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The generalized problem of moments (GPM)

min
µ∈M(K)

{
∫

f0 dµ |
∫

fj dµ
=
≥ bj, j = 1, . . . , p }

with K ⊆ Rn and M(K) a convex set of finite Borel measures on

K. We even consider the more general GPM

min
µi∈M(Ki)

{
∑
i∈I

∫
foi dµi |

∑
i∈I

∫
fji dµi

=
≥ bj, j = 1,2, . . .}

where for all i ∈ I, Ki ⊆ Rni and M(Ki) is a convex set of finite

Borel measures on Ki. The index set I may be countable.
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• GPM has great modelling power, in various fields.
Global Optimization (continuous, discrete), Control (Robust and
optimal control), Nonlinear Equations, Probability and Statistics,
Performance Evaluation (in e.g. Mathematical finance, Markov
chains), Inverse Problems (cristallography, tomography), Numer-
ical multivariate Integration, etc ...

• GPM is a useful theoretical tool to prove existence and char-
acterization of optimal solutions.

• BUT ... in full generality .... GPM is unsolvable numerically.

HOWEVER ... if the Ki , (⊂ Rni) are basic semi-algebraic sets
and the fij are polynomials (or even piecewise polynomials), then
... by using results of real algebraic geometry and on the problem
of moments, one may now define efficient numerical approxima-
tion chemes, based on Semidefinite Programming (SDP).

4



• the Generalized Problem of Moments (GPM)

• Some applications

• Duality between moments and nonnegative polynomials

• SDP-relaxations for the basic GPM

• s.o.s. vs nonnegative polynomials. Alternative SDP-relaxations

• How to handle sparsity

5



A few examples:

PROBLEM 1: Probability:
Let K ⊆ Rn, S ⊂ K be Borel subsets, and Γ ⊂ Nn,

Finding an upper bound (if possible optimal) on Prob (X ∈ S),
the probability that a K-valued random variable X ∈ S, given
some of its moments γ = {γα}, α ∈ Γ ⊂ Nn ....

.... is equivalent to solving:

sup
µ∈M(K)

{ µ(S) |
∫

xα dµ = γα, α ∈ Γ}

• M(K) is the (convex) set of probability measures on K ⊆ Rn.

• fα ≡ xα, α ∈ Γ (polynomial); f0 = IS (piecewise polynomial)
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PROBLEM 2: Moments problems in financial economics:

Under no arbitrage, the price of an European Call Option with
strike k, is given by E[(X − k)+] where E is the expectation
operator w.r.t. the distribution of the underlying asset X.

Hence, finding an (optimal) upper bound on the price of a Eu-
ropean Call Option with strike k, given the first p moments {γj},
reduces to solving:

sup
µ∈M(K)

{
∫

(x− k)+ dµ |
∫

xj dµ = γj, j = 1, . . . , p }

with K = R+, and M(K) the set of probability measures on K.

fj ≡ xj (polynomials), and f0 ≡ (x− k)+ (piecewise polynomial)
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PROBLEM 3: Global Optimization:

Let K ⊆ Rn, f : Rn → R, and consider the optimization problem

f∗ := inf
x
{ f(x) | x ∈ K }

with f∗ being the global minimum.

Finding f∗ is equivalent to solving

inf
µ∈M(K)

∫
f dµ

with M(K) being the set of probability measures on K.
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PROBLEM 4: Measures with given marginals:

Let Kj ⊂ Rnj, j = 1, . . . , p, and K := K1 ×K2 · · · ×Kp ⊂ Rn, and
with natural projections πj : K :→ Kj, j = 1, . . . , p.
Let νj be a given Borel measure on Kj, j = 1, . . . , p,

For a measure µ on K, denote πj µ its marginal on Kj, i.e.

πj µ(B) := µ (π−1
j (B)) = µ ({x ∈ K : πj x ∈ B}), B ∈ B(Kj)

inf
µ∈M(K)

{
∫

f dµ | πj µ = νj, j = 1, . . . , p }

with M(K) being the set of finite Borel measures on K.

