Inexact Primal-Dual Path-Following Algorithms for Certain Quadratic SDPs

Kim Toh, Reha Tütüncü, and Mike Todd

School of Operations Research and Industrial Engineering,

Cornell University

http://www.orie.cornell.edu/~miketodd/todd.html

SDP Workshop, Singapore

January 12, 2006

SDPT3

The code SDPT3 is joint work of Kim Toh, National University of Singapore, Reha Tütüncü, Goldman-Sachs, and me.

SDPT3: Primal-Dual Predictor-Corrector Interior-Point Method for SQLP. Available from http://www.math.nus.edu.sg/~mattohkc/sdpt3.html. Matlab-based (like SeDuMi), using C for computationally intensive parts (like CSDP), exploits sparsity (based on ideas from SDPA).

Obtains relatively high-precision solutions but is computationally expensive.

```
SDP: dense: n \le 500; sparse n \le 2000.
SOCP: sparse: n \le 150,000.
LP: ditto.
```

QSDP

The focus of this talk: application to the quadratic SDP:

$$(QSDP) \quad \min_{X} \ \frac{1}{2}X \bullet \mathcal{Q}(X) + C \bullet X$$

$$\mathcal{A}(X) = b, \quad X \succeq 0,$$
(1)

where $Q: S^n \to S^n$ is a given self-adjoint positive semidefinite operator on S^n and $A: S^n \to \mathbb{R}^m$ is a linear map, with $(A(X))_i = A_i \bullet X$ for each *i*. Its dual is

$$(QSDD) \max_{X,y,S} -\frac{1}{2}X \bullet \mathcal{Q}(X) + b^T y$$

$$\mathcal{A}^T(y) - \mathcal{Q}(X) + S = C, \quad S \succeq 0.$$
(2)

Note: the quadratic term involves the matrix variable X not the vector variable y.

Outline

- Application
- Newton systems
- Preconditioned SQMR
- Computational results

Applications

Consider the semidefinite least-squares problem:

$$\min_X \|\mathcal{L}(X) - \hat{K}\|_F$$

$$(SDLS) \qquad \mathcal{A}(X) = b,$$

$$X \succeq 0,$$

i.e., find a feasible psd X such that $\mathcal{L}(X)$ is as close as possible to \hat{K} . This includes the closest correlation matrix problem and the nearest Euclidean distance matrix problem for a weighted graph. Often $\mathcal{L}(X) = U^{1/2}XU^{1/2}$, and then $\mathcal{Q} = U \circledast U$, where $U \circledast U(Z) := UZU^T$ when $Z \in S^n$, $U \in \mathbb{R}^{n \times n}$.

Newton Systems

At a given iteration of a predictor-corrector algorithm, given the current solution X, y, S, we need to solve for the search directions from

$$-\mathcal{Q}(\Delta X) + \mathcal{A}^{T}(\Delta y) + \Delta S = R_{d}$$

$$\mathcal{A}(\Delta X) = r_{p} \qquad (3)$$

$$\mathcal{E}(\Delta X) + \mathcal{F}(\Delta S) = R_{c},$$

where \mathcal{E} and \mathcal{F} are linear operators on \mathcal{S}^n that depend on X and S and the symmetrization scheme chosen. If we eliminate ΔS and set

$$\mathcal{H} = \mathcal{F}^{-1}\mathcal{E} + \mathcal{Q},\tag{4}$$

this reduces to ...

Newton Systems, II

$$\begin{bmatrix} -\mathcal{H} & \mathcal{A}^T \\ & & \\ \mathcal{A} & 0 \end{bmatrix} \begin{bmatrix} \Delta X \\ & \\ \Delta y \end{bmatrix} = \begin{bmatrix} R_h \\ & \\ r_p \end{bmatrix}.$$
 (5)

By further eliminating ΔX , we get the Schur complement equation of dimension m below:

$$M\Delta y := \mathcal{A}\mathcal{H}^{-1}\mathcal{A}^T\Delta y = h.$$
(6)

[Note: if Q is zero and instead (QSDD) has objective function $b^T y - y^T Q y/2$, then we must solve $M\Delta y = h$ where

$$M = \mathcal{A}\mathcal{E}^{-1}\mathcal{F}\mathcal{A}^T + Q, \tag{7}$$

and this is much easier.]

