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Outline

e Model calibration in optical lithography.
e Optimization over nonnegative polynomials.

e Robust least squares.



Model calibration in optical lithography
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Model calibration: adjust optical model to include resist/etching effects.



The Hopkins model

//fx—v “ J(u — 0)K () f(z — ) dudv

f(x): input image (mask); I(x): output image intensity

e Coherent illumination: J(u —v) =1

- ‘/K(u)f(:c — w)du T

e Incoherent illumination: J(u —v) = é(u — v)

/|K (x —u)

e Other choices for J model partially coherent systems.

(K # f) ()]




Optimal coherent approximation

Discrete Hopkins model
I(x) — ffo:I;
fz 1s vector of input values around at x; for example, for 1-D systems,

fwz(f(LC—N),f(ZC—N—1),...,f(ZC+N))

Low-rank approximation
I(z) = £, (Z sbwa’) fo= > |(ér* f) (@)
k=1 k=1

®1, . .., ¢, are first few eigenvectors of WW.



SDP formulation (for real data)

minimize  tr(DW)

subject to —el <X W — Wy <€l
[y, ga;‘gWak <ug, k=1,...,m
symmetry constraints on W
W =0

e IV, is prior model of optical system.

e Measurements give m upper/lower bounds on intensity for given inputs.

e Objective rewards smoothness or low rank (D = I).



Symmetry constraints

One-dimensional system: W € S” is persymmetric, i.e.,

W=JWJ, J=1|, 1 ..,
_1 o --- 0_

2
Two-dimensional system: W € S™ with

W=J,L)W(J,®I,) =1, )W, ®J,)

General constraint:
W =PWP

P a symmetric permutation matrix



Exploiting symmetry

Suppose P is a symmetric permutation matrix (P? = I):

I 0

P=[v Vol|g &IV vl

V. /o are eigenvectors with eigenvalue +1.

Property: if W = PW P, then

We

A I IR

Reduces the number of variables:

e One-dimensional problem: 2 matrices of size ~ n /2

e Two-dimensional problem: 4 matrices of size ~ n?/4



Variable upper bounds

LP with upper bounds

minimize ¢!z

subject to Ax =0
0<z=<1
e Can introduce slack variables to convert to standard form
r+s=1, s = 0.

n new variables, n (sparse) equality constraints.

e Upper bounds are easily incorporated in IP methods (at no extra cost).



SDP with upper bounds
minimize  tr(CX)
subject to tr(A;X)=10b;, i=1,...,m
0<X=<1I
e Introduce slack variables:
X+5=1, S =0

Adds n(n + 1)/2 variables and constraints.

e Hence, it is important to handle upper bounds directly.



Newton equations for SDP with upper bounds

TV AXTT =T 'AXTy  + ) AyA; = D
j=1
tI'(AzAX) = di, z':l,...,m

where 17,15 > 0.

e Find congruence that simultaneously diagonalizes T4 and T5:

R'TMR=1, R'T,R = diag(y) ™

e Make change of variables AX = RTAXR.
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e Transformed equations:

m

—AX — diag(y)AX diag(y) + Z AyjA; = D
j=1
tI‘(AzAX) = di, 1= 1,...,m

e Eliminate AX from first equation:

X :Zij(fljoF)—[)oF, Ly =1/(1 + )

e Solve

Ztr oF)Ay]—bz, i=1,....m

Cost: comparable to SDP without upper bounds.
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Example

Calibration step (using simulated data)

e Left: mask. Right: measured intensity.
o« W, W, e S

e Sample output image at m = 2500 points.
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Test input and actual output

Predicted output with uncalibrated and calibrated model

L
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A useful SDP standard form

minimize  tr(BX) maximize bly
subject to Adiag(CXCT) =1 subject to C' diag(Aly)C < B
X >0

Interpretation (for A € R™*" with rows a!, C € R™*")
e Constraints are equivalent to tr(F;X) =b;, i =1,...,m, where

F; = ' diag(a;)C, i=1,...,m.

Matrices F; are linear combinations of r rank-one matrices.
e Possible for arbitrary F; if r = mn. Interesting when r < mn.

e F)'s can be dense and full-rank.

14



Newton equations

~T'AXT ' + 0 diag(ATAy)C = D
Adiag(CAXCT) =

S

Eliminate AX from first equation, substitute in second: HAy = ¢ with

H=A((CTCT)o(CTCT)) AT

Cost if m = O(n), r = O(n): O(n?) operations
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SDP formulation of sums of squares

e r.h.s. sampled at t1, ..., tn,

S

Z ((Cyk) o (Cyg)) Z diag(Cyryi C1) = diag(CXCT)

k=1
T
where C' = | q(t1) qlta) -+ qltn) | X =3, unyi-
o Coefficients of I.h.s. from samples at ¢y, ..., tn:

r = Adiag(CXCT)
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Applications

Trigonometric polynomial nonnegative on (subinterval of) [0, 27]
(via discrete Fourier transform).

Cosine polynomials nonnegative on (subinterval of) [0, 7]
(via discrete cosine transform).