Generalization of the famous Monge-Kantorovich transportation
problem, with many other interesting applications, particularly in
Probability.
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•• If Kj is compact then the constraint on marginal

πj µ = νj

is equivalent to the countably many linear equalities

∫
xα dµ =

∫
xα dνj, ∀α ∈ Nnj

between moments of µ and νj ...

because the space of polynomials is dense (for the sup-norm) in

the space C(Kj) of continuous functions on Kj.
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PROBLEM 5: Deterministic Optimal Control:

j∗ := min
u

∫ T

0
h(s, x(s), u(s)) ds + H(x(T ))

ẋ(s) = f(s, x(s), u(s)), s ∈ [0, T )

(x(s), u(s)) ∈ X × U, s ∈ [0, T )

x(T ) ∈ XT ,

(1)

and with initial condition x(0) = x0 ∈ X, and

- X, XT ⊂ Rn and U ⊂ Rm are basic semi-algebraic sets.

- h, f ∈ R[t, x, u], H ∈ R[x]
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Let u = {u(t), 0 ≤ t < T} be an admissible control.

Introduce the probability measure νu on Rn, and the measure µu

on [0, T ]×Rn ×Rm, defined by

νu(B) := IB [x(T )], B ∈ Bn

µu(A×B × C) :=
∫
[0,T ]∩A

IB×C [(x(s), u(s))] ds,

for all hyper-rectangles (A, B, C).

The measure µu is called the occupation measure of the state-

action (deterministic) process (s, x(s), u(s)) up to time T , whereas

νu is the occupation measure of the state x(T ) at time T .
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• Observe that for an admissible trajectory (s, x(s), u(s))

ẋ(t) = f(t, x(t), u(t)), t ∈ [0, T )

implies that for suitable g : [0, T ]×X → R, the time integration

g(x(T )) = g(0, x(0))+
∫ T

0

∂g(s, x(s))

∂t
+

∂g(s, x(s))

∂x
f(s, x(s), u(s)) ds

is equivalent to the spatial integration∫
XT

gT dνu = g(0, x0) +
∫
[0,T ]×X×U

[
∂g

∂t
+

∂g

∂x
f

]
dµu

with gT (x) := g(T, x) for all x.
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• Similarly, the criterion
∫ T

0
h(s, x(s), u(s)) ds + H(x(T )) reads∫

XT

H dνu +
∫
[0,T ]×X×U

h dµu = Ly(H) + Lz(h).

The so-called weak formulation is the infinite-dimensional LP

ρ∗ = minµ,ν

∫
H dν +

∫
h dµ

s.t.
∫

gT dν −
∫

∂g

∂t
+

∂g

∂x
f dµ = g(0, x0), ∀ g ∈ R[t, x]

µ : measure supported on [0, T ]×X × U
ν : prob. measure supported on XT

• Theorem: [R. Vinter]. If X, XT , U are compact, f(s, x, U) is

convex for all (s, x) ∈ [0, T ]×X, and h, H are convex, then ρ∗ = j∗.
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Duality

With M(K) the space of Borel prob. measures on K, the GPM

min
µ∈M(K)

{
∫

f0 dµ |
∫

fj dµ = bj, j = 1, . . . , p }

is the infinite-dimensional LP

min
µ∈M

{ 〈f0, µ〉 | 〈fj, µ〉 = bj, j = 1, . . . , p; 〈1, µ〉 = 1; µ ≥ 0 }

where M is the vector space of finite signed Borel measures

on K. The dual LP reads:

max
λ∈Rp,γ∈R

{ γ | f0 −
p∑

j=1

λj (fj − bj) ≥ γ on K }
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To solve (or at least approximate) either LP, one needs :

• to handle
∫

fj dµ, and

relatively simple and tractable characterizations of :

• measures µ with support contained in K, ... or

• f0 −
p∑

j=1

λj (fj − bj) nonnegative on K.
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A first good news ...

When K ⊂ Rn is the basic compact semi-algebraic set

K := { x ∈ Rn | gj(x) ≥ 0, j = 1, . . . , m }

with {gj} ⊂ R[x] (= R[x1, . . . , xn]) ...

