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SDPT3

The code SDPTS3 is joint work of Kim Toh, National University of Singapore,

Reha Tutunclu, Goldman-Sachs, and me.

SDPT3: Primal-Dual Predictor-Corrector Interior-Point Method for SQLP.
Available from http://www._.math.nus.edu.sg/ mattohkc/sdpt3.html.
Matlab-based (like SeDuMi), using C for computationally intensive parts (like

CSDP), exploits sparsity (based on ideas from SDPA).

Obtains relatively high-precision solutions but is computationally expensive.

SDP: dense: n < 500; sparse n < 2000.
SOCP: sparse: n < 150, 000.
LP: ditto.

SDPT3 — p.2/?



QSDP

The focus of this talk: application to the quadratic SDP:

(QSDP) minx X e Q(X)+CeX

N |

(1)
AX) =b, X =0,

where Q : 8" — §™ is a given self-adjoint positive semidefinite operator on ™
and A : 8" — IR™ is a linear map, with (A(X)); = A, ¢ X for each i.

Its dual is

(QSDD) maxx y, s —%X o O(X) + by
(2)

Note: the quadratic term involves the matrix variable X not the vector variable y.
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Applications

Consider the semidefinite least-squares problem:

minx  ||£(X) - K||r
(SDLS) A(X) = b,

X =~ 0,

A

l.e., find a feasible psd X such that £(X) is as close as possible to K.
This includes the closest correlation matrix problem and the

nearest Euclidean distance matrix problem for a weighted graph.
Often £(X) = UY?XU"Y? andthen Q =U ® U,

where U ® U(Z) :=UZU" when Z € S, U € R™*".
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Newton Systems

At a given iteration of a predictor-corrector algorithm, given the current solution

X, vy, S, we need to solve for the search directions from

—9(AX) + AM(Ay) + AS = Ry
A(AX) = T 3)
E(AX) + F(AS) = R,

where £ and F are linear operators on S™ that depend on X and S and the

symmetrization scheme chosen. If we eliminate AS and set
H=F '€+0Q, (4)

this reduces to ...
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Newton Systems, | |

— . (5)

By further eliminating A X, we get the Schur complement equation of dimension

m below:
MAy = AH ' A"Ay = h. (6)

[Note: if O is zero and instead (QSDD) has objective function by — y* Qy/2, then

we must solve M Ay = h where
M=A'FA" +Q, (7)

and this is much easier.]
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Form of H

If we use Nesterov-Todd scaling and Q = U &) U, then
H=W 'e®W '+U®U, (8)

where W is the Nesterov-Todd scaling matrix. Note: this form of H also arises

from a linear SDP with a simple upper bound on X:
minC e X, AX)=0b, 0=X=<U. (9)

After adding a slack matrix, formulating the Newton equations, and simplifying, we

find we need to solve

AFT & +F &) T A Ay =h (10)

for suitable &, and F;: if we use Nesterov-Todd scaling we get a similar form.
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Computational problem

For 'H as above, we find
-1 —1 T
H = (P@P)(I+D@D) (P® P)”, (11)
for an easily computed P € IR"*" and diagonal D, so that
—1 4T —1 T
(AH 1A >ij:Ai-(P@P)(z+D@D) (P® P)"A,. (12)

This is too expensive to compute for each 7, 5 in the large sparse setting. Why? If
the diagonal term were missing, we would only have to compute the entries of
(PP A;(PP") corresponding to nonzero entries of A;. So the diagonal operator
IS the culprit!

So we use preconditioned SQMR. We need to be able to compute Mwv for an

arbitrary v, and solve Mw = g for an arbitrary g, where M ~ M.
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Approximation of M, |

We have two ways to approximate M. The first uses

B q
(Z+D@D) ' %Zak/\k@/\k, (13)
k=1

where each « is a scalar and each A is a diagonal matrix. This is done via an

eigenvalue computation. Then M is approximated by the preconditioner
o q
M = ZakA(Vk @ Vk)AT (14)
k=1

with Vi, = PA, P?. Unfortunately, this may not be positive definite.
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Approximation of M, ||

The second method approximates
H=W'e®W '+U®U (15)

by V &) V.
We do not know how to solve this problem exactly, but when “ &) " is replaced by
“®” the solution is easily obtained by solving a 2 x 2 eigenvalue problem. With this

V', we set the preconditioner to be

M=AV'®v Ha” (16)
This approximation is always positive definite. [Actually, we find it preferable to

approximate I &) I + D ) D in this way, and hence obtain an approximation of

H~ ' —see (11).]
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Computational Results

The next slides give some results for four classes of problems (the first three are
nearest correlation matrix problems with a certain & and U, and the last linear
SDPs with upper bounds) and four algorithms:
Al: Direct solution of the Schur complement equation;
A2: Solution of the equation using unpreconditioned SQOMR;
A3: Solution of the equation using preconditioned SQMR:

the preconditioner is the first if it is positive definite, otherwise the second;
and
A4: Solution of the equation using preconditioned SQMR,

using the second preconditioner.
The dimension n varies from 200 to 2000. The column “psgmr” gives the average

number of PSQMR iterations to solve each Schur complement equation.
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Al A2 A3

n it 103 Time (s) it ¢ Time (s) psgmr it 103 Time (s) psgmr

E3 200 12 1.8e-08 26.5 12 2.5e-08 6.5 1.7 12 1.8e-08 7.7 1.0
400 12 1.6e-08 269.6 12 2.1e-08 37.6 1.6 12 1.6e-08 44.3 1.0

