# Inexact Primal-Dual Path-Following Algorithms for Certain Quadratic SDPs 

Kim Toh, Reha Tütüncü, and Mike Todd

School of Operations Research and Industrial Engineering,
Cornell University
http://www.orie.cornell.edu/~miketodd/todd.html

SDP Workshop, Singapore
January 12, 2006

## SDPT3

The code SDPT3 is joint work of Kim Toh, National University of Singapore, Reha Tütüncü, Goldman-Sachs, and me.

SDPT3: Primal-Dual Predictor-Corrector Interior-Point Method for SQLP.
Available from http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.
Matlab-based (like SeDuMi), using C for computationally intensive parts (like
CSDP), exploits sparsity (based on ideas from SDPA).

Obtains relatively high-precision solutions but is computationally expensive.

SDP: dense: $n \leq 500$; sparse $n \leq 2000$.
SOCP: sparse: $n \leq 150,000$.
LP: ditto.

## QSDP

The focus of this talk: application to the quadratic SDP:

$$
\begin{array}{cl}
(Q S D P) & \min _{X} \quad \frac{1}{2} X \bullet \mathcal{Q}(X)+C \bullet X  \tag{1}\\
& \mathcal{A}(X)=b, \quad X \succeq 0,
\end{array}
$$

where $\mathcal{Q}: \mathcal{S}^{n} \rightarrow \mathcal{S}^{n}$ is a given self-adjoint positive semidefinite operator on $\mathcal{S}^{n}$ and $\mathcal{A}: \mathcal{S}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map, with $(\mathcal{A}(X))_{i}=A_{i} \bullet X$ for each $i$. Its dual is

$$
\begin{align*}
(Q S D D) & \max _{X, y, S}-\frac{1}{2} X \bullet \mathcal{Q}(X)+b^{T} y  \tag{2}\\
& \mathcal{A}^{T}(y)-\mathcal{Q}(X)+S=C, \quad S \succeq 0 .
\end{align*}
$$

Note: the quadratic term involves the matrix variable $X$ not the vector variable $y$.

## Outline

- Application
- Newton systems
- Preconditioned SQMR
- Computational results


## Applications

Consider the semidefinite least-squares problem:

$$
\begin{array}{ccl}
\min _{X} \quad\|\mathcal{L}(X)-\hat{K}\|_{F} & \\
(S D L S) & \mathcal{A}(X) & =b, \\
X & \succeq 0
\end{array}
$$

i.e., find a feasible psd $X$ such that $\mathcal{L}(X)$ is as close as possible to $\hat{K}$.

This includes the closest correlation matrix problem and the
nearest Euclidean distance matrix problem for a weighted graph.
Often $\mathcal{L}(X)=U^{1 / 2} X U^{1 / 2}$, and then $\mathcal{Q}=U \circledast U$,
where $U \circledast U(Z):=U Z U^{T}$ when $Z \in \mathcal{S}^{n}, U \in \mathbb{R}^{n \times n}$.

## Newton Systems

At a given iteration of a predictor-corrector algorithm, given the current solution $X, y, S$, we need to solve for the search directions from

$$
\left.\begin{array}{rl}
-\mathcal{Q}(\Delta X)+\mathcal{A}^{T}(\Delta y)+\Delta S & =R_{d} \\
\mathcal{A}(\Delta X) &  \tag{3}\\
& =r_{p} \\
\mathcal{E}(\Delta X) & +\mathcal{F}(\Delta S)
\end{array}\right)=R_{c}, ~ l
$$

where $\mathcal{E}$ and $\mathcal{F}$ are linear operators on $\mathcal{S}^{n}$ that depend on $X$ and $S$ and the symmetrization scheme chosen. If we eliminate $\Delta S$ and set

$$
\begin{equation*}
\mathcal{H}=\mathcal{F}^{-1} \mathcal{E}+\mathcal{Q} \tag{4}
\end{equation*}
$$

this reduces to ...

