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Goals of the talk

• Understand the behavior of the cen-

tral path and the Mizuno-Todd-Ye

predictor-corrector (MTY P-C) algo-

rithm for linear programming from the

geometric point of view

• Estimate the iteration complexity of the

MTY P-C algorithm in terms of the

integral of a certain curvature of the

central path

• Relate the above integral to a new

iteration complexity bound for the

MTY P-C algorithm involving a certain

condition number of the constraint

matrix A
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Talk Outline

• LP problem and assumptions;

• central path and its neighborhood;

• Mizuno-Todd-Ye predictor-corrector

(MTY P-C) algorithm;

• condition number and scale-invariance;

• iteration complexity bounds for the

MTY P-C alg.

– classical one (1990)

– new one (2003)

• illustrative LP instance

• curvature of the central path

• iteration complexity bounds in terms of

a curvature integral

• directions for future research
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The LP problem

(P) minimizex cTx

subject to Ax = b, x ≥ 0,

(D) maximize (y,s) bTy

subject to ATy + s = c, s ≥ 0,

Assumptions

1) (P) and (D) have interior-feasible solu-

tions.

2) the rows of the m × n matrix A are

linearly independent.

Definition: The duality gap of a feasible

w = (x,y, s) is given by

cTx− bTy = (ATy + s)Tx− bTy = xTs.
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Central path and its neighborhood

For each ν > 0, the system

XSe = ν e,

Ax− b = 0, (x, s) ≥ 0,

ATy + s− c = 0,

where X = Diag(x), S = Diag(s) and

e = (1, . . . ,1)T, has a unique solution w(ν) =

(x(ν),y(ν), s(ν)), which converges to a primal-

dual optimal solution as ν → 0.

The MTY P-C is based on the 2-norm

neighborhood of the central path:

N (β) ≡ {w = (x,y, s) feasible : ‖Xs− µe‖ ≤ βµ} ,

where µ = µ(w) ≡ (xTs)/n and β ∈ (0,1) is a

fixed constant.
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P-D central path
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Search Directions

For a strictly feasible w = (x,y, s), the

Newton direction ∆w = (∆x,∆y,∆s) to-

wards the point w(ν) = (x(ν),y(ν), s(ν)) is

the solution of

X∆s + S∆x = −Xs + νe

A∆x = 0

AT∆y + ∆s = 0

Setting ν = 0 yields the predictor (or affine

scaling) direction at w.

Setting ν = µ(w) yields the corrector (or

centrality) direction at w.
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An iteration of the MTY P-C Alg.

Let w = (x,y, s) ∈ N (β2) be given, where

β ∈ (0,1/2].

1) Compute the AS direction ∆wa =

(∆xa,∆ya,∆sa) at w;

2) Let αp > 0 be the largest α ∈ [0,1] such

that w + α∆wa ∈ N (β);

3) Set wp = w + αp∆wa;

4) Compute the corrector direction ∆wc =

(∆xc,∆yc,∆sc) at wp;

5) The next point w+ is determined as

w+ = wp + ∆wc;

It can be proved that w+ ∈ N (β2). Hence,

a new iteration can be started by setting

w← w+ and going back to 1).
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The condition number χ̄A

Define

χ̄A ≡ sup{‖(ADAT)−1AD‖ : D ∈ D},

where D denotes the set of all positive

definite diagonal matrices.

Facts:

1) χ̄A = max{‖B−1A‖ : B is a basis of A}.

2) Finding an upper bound for χ̄A is a NP
hard problem.

3) If A integral then χ̄A ≤ 2LA , where LA

is the input size of A.
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Scale Invariance

Let D be a positive diagonal matrix and

consider the pair of LPs:

(P̃) minimize (Dc)Tx̃

subject to ADx̃ = b, x̃ ≥ 0,

(D̃) maximize bTỹ

subject to DATỹ + s̃ = c̃, s̃ ≥ 0,

obtained from (P) and (D) by performing

the change of variables (x,y, s) = Φ(x̃, ỹ, s̃) ≡

(Dx̃, ỹ,D−1s̃).

The MTY P-C algorithm is scaling-invariant,

i.e., if {wk} and {w̃k} denote the sequence of

iterates generated by the MTY P-C algorithm

in the original and the scaled space, then

wk = Φ(w̃k) for all k ≥ 1, as long as w0 = Φ(w̃0).
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Iteration-Complexity Bounds

Given 0 < νf < νi, denote by N(νi, νf , β)

the largest possible number of iterations

required by the MTY P-C algorithm to

find an iterate with duality gap ≤ νf when

started from any w0 ∈ N (β2) such that

µ(w0) = νi.

Classical Result: For any β ∈ (0,1/2],

√

β ·N(νi, νf , β) ≤
√

n log

(

νi

νf

)

Lemma: Suppose w ∈ N (β2), where β ∈
(0,1/2]. Then, w+ ∈ N (β2) and

µ(w+)

µ(w)
≤ 1−

√

β

n
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Vavasis-Ye Algorithm

Iteration Complexity Bound: The number

of iterations to solve a linear program is

O(n3.5 log(n + χ̄A))

Note: Their bound does not depend on νi

and νf !

Their algorithm accelerates an ordinary

primal-dual path following method (e.g.,

the MTY P-C algorithm) by using from

time to time a step called the layered-least-

square step.

