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SDPT3

The code SDPT3 is joint work of Kim Toh, National University of Singapore,

Reha Tütüncü, Goldman-Sachs, and me.

SDPT3: Primal-Dual Predictor-Corrector Interior-Point Method for SQLP.

Available from http://www.math.nus.edu.sg/˜mattohkc/sdpt3.html.

Matlab-based (like SeDuMi), using C for computationally intensive parts (like

CSDP), exploits sparsity (based on ideas from SDPA).

Obtains relatively high-precision solutions but is computationally expensive.

SDP: dense: n ≤ 500; sparse n ≤ 2000.

SOCP: sparse: n ≤ 150, 000.

LP: ditto.
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QSDP

The focus of this talk: application to the quadratic SDP:

(QSDP ) minX
1

2
X • Q(X) + C • X

A(X) = b, X � 0,

(1)

where Q : Sn → Sn is a given self-adjoint positive semidefinite operator on Sn

and A : Sn → IRm is a linear map, with (A(X))i = Ai • X for each i.

Its dual is

(QSDD) maxX,y,S − 1

2
X • Q(X) + bT y

AT (y) −Q(X) + S = C, S � 0.

(2)

Note: the quadratic term involves the matrix variable X not the vector variable y.
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Applications

Consider the semidefinite least-squares problem:

minX ‖L(X) − K̂‖F

(SDLS) A(X) = b,

X � 0,

i.e., find a feasible psd X such that L(X) is as close as possible to K̂.

This includes the closest correlation matrix problem and the

nearest Euclidean distance matrix problem for a weighted graph.

Often L(X) = U1/2XU1/2, and then Q = U ©∗ U ,

where U ©∗ U(Z) := UZUT when Z ∈ Sn, U ∈ IRn×n.

SDPT3 – p.5/??



Newton Systems

At a given iteration of a predictor-corrector algorithm, given the current solution

X, y, S, we need to solve for the search directions from

−Q(∆X) + AT (∆y) + ∆S = Rd

A(∆X) = rp

E(∆X) + F(∆S) = Rc,

(3)

where E and F are linear operators on Sn that depend on X and S and the

symmetrization scheme chosen. If we eliminate ∆S and set

H = F−1E + Q, (4)

this reduces to ...
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Newton Systems, II

2
664

−H AT

A 0

3
775

2
664

∆X

∆y

3
775 =

2
64

Rh

rp

3
75 . (5)

By further eliminating ∆X, we get the Schur complement equation of dimension

m below:
M∆y := AH−1AT ∆y = h. (6)

[Note: if Q is zero and instead (QSDD) has objective function bT y − yT Qy/2, then

we must solve M∆y = h where
M = AE−1FAT + Q, (7)

and this is much easier.]
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Form ofH

If we use Nesterov-Todd scaling and Q = U ©∗ U , then

H = W−1 ©∗ W−1 + U ©∗ U, (8)

where W is the Nesterov-Todd scaling matrix. Note: this form of H also arises

from a linear SDP with a simple upper bound on X :

min C • X, A(X) = b, 0 � X � U. (9)

After adding a slack matrix, formulating the Newton equations, and simplifying, we

find we need to solve

A(F−1

1 E1 + F−1

2 E2)
−1AT ∆y = h (10)

for suitable Ei and Fi: if we use Nesterov-Todd scaling we get a similar form.
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Computational problem

For H as above, we find

H−1 = (P ©∗ P )
“
I + D ©∗ D

”
−1

(P ©∗ P )T , (11)

for an easily computed P ∈ IRn×n and diagonal D, so that

(AH−1AT )ij = Ai • (P ©∗ P )
“
I + D ©∗ D

”
−1

(P ©∗ P )T Aj . (12)

This is too expensive to compute for each i, j in the large sparse setting. Why? If

the diagonal term were missing, we would only have to compute the entries of

(PP T )Aj(PP T ) corresponding to nonzero entries of Ai. So the diagonal operator

is the culprit!

So we use preconditioned SQMR. We need to be able to compute Mv for an

arbitrary v, and solve cMw = g for an arbitrary g, where cM ≈ M .
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Approximation of M , I

We have two ways to approximate M . The first uses

“
I + D ©∗ D

”
−1

≈

qX

k=1

αkΛk ©∗ Λk, (13)

where each αk is a scalar and each Λk is a diagonal matrix. This is done via an

eigenvalue computation. Then M is approximated by the preconditioner

cM :=

qX

k=1

αkA(Vk ©∗ Vk)AT . (14)

with Vk = PΛkP T . Unfortunately, this may not be positive definite.
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Approximation of M , II

The second method approximates

H = W−1 ©∗ W−1 + U ©∗ U (15)

by V ©∗ V .

We do not know how to solve this problem exactly, but when “ ©∗ ” is replaced by

“⊗” the solution is easily obtained by solving a 2 × 2 eigenvalue problem. With this

V , we set the preconditioner to be

cM = A(V −1 ©∗ V −1)AT . (16)

This approximation is always positive definite. [Actually, we find it preferable to

approximate I ©∗ I + D ©∗ D in this way, and hence obtain an approximation of

H−1 — see (11).]
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Computational Results

The next slides give some results for four classes of problems (the first three are

nearest correlation matrix problems with a certain K̂ and U , and the last linear

SDPs with upper bounds) and four algorithms:

A1: Direct solution of the Schur complement equation;

A2: Solution of the equation using unpreconditioned SQMR;

A3: Solution of the equation using preconditioned SQMR:

the preconditioner is the first if it is positive definite, otherwise the second;

and

A4: Solution of the equation using preconditioned SQMR,

using the second preconditioner.