## Newton Systems, II

$$
\left[\begin{array}{cc}
-\mathcal{H} & \mathcal{A}^{T}  \tag{5}\\
\mathcal{A} & 0
\end{array}\right]\left[\begin{array}{c}
\Delta X \\
\Delta y
\end{array}\right]=\left[\begin{array}{c}
R_{h} \\
r_{p}
\end{array}\right] .
$$

By further eliminating $\Delta X$, we get the Schur complement equation of dimension $m$ below:

$$
\begin{equation*}
M \Delta y:=\mathcal{A H}^{-1} \mathcal{A}^{T} \Delta y=h \tag{6}
\end{equation*}
$$

[Note: if $\mathcal{Q}$ is zero and instead (QSDD) has objective function $b^{T} y-y^{T} Q y / 2$, then we must solve $M \Delta y=h$ where

$$
\begin{equation*}
M=\mathcal{A} \mathcal{E}^{-1} \mathcal{F} \mathcal{A}^{T}+Q \tag{7}
\end{equation*}
$$

and this is much easier.]

## Form of $\mathcal{H}$

If we use Nesterov-Todd scaling and $\mathcal{Q}=U \circledast U$, then

$$
\begin{equation*}
\mathcal{H}=W^{-1} \circledast W^{-1}+U \circledast U \tag{8}
\end{equation*}
$$

where $W$ is the Nesterov-Todd scaling matrix. Note: this form of $\mathcal{H}$ also arises from a linear SDP with a simple upper bound on $X$ :

$$
\begin{equation*}
\min C \bullet X, \quad \mathcal{A}(X)=b, \quad 0 \preceq X \preceq U . \tag{9}
\end{equation*}
$$

After adding a slack matrix, formulating the Newton equations, and simplifying, we find we need to solve

$$
\begin{equation*}
\mathcal{A}\left(\mathcal{F}_{1}^{-1} \mathcal{E}_{1}+\mathcal{F}_{2}^{-1} \mathcal{E}_{2}\right)^{-1} \mathcal{A}^{T} \Delta y=h \tag{10}
\end{equation*}
$$

for suitable $\mathcal{E}_{i}$ and $\mathcal{F}_{i}$ : if we use Nesterov-Todd scaling we get a similar form.

## Computational problem

For $\mathcal{H}$ as above, we find

$$
\begin{equation*}
\mathcal{H}^{-1}=(P \circledast P)(\mathcal{I}+D \circledast D)^{-1}(P \circledast P)^{T} \tag{11}
\end{equation*}
$$

for an easily computed $P \in \mathbb{R}^{n \times n}$ and diagonal $D$, so that

$$
\begin{equation*}
\left(\mathcal{A H}^{-1} \mathcal{A}^{T}\right)_{i j}=A_{i} \bullet(P \circledast P)(\mathcal{I}+D \circledast D)^{-1}(P \circledast P)^{T} A_{j} . \tag{12}
\end{equation*}
$$

This is too expensive to compute for each $i, j$ in the large sparse setting. Why? If the diagonal term were missing, we would only have to compute the entries of $\left(P P^{T}\right) A_{j}\left(P P^{T}\right)$ corresponding to nonzero entries of $A_{i}$. So the diagonal operator is the culprit!

So we use preconditioned SQMR. We need to be able to compute $M v$ for an arbitrary $v$, and solve $\widehat{M} w=g$ for an arbitrary $g$, where $\widehat{M} \approx M$.

## Approximation of $M, \mathbf{I}$

We have two ways to approximate $M$. The first uses

$$
\begin{equation*}
(\mathcal{I}+D \circledast D)^{-1} \approx \sum_{k=1}^{q} \alpha_{k} \Lambda_{k} \circledast \Lambda_{k} \tag{13}
\end{equation*}
$$

where each $\alpha_{k}$ is a scalar and each $\Lambda_{k}$ is a diagonal matrix. This is done via an eigenvalue computation. Then $M$ is approximated by the preconditioner

$$
\begin{equation*}
\widehat{M}:=\sum_{k=1}^{q} \alpha_{k} \mathcal{A}\left(V_{k} \circledast V_{k}\right) \mathcal{A}^{T} . \tag{14}
\end{equation*}
$$

with $V_{k}=P \Lambda_{k} P^{T}$. Unfortunately, this may not be positive definite.