Real polynomials nonnegative on (subintervals of) R
(via discrete polynomial transforms and orthogonal polynomials).

Sum-of-squares representations of multivariate nonnegative polynomials.
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Nonnegative trigonometric polynomial

2o+ 2R(x1e77Y 4 -+ + e TY) = |yo + eI+ ?Jne_jw‘2
e rhs. atw=27k/N, k=0,...,N —1, where N > 2n + 1:
(Wy) o (Wy) = diag(WXWH), X =yy"

W: first n + 1 columns of DFT matrix of length V.

e Inverse DFT maps sampled values to coefficients of |.h.s.:

1
T = NWH diag(W XW*) (1)

Hence, polynomial is nonnegative iff (1) for some X >~ 0.
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Dual interpretation:

220 Z1
1 21 220
5 :
i Zn “n—1

parametrization of Toeplitz matrix

Zn |
7 1
ol = W diag(R(W2))W
220 i

Follows from expressions for convolution of z with a vector u:

20 0

21 4

ZXU = 0
i Zn  An—1

0
0 1y
= W) o (W)

1
= NWH diag(W 2)Wu
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Example: Linear-phase Nyquist filter

minimize sup,s. |ho + hicosw + - -+ h, cosnw|

with hg = 1/M, hipr = 0 for positive integer k.

10°

| H ()]

(Example with n = 50, M =5, ws = 0.69.)
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SDP formulation

Semi-infinite LP

minimize t

subject to —t < hg+ hicosw+ -+ h,cosnw < t, ws <w < 7T

SDP formulation
minimize ¢
subject to  h + teg = Ay diag(C1 X,CY) + Ay diag(CoX,CH)

—h +teg = Ay dlag(CngCf) + Aq dlag(OQij:Og)
Xlioa X2i07 X3i07 X4i0

e Variables: ¢, h; (except for i = kM), 4 matrices X; of size roughly n/2.

o A, C; constructed from DCT matrices of length N > n.
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Nonnegative polynomial on R

Topo(t) + x1p1(t) + - - + Tppp(?)
2

= (uopo(t) + - + UmPm (1)) + (vopo(t) + - + Vrmpm (1))

(px: basis polynomial of degree k; n = 2m)
e r.h.s. evaluated at ¢, . . ., tn:
(Cu) o (Cu) + (Cv) o (Cv) = diag(CXCT), X =uu’ + oot

where C@'j = pj(ti)

e If N > n and t; are distinct, the sample values uniquely specify z:

r = Adiag(CXC") (2)

Polynomial is nonnegative iff (2) holds for some X > 0.
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Discrete polynomial transform

po(to)  p1(to) pn(to)
t t e t _
Vopp — po(: 1) p1(: 1) pN:( 1) C Wopr = Vol
| po(tn) pi(tn) - pw(tn)
Do, P1, - - - . system of orthogonal polynomials
to, ..., ty: roots of pyi1q

VbpT maps coefficients of

Topo(t) + z1p1(t) + -+ znpN(2)

to values at tg, . . . tn

Wppr maps values at tg, . .., ty to coefficients



Three-term recursion

po(t) Bo a9 O --- O Po(t)

p1(t) ag B o1 - 0 p1(?)

t| pat) = 0 a1 Bo 0 p2(t)

- pN(t) 0 0 0 By | | pn(t)
tp(t) = Jp(t) +anpy+i(t)en

e Eigenvalues of J are the roots of py1:

tip(t;) = Jp(t;)

-

I pN—F.l(t) ]

e Vppr, Wppr easily computed from eigenvalue decomposition of J.
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Numerical example

Magnitude FIR filter design

minimize / Y(w)dw

subject to  1/d, <Y (w) < 6p,

where Y (w) = yg + y1 cosw + - - - + y,, COS NW.

e Constraints result in 4 LMI constraints.

e Variables: y and 8 auxiliary matrix variables of size roughly n /2.



Example (n = 101)

10°
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Time per iteration (Matlab on 2.8GHz P4)
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SDPT3-style primal-dual method with fast solution of Newton equations

27



Outline

e Model calibration in optical lithography.
e Optimization over nonnegative polynomials.

e Robust least squares.



Robust least-squares

minimize  supy,,,<1 [|A(u)z — 0|l

where B
A(u) = A + U diag(Du)V*

Example. A is lower triangular Toeplitz with coefficients hy + uy

1
A(u) = NW{f diag(Wy(h + u)) W,

Wy, Wyt first n+ 1, resp. m + 1, columns of DFT matrix
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SDP formulation

minimize t+ A\

T 0 (Az — b)T
subject to 0 Vi DYt diag(VIz)UT | =0
| (Az —b) Udiag(V'z)D 0 ]

Cost per iteration is dominated by constructing the matrix
V ((DTp3U) o (DTo3U)" + (DT D") o (UM T33U)) V1

T;; are submatrices of scaling matrix

O(n?) operations (if all dimensions are of the same order)
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Conclusions

Some interesting types of problem structure that are easily exploited.

e Symmetry constraints.
e Upper bounds on the matrix variables.

e A generalization of low-rank structure.
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