The dimension n varies from 200 to 2000. The column “psqmr” gives the average

number of PSQMR iterations to solve each Schur complement equation.
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A1 A2 A3
n it φ Time (s) it φ Time (s) psqmr it φ Time (s) psqmr

E3 200 12 1.8e-08 26.5 12 2.5e-08 6.5 1.7 12 1.8e-08 7.7 1.0

400 12 1.6e-08 269.6 12 2.1e-08 37.6 1.6 12 1.6e-08 44.3 1.0

800 13 1.4e-08 3245.9 13 1.5e-08 269.0 1.7 13 5.2e-08 338.5 1.0

1600 14 6.8e-09 1932.0 1.7 14 6.7e-09 2302.3 1.1

2000 14 1.1e-08 3582.9 1.6 14 1.0e-08 4347.9 1.1

E6 200 20 1.2e-08 54.2 21 9.6e-09 32.1 32.9 20 1.2e-08 13.4 1.1

400 21 1.4e-08 487.7 23 2.5e-08 218.3 39.5 21 1.4e-08 76.7 1.0

800 22 5.5e-08 5633.7 24 4.9e-08 1544.3 43.7 22 5.5e-08 522.6 1.0

1600 27 8.6e-08 16579.6 63.9 25 2.4e-08 4223.8 1.0

2000 28 8.0e-08 30566.7 62.1 26 1.1e-08 8632.0 1.0

E9 200 12 2.0e-08 34.5 13 4.8e-08 17.1 41.4 12 2.0e-08 8.3 1.0

400 13 1.8e-08 330.4 14 2.6e-08 119.8 45.9 13 1.8e-08 53.1 1.0

800 13 9.5e-08 3623.9 14 9.4e-08 815.6 45.4 13 9.5e-08 359.4 1.0

1600 15 2.5e-08 50155.2 16 2.1e-08 7243.8 46.9 15 2.5e-08 2964.0 1.0

2000 16 2.7e-08 13428.5 47.3 15 4.6e-08 5549.2 1.0

E10 200 14 5.5e-08 55.2 15 6.1e-08 71.1 76.1 14 5.2e-08 18.5 1.0

400 14 7.1e-08 325.2 14 6.9e-08 335.8 96.0 14 7.5e-08 106.7 1.4

800 15 6.6e-08 3955.8 15 1.1e-07 4312.7 236.4 15 1.4e-07 508.8 1.3

1600 17 2.7e-07 56457.0 17 3.3e-07 62418.6 440.9 17 1.3e-07 5818.5 1.3

2000 18 1.4e-06 136231.9 520.2 17 1.2e-07 9128.1 1.1
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A2 A3 A4
it φ Time (s) psqmr it φ Time (s) psqmr it φ Time (s) psqmr

12 2.5e-08 6.5 1.7 12 1.8e-08 7.7 1.0 12 4.6e-08 6.9 1.6

12 2.1e-08 37.6 1.6 12 1.6e-08 44.3 1.0 12 1.7e-08 39.1 1.6

13 1.5e-08 269.0 1.7 13 5.2e-08 338.5 1.0 13 1.4e-08 276.7 1.7

14 6.8e-09 1932.0 1.7 14 6.7e-09 2302.3 1.1 14 6.7e-09 1974.7 1.7

14 1.1e-08 3582.9 1.6 14 1.0e-08 4347.9 1.1 14 1.0e-08 3761.2 1.7

21 9.6e-09 32.1 32.9 20 1.2e-08 13.4 1.1 20 1.3e-08 19.0 14.7

23 2.5e-08 218.3 39.5 21 1.4e-08 76.7 1.0 21 4.2e-08 111.0 15.4

24 4.9e-08 1544.3 43.7 22 5.5e-08 522.6 1.0 22 7.3e-08 696.0 13.6

27 8.6e-08 16579.6 63.9 25 2.4e-08 4223.8 1.0 25 9.6e-08 6759.0 20.6

28 8.0e-08 30566.7 62.1 26 1.1e-08 8632.0 1.0 27 7.1e-08 14097.6 21.7

13 4.8e-08 17.1 41.4 12 2.0e-08 8.3 1.0 13 1.3e-08 8.2 6.2

14 2.6e-08 119.8 45.9 13 1.8e-08 53.1 1.0 14 9.8e-09 53.9 7.2

14 9.4e-08 815.6 45.4 13 9.5e-08 359.4 1.0 15 1.3e-08 401.7 8.2

16 2.1e-08 7243.8 46.9 15 2.5e-08 2964.0 1.0 16 2.0e-08 3185.9 9.7

16 2.7e-08 13428.5 47.3 15 4.6e-08 5549.2 1.0 17 1.0e-08 6379.2 10.2

15 6.1e-08 71.1 76.1 14 5.2e-08 18.5 1.0 14 8.2e-08 61.1 69.2

14 6.9e-08 335.8 96.0 14 7.5e-08 106.7 1.4 14 1.0e-07 313.7 66.6

15 1.1e-07 4312.7 236.4 15 1.4e-07 508.8 1.3 15 9.1e-08 650.8 12.9

17 3.3e-07 62418.6 440.9 17 1.3e-07 5818.5 1.3 17 7.7e-08 3917.3 6.4

18 1.4e-06 136231.9 520.2 17 1.2e-07 9128.1 1.1 17 8.6e-08 7046.7 5.4
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