## Approximation of $M$, II

The second method approximates

$$
\begin{equation*}
\mathcal{H}=W^{-1} \circledast W^{-1}+U \circledast U \tag{15}
\end{equation*}
$$

by $V \circledast V$.
We do not know how to solve this problem exactly, but when " $\circledast$ " is replaced by " $\otimes$ " the solution is easily obtained by solving a $2 \times 2$ eigenvalue problem. With this $V$, we set the preconditioner to be

$$
\begin{equation*}
\widehat{M}=\mathcal{A}\left(V^{-1} \circledast V^{-1}\right) \mathcal{A}^{T} . \tag{16}
\end{equation*}
$$

This approximation is always positive definite. [Actually, we find it preferable to approximate $I \circledast I+D \circledast D$ in this way, and hence obtain an approximation of $\mathcal{H}^{-1}$ - see (11).]

## Computational Results

The next slides give some results for four classes of problems (the first three are nearest correlation matrix problems with a certain $\hat{K}$ and $U$, and the last linear SDPs with upper bounds) and four algorithms:

A1: Direct solution of the Schur complement equation;
A2: Solution of the equation using unpreconditioned SQMR;
A3: Solution of the equation using preconditioned SQMR:
the preconditioner is the first if it is positive definite, otherwise the second;
and
A4: Solution of the equation using preconditioned SQMR,
using the second preconditioner.
The dimension $n$ varies from 200 to 2000. The column "psqmr" gives the average number of PSQMR iterations to solve each Schur complement equation.