Form of ${\cal H}$

If we use Nesterov-Todd scaling and $Q = U \circledast U$, then

$$\mathcal{H} = W^{-1} \circledast W^{-1} + U \circledast U, \tag{8}$$

where *W* is the Nesterov-Todd scaling matrix. Note: this form of \mathcal{H} also arises from a linear SDP with a simple upper bound on *X*:

$$\min C \bullet X, \qquad \mathcal{A}(X) = b, \quad 0 \leq X \leq U.$$
(9)

After adding a slack matrix, formulating the Newton equations, and simplifying, we find we need to solve

$$\mathcal{A}(\mathcal{F}_1^{-1}\mathcal{E}_1 + \mathcal{F}_2^{-1}\mathcal{E}_2)^{-1}\mathcal{A}^T\Delta y = h$$
(10)

for suitable \mathcal{E}_i and \mathcal{F}_i : if we use Nesterov-Todd scaling we get a similar form.

Computational problem

For ${\mathcal H}$ as above, we find

$$\mathcal{H}^{-1} = (P \circledast P) \left(\mathcal{I} + D \circledast D \right)^{-1} (P \circledast P)^{T}, \tag{11}$$

for an easily computed $P \in I\!\!R^{n \times n}$ and diagonal D, so that

$$(\mathcal{A}\mathcal{H}^{-1}\mathcal{A}^{T})_{ij} = A_{i} \bullet (P \circledast P) \Big(\mathcal{I} + D \circledast D\Big)^{-1} (P \circledast P)^{T} A_{j}.$$
⁽¹²⁾

This is too expensive to compute for each *i*, *j* in the large sparse setting. Why? If the diagonal term were missing, we would only have to compute the entries of $(PP^T)A_j(PP^T)$ corresponding to nonzero entries of A_i . So the diagonal operator is the culprit!

So we use preconditioned SQMR. We need to be able to compute Mv for an arbitrary v, and solve $\widehat{M}w = g$ for an arbitrary g, where $\widehat{M} \approx M$.

Approximation of M, **I**

We have two ways to approximate M. The first uses

$$\left(\mathcal{I} + D \circledast D\right)^{-1} \approx \sum_{k=1}^{q} \alpha_k \Lambda_k \circledast \Lambda_k,$$
 (13)

where each α_k is a scalar and each Λ_k is a diagonal matrix. This is done via an eigenvalue computation. Then *M* is approximated by the preconditioner

$$\widehat{M} := \sum_{k=1}^{q} \alpha_k \mathcal{A}(V_k \circledast V_k) \mathcal{A}^T.$$
(14)

with $V_k = P \Lambda_k P^T$. Unfortunately, this may not be positive definite.

Approximation of M, **II**

The second method approximates

$$\mathcal{H} = W^{-1} \circledast W^{-1} + U \circledast U \tag{15}$$

by $V \circledast V$.

We do not know how to solve this problem exactly, but when " \circledast " is replaced by " \otimes " the solution is easily obtained by solving a 2×2 eigenvalue problem. With this V, we set the preconditioner to be

$$\widehat{M} = \mathcal{A}(V^{-1} \circledast V^{-1})\mathcal{A}^T.$$
(16)

This approximation is always positive definite. [Actually, we find it preferable to approximate $I \circledast I + D \circledast D$ in this way, and hence obtain an approximation of \mathcal{H}^{-1} — see (11).]

Computational Results

The next slides give some results for four classes of problems (the first three are nearest correlation matrix problems with a certain \hat{K} and U, and the last linear SDPs with upper bounds) and four algorithms:

- A1: Direct solution of the Schur complement equation;
- A2: Solution of the equation using unpreconditioned SQMR;
- A3: Solution of the equation using preconditioned SQMR:

the preconditioner is the first if it is positive definite, otherwise the second;

and

A4: Solution of the equation using preconditioned SQMR,

using the second preconditioner.

The dimension n varies from 200 to 2000. The column "psqmr" gives the average number of PSQMR iterations to solve each Schur complement equation.