Powerful results of real algebraic geometry and on the moment

problem, provide necessary and sufficient conditions for :

• a finite Borel measure µ to be supported on K (i.e., µ(Kc) = 0)

• a polynomial f to be > 0 on K.

As one may expect, the conditions are dual to each other ....

18



A second good news ... (continued)

In both cases ... these conditions can translate into Linear
Matrix Inequalities (LMI) on :

• the moments yα :=
∫

xα dµ, α ∈ Nn, of µ (with support in K)

• the coefficients {qjα} of sum of squares (s.o.s.) polynomials
{qj}m

j=0 ⊂ R[x], in e.g. Putinar’s s.o.s. representation

f = q0 +
m∑

j=1

qj gj, if f > 0 on K.

† Linear Inequalities instead of LMIs are also available .. but less
efficient and ill-behaved ... despite so far, LP software packages
are more powerful than SDP packages!!
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Putinar-Jacobi-Prestel’s Positivstellensatz

Let Q(g1, . . . , gm) be the quadratic module generated by the gj’s.

f ∈ Q(g1, . . . , gm) ⇒ f = f0 +
m∑

j=1

fj gj,

for some (finite) family {fj}m
j=0 of s.o.s. polynomials. It is an

obvious certificate of nonnegativity on K.

Assumption 1: There exists some u ∈ Q(g1, . . . , gm) such that

the level set {x ∈ Rn | u(x) ≥ 0} is compact.

Theorem (Putinar): Let K compact and Assumption 1 hold.

Then [ f ∈ R[x] and f > 0 on K ] ⇒ f ∈ Q(g1, . . . , gm).
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If one fixes an apriori bound on the degree of the s.o.s. poly-

nomials {fj}, checking f ∈ Q(g1, . . . , gm) reduces to solving a

SDP!!

Moreover, Assumption 1 holds true if e.g.

- all the gj’s are linear (hence K is a polytope), or if

- the set { x | gj(x) ≥ 0} is compact for some j ∈ {1, . . . , m}.

If x ∈ K ⇒ ‖x‖ ≤ M for some (known) M , then it suffices to

add the redundant quadratic constraint M2 − ‖x‖2 ≥ 0, in the

definition of K.
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Putinar’s dual condition: The K-moment problem

Let v(x) = {xα} := [1, x1, . . . , xn, x2
1, x1x2, . . .] be a basis for R[x],

and let y := {yα} be a given sequence indexed in the basis v(x).

Given K⊂ Rn, does there exist a measure µ on K, such that

yα =
∫
K

xα dµ, ∀α ∈ Nn

Given y = {yα}, let Ly : R[x] → R, be the linear functional

f (=
∑
α

fα xα) 7→ Ly(f) :=
∑

α∈Nn

fα yα.

22



Recall that K ⊂ Rn is the semi-algebraic set

K := { x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m}.

Assumption 1: There exists some u ∈ Q(g1, . . . , gm) such that

the level set {x ∈ Rn | u(x) ≥ 0} is compact.

Theorem (Putinar): Let K compact, and Assumption 1 hold.

Then y = {yα} has a representing measure µ on K if and only if

(**) Ly(f2); Ly(f2 gj) ≥ 0, ∀j = 1, . . . , m; ∀ f ∈ R[x]

Checking (**) for all f ∈ R[x] with degree less than r, reduces

to solving an SDP ... to check!!
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Given y = {yα} indexed in the basis v(x), introduce the moment

matrix Mr(y) with rows and columns also indexed in the basis

v(x), and defined as follows:

Mr(y)(α, β) := Ly(x
α+β) = yα+β, α, β ∈ Nn, |α|, |β| ≤ r.

For instance, and for illustration purposes, in R2,

M1(y) =


y00 | y10 y01
− − −

y10 | y20 y11
y01 | y11 y02


Then [

Ly(f
2) ≥ 0, ∀f,deg(f) ≤ r

]
⇔ Mr(y) � 0
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Similarly, given θ ∈ R[x], x 7→ θ(x) =
∑

γ θγ xγ, one defines the

localizing matrix Mr(θ y), with respect to y, θ, also indexed in the

basis v(x), by

Mr(θ y)(α, β) = Ly(θ xα+β) =
∑

γ∈Nn

θγ yα+β+γ,

{
α, β ∈ Nn

|α|, |β| ≤ r.

