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Stable sets and theta function

G = (V, E) . . . Graph on n vertices.
xi = 1 if i in some stable set, otherwise xi = 0.

max
∑

i

xi such that xixj = 0 ij ∈ E, xi ∈ {0, 1}

Linearization trick: Consider X = 1

xT x
xxT .

X satisfies:

X � 0, tr(X) = 1, xij = 0∀ij ∈ E, rank(X) = 1

Note also: eT x = xT x, so eT x = 〈J, X〉. Here J = eeT .

Lovasz (1979): relax the (diffcult) rank constraint
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Stable sets and theta function (2)

ϑ(G) := max{〈J, X〉 : X � 0, tr(X) = 1, xij = 0 (ij) ∈ E}

This SDP has m + 1 equations, if |E| = m.

Can be solved by interior point methods if n ≈ 500 and
m ≈ 5000.

Notation: We write AG(X) = 0 for xij = 0, (ij) ∈ E(G).
Hence AG(X)ij = 〈Eij , X〉 with Eij = eie

T
j + eje

T
i .

Any symmetric matrix M can therefore be written as

M = Diag(m) + AG(u) + AḠ(v).
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Copositive Relaxation

DeKlerk, Pasechnik consider strengthening towards α(G)
by asking that X is completely positive:

X ∈ C∗ := {
∑

i

yiy
k
i : yi ≥ 0}

The cone of completely positive matrices is dual to the cone
of copositive matrices C:

C := {M : xT Mx ≥ 0 ∀x ≥ 0}.

It is however co-NP-complete to test whether a matrix is co-

positive.
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Copositive relaxation (2)

Theorem (DeKlerk, Pasechnik (2003))

α(G) := max〈J, X〉 : X ∈ C∗, tr(X) = 1, xij = 0 (ij) ∈ E

The proof uses
(a) extreme rays are of form xxT with x ≥ 0
(b) support of x = some stable set
(c) maximization makes nonzeros of x equal to one another.

We will show similar results for QAP and copositive approxi-

mations to Coloring.
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Quadratic Assignment Problem (QAP)

(QAP) min〈AXB + C, X〉 such that X is permutation matrix

Using x = vec(X), x ◦ x = x we get

〈AXB + C, X〉 = 〈B ⊗ A + Diag(vec(C)), xxT 〉

Now linearize Y = xxT to get SDP or copositive relaxations.

A technical problem:
How translate permutation properties from x to Y ?

X = (x1, . . . , xn), Y =







Y 11 . . . Y 1n

...
...

Y n1 . . . Y nn






, Y ij = xix

T
j
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QAP (2)

∑

i

Y ii =
∑

i

xix
T
i = I, tr(Y ij) = xT

i xj = δij

〈J, Y 〉 = (eT x)(xT e) = n2

X is orthogonal, sums of all elements =n.

F := {Y ∈ C∗,
∑

i

Y ii = I, tr(Y ij) = δij , 〈J, Y 〉 = n2}

Theorem (J. Povh, F. Rendl 2005)

F = conv{xxT : x = vec(X), X permutation matrix} = Π
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Proof

Π ⊆ F , because each X ∈ Π is by construction feasible for
F .

Now let Y ∈ F , hence Y =
∑

k yky
T
k =

∑

k Zk and
Zk = yky

T
k , yk ≥ 0.

Let Yk be n × n matrix formed from yk ∈ IRn2

.
We need to show that each Yk ∈ Π.

The proof is based on the following facts:
(a) each main diagonal block Zii

k is diagonal

(b) each off diagonal block has diag(Z ij
k ) = 0 ∀i 6= j

(c) each Yk has at most one nonzero in each row / column.
(d) Each Yk is multiple of permutation matrix.

The last step makes use of the Cauchy-Schwary inequality.
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Copositive relaxation of QAP

L := B ⊗ A + Diag(vec(C)).

As a consequence, QAP is equivalent to the copositive
program

min〈L, Y 〉 :
∑

i

Y ii = I, tr(Y ij) = δij , 〈J, Y 〉 = n2, Y ∈ C∗.

Replacing Y ∈ C∗ by Y � 0 gives SDP relaxation
investigated by Zhao, Karisch, Wolkowicz, Sotirov, Rendl.

Further constraints could be added, like

Yij,ik = 0, Y ≥ 0.
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SDP relaxations of QAP

The SDP relaxation

min〈L, Y 〉 :
∑

i

Y ii = I, tr(Y ij) = δij , 〈J, Y 〉 = n2,

Y � 0, Yij,ik = Yij,kj = 0, Y ≥ 0

provides currently the strongest bounds, which are
manageable for interesting sizes.

Recently Burer and Vandenbussche (2004) investigated the
Lovasz-Schriver lifting of QAP. It can be shown (see
dissertation Povh, Klagenfurt (2006)), that this is actually
equivalent to the above SDP model.
The computational effort to solve this SDP for n = 30 is still
a serious computational challenge.
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Coloring and dual theta function

We now consider Graph Coloring and recall Theta function:

ϑ(G) := {max〈J, X〉 : X � 0, tr(X) = 1, AG(X) = 0}

= min t such that tI + AT
G(y) � J.

Here AT
G(y) =

∑

ij yijEij. Coloring viewpoint: Consider
complement graph Ḡ and partition V into stable sets
s1, . . . , sr in Ḡ, where χ(Ḡ) = r.