		A1			A2				A3			
	n	it	ϕ	Time (s)	it	ϕ	Time (s)	psqmr	it	ϕ	Time (s)	psqmr
E3	200	12	1.8e-08	26.5	12	2.5e-08	6.5	1.7	12	1.8e-08	7.7	1.0
	400	12	1.6e-08	269.6	12	2.1e-08	37.6	1.6	12	1.6e-08	44.3	1.0
	800	13	1.4e-08	3245.9	13	1.5e-08	269.0	1.7	13	5.2e-08	338.5	1.0
	1600				14	6.8e-09	1932.0	1.7	14	6.7e-09	2302.3	1.1
	2000				14	1.1e-08	3582.9	1.6	14	1.0e-08	4347.9	1.1
E6	200	20	1.2e-08	54.2	21	9.6e-09	32.1	32.9	20	1.2e-08	13.4	1.1
	400	21	1.4e-08	487.7	23	2.5e-08	218.3	39.5	21	1.4e-08	76.7	1.0
	800	22	5.5e-08	5633.7	24	4.9e-08	1544.3	43.7	22	5.5e-08	522.6	1.0
	1600				27	8.6e-08	16579.6	63.9	25	2.4e-08	4223.8	1.0
	2000				28	8.0e-08	30566.7	62.1	26	1.1e-08	8632.0	1.0
E9	200	12	2.0e-08	34.5	13	4.8e-08	17.1	41.4	12	2.0e-08	8.3	1.0
	400	13	1.8e-08	330.4	14	2.6e-08	119.8	45.9	13	1.8e-08	53.1	1.0
	800	13	9.5e-08	3623.9	14	9.4e-08	815.6	45.4	13	9.5e-08	359.4	1.0
	1600	15	2.5e-08	50155.2	16	2.1e-08	7243.8	46.9	15	2.5e-08	2964.0	1.0
	2000				16	2.7e-08	13428.5	47.3	15	4.6e-08	5549.2	1.0
E10	200	14	5.5e-08	55.2	15	6.1e-08	71.1	76.1	14	5.2e-08	18.5	1.0
	400	14	7.1e-08	325.2	14	6.9e-08	335.8	96.0	14	7.5e-08	106.7	1.4
	800	15	6.6e-08	3955.8	15	1.1e-07	4312.7	236.4	15	1.4e-07	508.8	1.3
	1600	17	2.7e-07	56457.0	17	3.3e-07	62418.6	440.9	17	1.3e-07	5818.5	1.3
	2000				18	1.4e-06	136231.9	520.2	17	1.2e-07	9128.1	1.1

		A2		A3				A4			
it	ϕ	Time (s)	psqmr	it	ϕ	Time (s)	psqmr	it	ϕ	Time (s)	psqmr
12	2.5e-08	6.5	1.7	12	1.8e-08	7.7	1.0	12	4.6e-08	6.9	1.6
12	2.1e-08	37.6	1.6	12	1.6e-08	44.3	1.0	12	1.7e-08	39.1	1.6
13	1.5e-08	269.0	1.7	13	5.2e-08	338.5	1.0	13	1.4e-08	276.7	1.7
14	6.8e-09	1932.0	1.7	14	6.7e-09	2302.3	1.1	14	6.7e-09	1974.7	1.7
14	1.1e-08	3582.9	1.6	14	1.0e-08	4347.9	1.1	14	1.0e-08	3761.2	1.7
21	9.6e-09	32.1	32.9	20	1.2e-08	13.4	1.1	20	1.3e-08	19.0	14.7
23	2.5e-08	218.3	39.5	21	1.4e-08	76.7	1.0	21	4.2e-08	111.0	15.4
24	4.9e-08	1544.3	43.7	22	5.5e-08	522.6	1.0	22	7.3e-08	696.0	13.6
27	8.6e-08	16579.6	63.9	25	2.4e-08	4223.8	1.0	25	9.6e-08	6759.0	20.6
28	8.0e-08	30566.7	62.1	26	1.1e-08	8632.0	1.0	27	7.1e-08	14097.6	21.7
13	4.8e-08	17.1	41.4	12	2.0e-08	8.3	1.0	13	1.3e-08	8.2	6.2
14	2.6e-08	119.8	45.9	13	1.8e-08	53.1	1.0	14	9.8e-09	53.9	7.2
14	9.4e-08	815.6	45.4	13	9.5e-08	359.4	1.0	15	1.3e-08	401.7	8.2
16	2.1e-08	7243.8	46.9	15	2.5e-08	2964.0	1.0	16	2.0e-08	3185.9	9.7
16	2.7e-08	13428.5	47.3	15	4.6e-08	5549.2	1.0	17	1.0e-08	6379.2	10.2
15	6.1e-08	71.1	76.1	14	5.2e-08	18.5	1.0	14	8.2e-08	61.1	69.2
14	6.9e-08	335.8	96.0	14	7.5e-08	106.7	1.4	14	1.0e-07	313.7	66.6
15	1.1e-07	4312.7	236.4	15	1.4e-07	508.8	1.3	15	9.1e-08	650.8	12.9
17	3.3e-07	62418.6	440.9	17	1.3e-07	5818.5	1.3	17	7.7e-08	3917.3	6.4
18	1.4e-06	136231.9	520.2	17	1.2e-07	9128.1	1.1	17	8.6e-08	7046.7	5.4