For instance, in R2, and with x 7→ θ(x) := 1− x2
1 − x2

2,

M1(θ y) =

 y00 − y20 − y02, y10 − y30 − y12, y01 − y21 − y03
y10 − y30 − y12, y20 − y40 − y22, y11 − y21 − y12
y01 − y21 − y03, y11 − y21 − y12, y02 − y22 − y04

 .

Then [
Ly(f

2 θ) ≥ 0, ∀f,deg(f) ≤ r
]

⇔ Mr(θ y) � 0
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SDP-relaxations for solving the basic GPM

min
µ∈M(K)

{
∫

f0 dµ |
∫

fj dµ = bj, j = 1, . . . , p }

(M(K) space of Borel prob. measures on K, and {fj} ⊂ R[x])

Let deg gi = 2vi or 2vi − 1. SDP-relaxation Qr reads:

Qr



min
y

Ly(f)

s.t. Mr(y) � 0
Mr−vi(gi y) � 0 i = 1, . . . m.
Ly(1) = 1

Ly(fj − bj) = 0 j = 1, . . . p.
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... whose dual is the SDP

Q∗
r



max
λ,γ,{qj}

γ

s.t. f0 −
p∑

j=1

λj (fj − bj)− γ = q0 +
m∑

j=1

qj gj

{qj} are s.o.s.; deg q0, deg qjgj ≤ 2r
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Recall that K ⊂ Rn is the semi-algebraic set

K := { x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m}.

Assumption 1: There exists some u ∈ Q(g1, . . . , gm) such that

the level set {x ∈ Rn | u(x) ≥ 0} is compact.

Theorem: Let K be compact, and let Assumption 1 hold,
and consider the basic GPM with optimal value ρ∗. Then :

• supQ∗
r ≤ inf Qr and inf Qr ↑ ρ∗ as r →∞

• If intK 6= ∅ and the GPM has a feasible solution with a density

supQ∗
r = maxQ∗

r = inf Qr ↑ ρ∗ .
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Detecting global optimality and extracting solutions

• When K is compact, then the basic GPM has an optimal so-

lution µ∗, with optimal value ρ∗.

• By Caratheodory theorem there exists an at most (p+2)-atomic

probability measure ϕ on K such that∫
fj dϕ =

∫
fj dµ, j = 1, . . . , p;

∫
f0 dϕ = ρ∗

• Let y be an optimal solution of Qr and let 2v ≥ maxj deg gj. If

rankMr(y) = rankMr−v(gj y) = s

minQr = ρ∗ and one may extract a s-atomic optimal solution ϕ.

30



GloptiPoly is a software package initially devoted to solving

global optimization problems with polynomials.

http://www.laas.fr/∼henrion/software

with detection of optimaility and extraction of solutions.

... New version to be realeased will solve GPM problems
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Nonnegative versus SOS polynomials.

Theorem (Blekherman): For fixed degree, the cone of nonnegative

polynomials is much larger than that of s.o.s.

... BUT ... let ‖f‖1 :=
∑
α
|fα|, for all f ∈ R[x]. Then

Theorem (Berg): The cone of s.o.s. polynomials is dense (for the

norm ‖.‖1) in the space of polynomials nonnegative on [−1,1]n.

The next question is: Given f ≥ 0 on [−1,1]n, can we find an

explicit sequence of s.o.s. polynomials {fε} converging to f as

ε ↓ 0? That is ‖fε − f‖1 → 0.
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Let f ∈ R[x] = R[x1, . . . , xn], and let x 7→ Θr(x) :=
∑n

i=1 x2r
i .

Theorem 1: Let f ∈ R[x] be a polynomial nonnegative on [−1,1]n.