|  | $n$ |  |  |  | A2 |  |  |  | A3 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | it | $\phi$ | Time (s) | it | $\phi$ | Time (s) | psqmr | it | $\phi$ | Time (s) | psqmr |
| E3 | 200 | 12 | $1.8 \mathrm{e}-08$ | 26.5 | 12 | 2.5e-08 | 6.5 | 1.7 | 12 | $1.8 \mathrm{e}-08$ | 7.7 | 1.0 |
|  | 400 | 12 | $1.6 \mathrm{e}-08$ | 269.6 | 12 | $2.1 \mathrm{e}-08$ | 37.6 | 1.6 | 12 | $1.6 \mathrm{e}-08$ | 44.3 | 1.0 |
|  | 800 | 13 | $1.4 \mathrm{e}-08$ | 3245.9 | 13 | $1.5 \mathrm{e}-08$ | 269.0 | 1.7 | 13 | $5.2 \mathrm{e}-08$ | 338.5 | 1.0 |
|  | 1600 |  |  |  | 14 | 6.8e-09 | 1932.0 | 1.7 | 14 | $6.7 \mathrm{e}-09$ | 2302.3 | 1.1 |
|  | 2000 |  |  |  | 14 | $1.1 \mathrm{e}-08$ | 3582.9 | 1.6 | 14 | $1.0 \mathrm{e}-08$ | 4347.9 | 1.1 |
| E6 | 200 | 20 | $1.2 \mathrm{e}-08$ | 54.2 | 21 | 9.6e-09 | 32.1 | 32.9 | 20 | $1.2 \mathrm{e}-08$ | 13.4 | 1.1 |
|  | 400 | 21 | $1.4 \mathrm{e}-08$ | 487.7 | 23 | $2.5 \mathrm{e}-08$ | 218.3 | 39.5 | 21 | $1.4 \mathrm{e}-08$ | 76.7 | 1.0 |
|  | 800 | 22 | $5.5 \mathrm{e}-08$ | 5633.7 | 24 | $4.9 \mathrm{e}-08$ | 1544.3 | 43.7 | 22 | $5.5 \mathrm{e}-08$ | 522.6 | 1.0 |
|  | 1600 |  |  |  | 27 | $8.6 \mathrm{e}-08$ | 16579.6 | 63.9 | 25 | $2.4 \mathrm{e}-08$ | 4223.8 | 1.0 |
|  | 2000 |  |  |  | 28 | $8.0 \mathrm{e}-08$ | 30566.7 | 62.1 | 26 | $1.1 \mathrm{e}-08$ | 8632.0 | 1.0 |
| E9 | 200 | 12 | $2.0 \mathrm{e}-08$ | 34.5 | 13 | $4.8 \mathrm{e}-08$ | 17.1 | 41.4 | 12 | $2.0 \mathrm{e}-08$ | 8.3 | 1.0 |
|  | 400 | 13 | $1.8 \mathrm{e}-08$ | 330.4 | 14 | $2.6 \mathrm{e}-08$ | 119.8 | 45.9 | 13 | $1.8 \mathrm{e}-08$ | 53.1 | 1.0 |
|  | 800 | 13 | $9.5 \mathrm{e}-08$ | 3623.9 | 14 | $9.4 \mathrm{e}-08$ | 815.6 | 45.4 | 13 | $9.5 \mathrm{e}-08$ | 359.4 | 1.0 |
|  | 1600 | 15 | $2.5 \mathrm{e}-08$ | 50155.2 | 16 | $2.1 \mathrm{e}-08$ | 7243.8 | 46.9 | 15 | $2.5 \mathrm{e}-08$ | 2964.0 | 1.0 |
|  | 2000 |  |  |  | 16 | $2.7 \mathrm{e}-08$ | 13428.5 | 47.3 | 15 | 4.6e-08 | 5549.2 | 1.0 |
| E10 | 200 | 14 | 5.5e-08 | 55.2 | 15 | $6.1 \mathrm{e}-08$ | 71.1 | 76.1 | 14 | $5.2 \mathrm{e}-08$ | 18.5 | 1.0 |
|  | 400 | 14 | $7.1 \mathrm{e}-08$ | 325.2 | 14 | $6.9 \mathrm{e}-08$ | 335.8 | 96.0 | 14 | $7.5 \mathrm{e}-08$ | 106.7 | 1.4 |
|  | 800 | 15 | $6.6 \mathrm{e}-08$ | 3955.8 | 15 | 1.1e-07 | 4312.7 | 236.4 | 15 | $1.4 \mathrm{e}-07$ | 508.8 | 1.3 |
|  | 1600 | 17 | $2.7 \mathrm{e}-07$ | 56457.0 | 17 | $3.3 \mathrm{e}-07$ | 62418.6 | 440.9 | 17 | $1.3 \mathrm{e}-07$ | 5818.5 | 1.3 |
|  | 2000 |  |  |  | 18 | 1.4e-06 | 136231.9 | 520.2 | 17 | $1.2 \mathrm{e}-07$ | 9128.1 | 1.1 |


