1

π
ψ
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Quality of SDP relaxation (6)

When is condition ψ ≥ nρ met?

Find a lower bound on ψ:

(ψ ≥)φ = max
X

n
∑

i=1

(

aT
i Xai − ρ

)

+
: X º 0, TrX = 1

≥ max
i

aT
i ai − ρ (choose X = aja

T
j /(aT

j aj), where j := arg max
i

aT
i ai)

Thus, condition ψ ≥ nρ is met when ρ ≤ 1

n + 1
max

i
aT

i ai . . .

. . . Don’t forget we assumed ρ < aT
i ai for every i . . .
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Quality of SDP relaxation: summary

Theorem: Assume

ρ < min

(

min
1≤i≤n

Σii,
1

n + 1
max

1≤i≤n
Σii

)

.

Then,
1

π
ψ ≤ φ ≤ ψ. (3)
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Quality of SDP relaxation: summary

Theorem: Assume

ρ < min

(

min
1≤i≤n

Σii,
1

n + 1
max

1≤i≤n
Σii

)

.

Then,
1

π
ψ ≤ φ ≤ ψ. (4)

Corollary: Assume (WLOG) Σ11 ≥ . . . ≥ Σnn. If Σ satisfies

∀ p ∈ {2, . . . , n} : Σpp <
1

p
max

i
Σii,

Then (4) holds for every ρ < Σ22.
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Sparse solutions of linear equations

Minimum cardinality problem:

φ := min ‖x‖0 : Ax = b

where

• m ≤ n, A = [a1, . . . , an] ∈ R
m×n, b ∈ R

m

• ‖x‖0 denotes the number of non-zero elements of x

Sparsity in linear systems 40



The minimum cardinality problem

• Problem arises in a number of fields (compression, signal processing, etc)

• Problem is NP-hard

• A vast body of literature is attached to it

A classical approach: obtain a suboptimal solution by solving the LP

min ‖x‖1 : Ax = b

In signal processing, approach is called ”basis pursuit”
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Some previous approaches

• Convex approximation methods:

◦ Chen, Donoho (1994): basis pursuit
◦ Tropp (2004-5): analyze l1-norm approximation using QP duality

• Bayesian methods: Lewicki & Sejnowski (2000), Miller (2002)

• Greedy methods: e.g. Orthogonal Matching Pursuit, see Miller (2002)

• Global optimization: see Miller (2002)

• Nonlinear optimization: Rao, Kreutz-Delgado (1999)
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A modified problem

We consider a slightly modified problem:

φ(σ) := min
x

‖x‖0 : Ax = b, ‖x‖2 ≤ σ,

where σ > 0 is given.

• φ = limσ→+∞ φ(σ)

• Assume that A is full row rank, and that the above problem is feasible,i.e.

bT (AAT )−1b ≤ σ2

• Norm constraint often makes sense from a practical point of view
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A boolean SDP formulation

The problem can be formulated as

φ(σ) = min
u,x

1Tu : AD(u)y = b, ‖y‖2 ≤ σ, u ∈ {0, 1}n,

where D(u) := diag(u), and x = D(u)y

Lemma: ∃ y ∈ R
n, ‖y‖2 ≤ 1, By = b ⇐⇒ BBT º bbT

Thus

φ(σ) = min
u

1Tu : σ2AD(u)2AT º bbT , u ∈ {0, 1}n

= min
u

1Tu : σ2
n

∑

i=1

uiaia
T
i º bbT , u ∈ {0, 1}n
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SDP bound

Relax the boolean constraint and obtain the lower bound

φ(σ) ≥ ψ(σ) := min
u

1Tu : σ2
n

∑

i=1

uiaia
T
i º bbT , u ∈ [0, 1]n

This an SDP, with dual:

ψ(σ) = max
Xº0

(bTXb)/σ2 −
n

∑

i=1

(aT
i Xai − 1)+

Sparsity in linear systems 45



An SOCP representation of the bound

The SDP bound can be expressed as

ψ(σ) = ψ(σ) := min
u

1Tu : bT

(

n
∑

i=1

uiaia
T
i

)−1

b ≤ σ2, u ∈ [0, 1]n

Usign QCQP duality, we obtain the equivalent representation

ψ(σ) = max
z, µ≥0

2bTz − µσ2 −
n

∑

i=1

((aT
i z)2/µ − 1)+

• Above problem can be expressed as a (rotated cone) SOCP

• As such, can be efficiently solved
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Link with the l1-norm approximation

We can also express the previous SOCP as the (non-convex) QCQP

ψ(σ) = max
ξ

(bTξ)2/σ2 −
n

∑

i=1

((aT
i ξ)2 − 1)+

For σ → ∞, the solution set to above problem converges to that of the LP

ψ = max
y

bT ξ : |aT
i ξ| ≤ 1, i = 1, . . . , n,

which is the (dual of) the classical LP relaxation

Sparsity in linear systems 47



Extensions

New formulations and bounds can be extended to other problems:

• sparse solutions to linear inequalities:

φ := min ‖x‖0 : Ax ≤ b

(Hint: previous formulation is convex in b . . . )

• penalized versions, such as

φ := min
x

‖Ax − b‖2
2 + ρ‖x‖0
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Challenges

• Evaluate the quality of the SOCP bound

• Investigate the results for σ → ∞

Sparsity in linear systems 49



Wrap-up

• We investigated problems involving sparsity and linear systems

• We devised new formulations and corresponding SDP relaxations

• For the sparse PCA problem we obtained a quality estimate valid for small
penalty ρ

• Refined results in

L. El Ghaoui, Eigenvalue Maximization in Sparse PCA,
http://arxiv.org/abs/math.OC/0601448
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