Then for every ε > 0, there exists r(ε) ∈ N such that, for all r ≥ r(ε),

fεr := f + εΘr is s.o.s., and for all r ≥ r(ε), ‖f − fεr‖1 → 0 as ε ↓ 0.

• So one may approximate as closely as desired, any polynomial

f nonnegative on [−1,1]n, by a sequence {fεr} of s.o.s., by just

adding essential monomials {x2r
i }, with small coefficient ε.

• The s.o.s. approximation {fεr} is also uniform on [−1,1]n.

• In addition, the s.o.s. fεr := f + εΘr provides a certificate of

nonnegativity of f on [−1,1]n.
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I. Polynomials nonnegative on the whole Rn

Let f ∈ R[x] = R[x1, . . . , xn], and let x 7→ θr(x) :=
∑r

k=0
∑n

i=1
x2k

i
k! .

Theorem 1: Let f ∈ R[x] be a nonnegative polynomial.

Then for every ε > 0, there exists r(ε) ∈ N such that, for all r ≥ r(ε),

fεr := f + ε θr is s.o.s., and for all r ≥ r(ε), ‖f − fεr‖1 → 0 as ε ↓ 0.

• So perturbating any nonnegative polynomial f to fε, by adding

essential monomials {x2k
i
k! }, with small associated coefficients ε,

makes fε s.o.s., and close to f !

• The s.o.s. approximation {fεr} is uniform on compact sets!

• The s.o.s. fεr provides a certificate of nonnegativity of f .
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II. SOS approximations of polynomials nonnegative on a

real variety

Let V ⊂ Rn be the real algebraic set

V := {x ∈ Rn | gj(x) = 0, j = 1, . . . , m},

for some family of real polynomials {gj} ⊂ R[x].

Motivation: Provide a certificate of positivity for polynomials

f ∈ R[x], nonnegative on V . In addition, and in view of the many

potential applications, obtain if possible a representation that is

also useful from a computational point of view.

36



Theorem 2: Let f ∈ R[x] be nonnegative on V , and let

fεr = f + ε θr = f + ε
r∑

k=0

n∑
i=1

x2k
i

k!
, ε ≥ 0, r ∈ N.

(So, for every r ∈ N, ‖f − fεr‖1 → 0 as ε ↓ 0.)

Then, for every ε > 0, there exist nonnegative scalars {λj(ε)}m
j=1,

such that for all r sufficiently large (say r ≥ r(ε)),

fεr = f + εθr = qε −
m∑

j=1

λj(ε) g2
j ,

for some s.o.s. polynomial qε ∈ R[x]. In other words,

f + εθr +
m∑

j=1

λj(ε) g2
j is s.o.s.
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• The representation

fεr = f + εθr = qε −
m∑

j=1

λj(ε) g2
j ,

is an obvious certificate of nonnegativity of f on V as

fεr ≡ qε (s.o.s.), everywhere on V and θr is bounded

• Instead of a certificate for the approximation fεo = f + εθo =
f +ε of f , as in Schmüdgen, Putinar, Jacobi and Prestel, Krivine,
Vasilescu, ... one has a certificate for the approximation fεr =
f + ε θr.

• Notice that ‖fεo − f‖∞ → 0, whereas ‖fεr − f‖1 → 0 only. On
the other hand, this latter s.o.s. representation holds with no
assumption on the variety V , and the s.o.s. approximation is
uniform on compact subsets of V .

38



Consequences: Simplified SDP-relaxations

Theorem: Let V := {x ∈ Rn | gj(x) = 0, j = 1, . . . , m},
for some {gj} ⊂ R[x]. Assume that infx∈V f =: f∗ > −∞, with
f∗ = f(x∗) for some x∗ ∈ V .

(i) Let M > ‖x∗‖∞, and consider the SDP problem

Qr


min

y
Ly(f)

s.t. Mr(y) � 0

Ly(
∑m

j=1 g2
j ) ≤ 0; Ly(θr) ≤ neM2

; y0 = 1.

• Then: inf Qr = minQr ↑ f∗, as r →∞.