|  | A2 |  |  | A3 |  |  |  | A4 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| it | $\phi$ | Time (s) | psqmr | it | $\phi$ | Time (s) | psqmr | it | $\phi$ | Time (s) | psqmr |
| 12 | 2.5e-08 | 6.5 | 1.7 | 12 | $1.8 \mathrm{e}-08$ | 7.7 | 1.0 | 12 | $4.6 \mathrm{e}-08$ | 6.9 | 1.6 |
| 12 | $2.1 \mathrm{e}-08$ | 37.6 | 1.6 | 12 | $1.6 \mathrm{e}-08$ | 44.3 | 1.0 | 12 | $1.7 \mathrm{e}-08$ | 39.1 | 1.6 |
| 13 | $1.5 \mathrm{e}-08$ | 269.0 | 1.7 | 13 | $5.2 \mathrm{e}-08$ | 338.5 | 1.0 | 13 | $1.4 \mathrm{e}-08$ | 276.7 | 1.7 |
| 14 | 6.8e-09 | 1932.0 | 1.7 | 14 | $6.7 \mathrm{e}-09$ | 2302.3 | 1.1 | 14 | $6.7 \mathrm{e}-09$ | 1974.7 | 1.7 |
| 14 | $1.1 \mathrm{e}-08$ | 3582.9 | 1.6 | 14 | $1.0 \mathrm{e}-08$ | 4347.9 | 1.1 | 14 | $1.0 \mathrm{e}-08$ | 3761.2 | 1.7 |
| 21 | 9.6e-09 | 32.1 | 32.9 | 20 | $1.2 \mathrm{e}-08$ | 13.4 | 1.1 | 20 | $1.3 \mathrm{e}-08$ | 19.0 | 14.7 |
| 23 | 2.5e-08 | 218.3 | 39.5 | 21 | $1.4 \mathrm{e}-08$ | 76.7 | 1.0 | 21 | $4.2 \mathrm{e}-08$ | 111.0 | 15.4 |
| 24 | $4.9 \mathrm{e}-08$ | 1544.3 | 43.7 | 22 | 5.5e-08 | 522.6 | 1.0 | 22 | $7.3 \mathrm{e}-08$ | 696.0 | 13.6 |
| 27 | 8.6e-08 | 16579.6 | 63.9 | 25 | $2.4 \mathrm{e}-08$ | 4223.8 | 1.0 | 25 | $9.6 \mathrm{e}-08$ | 6759.0 | 20.6 |
| 28 | 8.0e-08 | 30566.7 | 62.1 | 26 | 1.1e-08 | 8632.0 | 1.0 | 27 | 7.1e-08 | 14097.6 | 21.7 |
| 13 | $4.8 \mathrm{e}-08$ | 17.1 | 41.4 | 12 | $2.0 \mathrm{e}-08$ | 8.3 | 1.0 | 13 | $1.3 \mathrm{e}-08$ | 8.2 | 6.2 |
| 14 | 2.6e-08 | 119.8 | 45.9 | 13 | $1.8 \mathrm{e}-08$ | 53.1 | 1.0 | 14 | $9.8 \mathrm{e}-09$ | 53.9 | 7.2 |
| 14 | $9.4 \mathrm{e}-08$ | 815.6 | 45.4 | 13 | $9.5 \mathrm{e}-08$ | 359.4 | 1.0 | 15 | $1.3 \mathrm{e}-08$ | 401.7 | 8.2 |
| 16 | $2.1 \mathrm{e}-08$ | 7243.8 | 46.9 | 15 | 2.5e-08 | 2964.0 | 1.0 | 16 | $2.0 \mathrm{e}-08$ | 3185.9 | 9.7 |
| 16 | 2.7e-08 | 13428.5 | 47.3 | 15 | $4.6 \mathrm{e}-08$ | 5549.2 | 1.0 | 17 | $1.0 \mathrm{e}-08$ | 6379.2 | 10.2 |
| 15 | $6.1 \mathrm{e}-08$ | 71.1 | 76.1 | 14 | $5.2 \mathrm{e}-08$ | 18.5 | 1.0 | 14 | $8.2 \mathrm{e}-08$ | 61.1 | 69.2 |
| 14 | $6.9 \mathrm{e}-08$ | 335.8 | 96.0 | 14 | 7.5e-08 | 106.7 | 1.4 | 14 | $1.0 \mathrm{e}-07$ | 313.7 | 66.6 |
| 15 | 1.1e-07 | 4312.7 | 236.4 | 15 | $1.4 \mathrm{e}-07$ | 508.8 | 1.3 | 15 | $9.1 \mathrm{e}-08$ | 650.8 | 12.9 |
| 17 | $3.3 \mathrm{e}-07$ | 62418.6 | 440.9 | 17 | $1.3 \mathrm{e}-07$ | 5818.5 | 1.3 | 17 | $7.7 \mathrm{e}-08$ | 3917.3 | 6.4 |
| 18 | 1.4e-06 | 136231.9 | 520.2 | 17 | $1.2 \mathrm{e}-07$ | 9128.1 | 1.1 | 17 | $8.6 \mathrm{e}-08$ | 7046.7 | 5.4 |