V-Y algorithm is not scaling invariant.
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New complexity for the MTY method

Theorem (Monteiro and Tsuchiya 2003): For

any β ∈ (0,1/2],

N(νi, νf , β) = O
`

T(νi/νf ) + n3.5 log(χ̄∗

A + n)
´

iterations, where χ̄∗

A ≡ inf{χ̄AD : D ∈ D} and

T(η) ≡ min
˘

n2 log (log η) , log η
¯

Remark: In contrast to χ̄A, the quantity χ̄∗

A is

scaling invariant. Usually χ̄∗

A << χ̄A. Hence,

the above complexity is not comparable to the

one associated with the V-Y method.

Lemma: For any β ∈ (0,1/2] and w ∈ N (β2):

µ(w+)

µ(w)
≤

κ(w)2

β
,

where

κ(w) :=

„

‖∆xa(w)∆sa(w)‖

µ(w)

«1/2
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Consequences

Under the Turing machine model, the

iteration-complexity of the MTY P-C algo-

rithm is

O(n3.5LA + min{L,n2 log L})

≤ O(n3.5LA + L)

Given A, there exist many nontrivial (b, c)

for which the complexity of the MTY P-C

algorithm for solving (P) and (D) is O(L)
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Example

Consider the LP

max{bTy : ATy ≤ c},
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Example (continued)
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Figure 1: Figure for the LP instance
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Example (continued)
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Figure 2: log µ versus N(νi, µ, β) (· :
√

β =

0.0025; + :
√

β = 0.005; ∗ :
√

β = 0.01; ◦ :
√

β =

0.02)

17



Example (continued)
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Figure 3: log µ versus
√

β ·N(νi, µ, β) (· : √β =

0.0025; + :
√

β = 0.005; ∗ :
√

β = 0.01; ◦ :
√

β =

0.02)

Question: Does
√

β ·N(νi, µ, β) always con-

verge as β → 0?
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Example (continued)
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Figure 4: log µ versus
√

β ·N(νi, µ, β) (The big

dots correspond to the ones in Figure 1.)

Question: How to define straight and curved

parts of the central path?
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Curvature of the central path

Definition: The curvature of the central

path is the function κ : (0,∞) → [0,∞)

defined as

κ(ν) ≡ ‖νẋ(ν)ṡ(ν)‖1/2, ∀ν > 0.

Note: if w = w(ν) then κ(w) = κ(ν)

For a given ν > 0 and β ∈ (0,1), define

T (β, ν) ≡ {t ∈ ℜ : w(ν)− tνẇ(ν) ∈ N (β)}

Note that w(ν)− tνẇ(ν) ≈ w((1− t)ν).

Proposition: T (β, ν) is a closed interval and

lim
β↓0

length of T (β, ν)√
β

=
2

κ(ν)
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Complexity in terms of the curvature

Theorem (Sonnevend, Stoer and Zhao

1994):

N(νi, νf , β) = O
(

∫ νi

νf

κ(ν)

ν
dν + log

(

νi

νf

))

.

Note: Since κ(ν) ≤
√

n/2 for all ν > 0,

the classical bound follows from the above

bound.

Theorem 1 (Monteiro and Tsuchiya 2005):

lim
β→0

√

β ·N(νi, νf , β) =

∫ νi

νf

κ(ν)

ν
dν

≤ √
n log

(

νi

νf

)

Recall that one of the M-T bounds is

N(νi, νf , β) = O
(

n3.5 log(χ̄∗
A + n) + log

(

νi

νf

))

.
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Bound on the curvature integral

Theorem 2 (Monteiro and Tsuchiya 2005):

For every 0 < νf < νi, we have:
∫ νi

νf

κ(ν)

ν
dν ≤ O

(

n3.5 log(χ̄∗
A + n)

)

Hence,
∫ ∞

0

κ(ν)

ν
dν ≤ O

(

n3.5 log(χ̄∗
A + n)

)
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Geometry of the central path

Vavasis and Ye 1996: ”The central path

consists of O(n2) long and straight parts

and other curved parts”

We want to formally establish this state-

ment!

Theorem 3: For any κ̄ ∈ (0,
√

n/2), there

exist l ≤ n(n − 1)/2 closed intervals Ik such

that:

a) {ν > 0 : κ(ν) ≥ κ̄} ⊆ ∪l
k=1Ik

(union of Ik’s covers portion with large

curvature)

b) the logarithmic length of each Ik is

bounded by O
(

n log(χ̄∗
A + n) + n log κ̄−1

)

(independent of b and c)
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Geometric illustration of the C-P

curved green parts have small length
oin

The blue parts are long but quite straight!

The MTY P-C algorithm converges R-quadratically

over the blue parts.

There are at most O(n2) blue and green parts.
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Directions for future research

• Generalizations to other cone program-

ming problems such as SOCP and SDP

• Are infeasible path following methods

ammenable to the same kind of analysis?

Can new iteration complexity bounds

be obtained for them?

• Is it possible to interpret the curvature

κ(ν) as the one used in differential

geometry? What further insights can be

gained through this approach?

• Can an iteration complexity bound

depending only on n and χ̄∗
A be derived

for the MTY P-C algorithm?

• Is it possible to derive a Zhao and

Stoer’s type result with log log, i.e.

N(νi, νf , β) = O
(

∫ νi

νf

κ(ν)

ν
dν + n2 log log

(

νi

νf

))

.
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