Let M =
∑r

i sis
T
i where si is characteristic vector of stable

set in Ḡ. M is called coloring matrix.
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Coloring Matrices

Note: A 0-1 matrix M is coloring matrix if and only if

mij = 0 (ij) ∈ E, diag(M) = e, (tM−J � 0 ⇔ t ≥ rank(M))

Hence
χ(Ḡ) = min t such that

tM − J � 0, diag(M) = e, mij = 0 ∀(ij) ∈ Ē, mij ∈ {0, 1}

Setting Y = tM we get Y = tI +
∑

ij∈E yijEij = tI + AG(y).
Leaving out mij ∈ {0, 1} gives dual of theta function.

ϑ(G) = min t : such that tI + AG(y) − J � 0.

This gives Lovasz sandwich theorem: α(G) ≤ ϑ(G) ≤ χ(Ḡ).
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A copositive approximation of Coloring

Since coloring matrices M are in C∗, we consider

t∗ := min t such that

tI + AT
G(y) � J

tI + AT
G(y) ∈ C∗

We clearly have
ϑ ≤ t∗ ≤ χ

Unlike in the stable set and QAP case, where the copositive
model gave the exact problem, we will show now the
following.

Theorem (I. Dukanovic, M. Laurent, F. Rendl 2006): t∗ = χf
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Fractional Chromatic Number

χf (G) is defined as follows. Let S + (S1, . . .) be the of all
characteristic vectors of stable sets S in Ḡ.

χf (Ḡ) := min
∑

i

λi such that
∑

i

λiSi = e, λi ≥ 0.

(χ is obtained by asking λi = 0 or 1.)
Let us collect all characteristic vectors Si in the matrix A.
(A has n rows, but may have an exponential number of
columns).

χf := min etλ : Aλ = e, λ ≥ 0

= max ety :
∑

j∈Si

yj := ySi
≤ 1, ∀Si ∈ S, y ∈ IRn.
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Auxiliary Lemma

We first show that any feasible solution λ for the primal LP
gives a feasible solution t, Y for the copositive program
having the same value.
An auxiliary result:
Lemma

Let xi be 0-1 vectors and λi ≥ 0. Let Xλ :=
∑

i λixix
T
i . Then

M := (
∑

j λj)Xλ − diag(Xλ)diag(Xλ)T � 0.
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Proof of Lemma

M := (
∑

j λj)Xλ − diag(Xλ)diag(Xλ)T .

We have
(a) diag(xix

T
i ) = xi

(b) diag(Xλ) =
∑

i λixi

(c) M = (
∑

j λj)(
∑

i λixix
T
i ) −

∑

ij λiλjxix
T
j

(d) We need to show that yT My ≥ 0 ∀y.

(d) Let y be arbitrary and set ai := xT
i y.

(e) yT My =
∑

ij λiλja
2

i −
∑

ij λiλjaiaj =

=
∑

i<j λiλj(a
2

i + a2

j − 2aiaj) ≥ 0.

F. Rendl, SDP versus copositive – p.19/26



Claim 1

Claim: t∗ ≤ χf

Proof: Take feasible solution λ of primal LP and define
Y :=

∑

i λiSiS
T
i .

Set t :=
∑

λi. We need to show:
diag(Y ) = e, Y ∈ C∗, tY − J � 0.
We have diag(Y ) =

∑

i λiSi = e.

Y ∈ C∗ by construction

The Lemma shows that tY � J and so we have feasible
solution (with same value t).

Since we minimize, t∗ ≤ χf .
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Claim 2

If y feasible for dual LP and t feasible for copositive
program, than ety ≤ t.

Consequence: χf ≤ t∗.

Has recently been pointed out to us by Monique Laurent.
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Approximating the copositive cone

The cone dual to C∗ is the cone C of copositive matrices:

C := {M : xT Mx ≥ 0 ∀x ≥ 0}

Parrilo (2000) and DeKlerk, Pasechnik (2002) use following
idea to approximate C:

M ∈ C iff P (x) := (x ◦ x)T M(x ◦ x) =
∑

ij

x2

i x
2

jmij ≥ 0 ∀x.

A sufficient condition for this to hold is that

P (x) has a sum of squares representation.
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Parrilo hierarchy

Parrilo proposes to consider

Pr(x) := (
∑

i

x2

i )
rP (x)

Polya (1928): If M strictly copositive then Pr(x) is SOS for
some sufficiently large r.
Parrilo (2000):
P0(x) is SOS iff M = P + N , where P � 0 and N ≥ 0.
P1(x) is SOS iff ∃M1, . . . , Mn such that

M − Mi � 0

(Mi)ii = 0 ∀i (Mi)jj + 2(Mj)ij = 0 ∀i 6= j

(Mi)jk + (Mj)ik + (Mk)ij ≥ 0 ∀i < j < k
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r = 1 case for vertex transitive graphs

The relaxation with r = 1 involves n semidefiniteness
constraints for matrices of order n and O(n3) additional
linear (in)equalities.
This is computationally intractable even for small problems
(n ≈ 100).

Dukanovic (2005) shows that for vertex transitive graphs, the

r = 1 approximation of Parrilo applied to stable set relaxa-

tion can be done with one additional matrix and one SDP

constraint.
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Some computational results

We consider Hamming graphs and compare ϑ which is
equal to the r = 0 relaxation in all these cases with r = 1.

graph n ϑ, (r = 0) r = 1 χ

H(7,6) 128 53.33 63.9 64
H(8,6) 256 85.33 127.9 128
H(9,4) 512 51.19 53.9

H(10,8) 1024 383.99 511.9 512
H(12,4) 4096 211.86 255.5

Further computational simplifications are used by exploiting
the automorphism group underlying Hamming graphs. All
computations took no more than a few minutes on a PC.

Further details in the forthcoming dissertation of Dukanovic

(Klagenfurt 2006).
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