• If y(r) is an optimal solution of Qr then y
(r)
1 → x∗ if x∗ is unique.
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(ii) Given ε > 0 fixed, let fεr := f + εθr, and consider the SDP

problem

Qεr


min

y
Ly(fεr)

s.t. Mr(y) � 0

Ly(
∑m

j=1 g2
j ) ≤ 0; y0 = 1.

and its associated dual SDP problem Q∗
εr. Then:

f∗ ≤ supQ∗
εr ≤ inf Qεr ≤ f(x∗) + εθr(x∗) ≤ f∗ + ε

∑n
i=1 e(x∗)2i

provided that r is sufficiently large.
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(*) In all cases, each SDP-relaxation has a single LMI-constraint

Mr(y) � 0, and at most two linear equality/inequality.

(**) The LMI-constraint Mr(y) � 0 does not depend on the

problem data, and has a lot of structure, which could be exploited

in a specialized SDP-solver
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The no-free lunch rule ..... size of SDP-relaxations grows rapidly

with the original problem size ... In particular:

• O(n2r) variables for the rth SDP-relaxation in the hierarchy

• O(nr) matrix size for the LMIs

→ In view of the present status of SDP-solvers ... only small

to medium size problems can be solved by ”standard” SDP-

relaxations ...

→ .... How to handle larger size problems ?
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• develop more efficient general purpose SDP-solvers ... (limited

impact) ... or perhaps dedicated solvers ....?

• exploit symmetries when present ... Recent promising works by

De Klerk, Gaterman, Gvozdenovic, Laurent, Pasechnick, Parrilo,

Schrijver .. in particular for combinatorial optimization problems.

Algebraic techniques permit to define an equivalent SDP of much

smaller size.

• exploit sparsity in the data. In general, each constraint involves

a small number of variables, and the cost criterion is a sum of

polynomials involving also a small number of variables. Recent

works by Kim, Kojima, Lasserre, Maramatsu and Waki
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Basic idea : Let I = {1,2, . . . , n} be the index set of the n vari-

ables.

Then I =
p⋃

j=1

Ij and each constraint gk(x) ≥ 0 only involves

variables {xi} with i ∈ Il for some l.

Similarly, the cost function can be written f =
∑p

j=1 fj where

each fj involves variables {xi} with i ∈ Ij
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A typical example: discrete-time dynamical systems

Xt = f(Xt−1, Ut), t = 1,2, . . . T

with T blocks of variables (Xt−1, Xt, Ut), t = 1,2, . . . T .

• The coupling variables are the state-variables {Xt}.

• One usually has additional local constraints gt(Xt−1, Ut) ≥ 0.

• The cost functional f =
T∑

t=0

ft(Xt−1, Ut) + H(XT ).
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In recent works, Koijma’s group has developed a systematic pro-

cedure to discover sparsity patterns I =
p⋃

j=1

Ij.

Essentially one looks for maximal cliques {Ij} in some chordal
graph extension of a graph associated with the problem . Then:

1. One defines a set of moment variables, and a moment matrix
for each set of variables Ij.

2. If constraint gk(x) ≥ 0 contains only variables xi ∈ Ij for some
j, then the resulting localizing matrix w.r.t. gk is defined only
via the moments variables associated with Ij.

3. All moments associated with the vector of variables {xi} with
i ∈ Ij ∩ Ik, and expressed w.r.t. to Ij and Ik, are constrained to
be equal.
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The resulting rth (sparse) SDP-relaxation has

• at most p O(κ2r) variables and

• m LMIs of matrix size at most O(κr)

where κ := maxj=1,...,p |Ij|. So if κ ≈ n/p one has approximately

• p (n
p)

2r variables and m LMIs of matrix size at most (n
p)

r

instead of n2r and nr respectively.
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Theorem (Lasserre): if for every k = 2, . . . p

† Ik

⋂
(
k−1⋃
j=1

Ij) ⊆ Il for some l ≤ k − 1,

then the sparse SDP-relaxations defined above converge.

• Interestingly, † is called the running intersection property in

chordal graphs.

Examples with n large (say n = 500) and small κ (e.g. κ = 3,4)

are easily solved with Kojima’s group software SparsePOP

51