800 13 1.4e-08 3245.9 13 1.5e-08 269.0 1.7 13 5.2e-08 338.5 1.0

1600 14 6.8e-09 1932.0 1.7 14 6.7e-09 2302.3 11

2000 14 1.1e-08 3582.9 1.6 14 1.0e-08 4347.9 11

E6 200 20 1.2e-08 54.2 21 9.6e-09 321 32.9 20 1.2e-08 134 11
400 21 1.4e-08 487.7 23 2.5e-08 218.3 39.5 21 1.4e-08 76.7 1.0

800 22 5.5e-08 5633.7 24 4.9e-08 1544.3 43.7 22 5.5e-08 522.6 1.0

1600 27 8.6e-08 16579.6 63.9 25 2.4e-08 4223.8 1.0

2000 28 8.0e-08 30566.7 62.1 26 1.1e-08 8632.0 1.0

E9 200 12 2.0e-08 34.5 13 4.8e-08 171 41.4 12 2.0e-08 8.3 1.0
400 13 1.8e-08 330.4 14 2.6e-08 119.8 45.9 13 1.8e-08 53.1 1.0

800 13 9.5e-08 3623.9 14 9.4e-08 815.6 45.4 13 9.5e-08 359.4 1.0

1600 15 2.5e-08 50155.2 16 2.1e-08 7243.8 46.9 15 2.5e-08 2964.0 1.0

2000 16 2.7e-08 13428.5 47.3 15 4.6e-08 5549.2 1.0

E10 200 14 5.5e-08 55.2 15 6.1e-08 711 76.1 14 5.2e-08 185 1.0
400 14 7.1e-08 325.2 14 6.9e-08 335.8 96.0 14 7.5e-08 106.7 14

800 15 6.6e-08 3955.8 15 1.1e-07 4312.7 236.4 15 1.4e-07 508.8 1.3

1600 17 2.7e-07 56457.0 17 3.3e-07 62418.6 440.9 17 1.3e-07 5818.5 1.3

2000 18 1.4e-06 136231.9 520.2 17 1.2e-07 9128.1 11
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A2 A3 Ad
it 10} Time (s) psgmr it 163 Time (s) psgmr it 16} Time (s) psgmr
12 2.5e-08 6.5 1.7 12 1.8e-08 7.7 1.0 12 4.6e-08 6.9 1.6
12 2.1e-08 37.6 1.6 12 1.6e-08 44.3 1.0 12 1.7e-08 39.1 1.6
13 1.5e-08 269.0 1.7 13 5.2e-08 338.5 1.0 13 1.4e-08 276.7 1.7
14 6.8e-09 1932.0 1.7 14 6.7e-09 2302.3 11 14 6.7e-09 1974.7 1.7
14 1.1e-08 3582.9 1.6 14 1.0e-08 4347.9 11 14 1.0e-08 3761.2 1.7
21 9.6e-09 321 32.9 20 1.2e-08 134 11 20 1.3e-08 19.0 14.7
23 2.5e-08 218.3 395 21 1.4e-08 76.7 1.0 21 4.2e-08 111.0 154
24 4.9e-08 1544.3 43.7 22 5.5e-08 522.6 1.0 22 7.3e-08 696.0 13.6
27 8.6e-08 16579.6 63.9 25 2.4e-08 4223.8 1.0 25 9.6e-08 6759.0 20.6
28 8.0e-08 30566.7 62.1 26 1.1e-08 8632.0 1.0 27 7.1e-08 14097.6 21.7
13 4.8e-08 171 41.4 12 2.0e-08 8.3 1.0 13 1.3e-08 8.2 6.2
14 2.6e-08 119.8 45.9 13 1.8e-08 53.1 1.0 14 9.8e-09 53.9 7.2
14 9.4e-08 815.6 45.4 13 9.5e-08 359.4 1.0 15 1.3e-08 401.7 8.2
16 2.1e-08 7243.8 46.9 15 2.5e-08 2964.0 1.0 16 2.0e-08 3185.9 9.7
16 2.7e-08 13428.5 47.3 15 4.6e-08 5549.2 1.0 17 1.0e-08 6379.2 10.2
15 6.1e-08 711 76.1 14 5.2e-08 185 1.0 14 8.2e-08 61.1 69.2
14 6.9e-08 335.8 96.0 14 7.5e-08 106.7 14 14 1.0e-07 313.7 66.6
15 1.1e-07 4312.7 236.4 15 1.4e-07 508.8 1.3 15 9.1e-08 650.8 12.9
17 3.3e-07 62418.6 440.9 17 1.3e-07 5818.5 1.3 17 7.7e-08 3917.3 6.4
18 1.4e-06 136231.9 520.2 17 1.2e-07 9128.1 11 17 8.6e-08 7046.7 5.4
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