
SDP and Graph Realization NUS, January, 2006 1

A Semidefinite Programming Approach to Tensegrity Theory
and Realizability of Graphs

Anthony So

Department of Computer Science

Yinyu Ye

Department of Management Science and Engineering and

by courtesy, Electrical Engineering

Stanford University

Stanford, CA 94305, U.S.A

In SODA’06

http://www.stanford.edu/˜yyye

SDP and Graph Realization NUS, January, 2006 2

Outlines

• Graph Realization Problem

SDP and Graph Realization NUS, January, 2006 3

Outlines

• Graph Realization Problem

• d-Realizable Graphs

SDP and Graph Realization NUS, January, 2006 4

Outlines

• Graph Realization Problem

• d-Realizable Graphs

• SDP Formulation

SDP and Graph Realization NUS, January, 2006 5

Outlines

• Graph Realization Problem

• d-Realizable Graphs

• SDP Formulation

• Realization Algorithm

SDP and Graph Realization NUS, January, 2006 6

The Graph Realization Problem

Given a graph G = (V, E) and a set of non–negative edge weights

{dij : (i, j) ∈ E}, and the goal is to compute a realization of G in the

Euclidean space Rd for a given dimension d, i.e. to place the vertices of G in Rd

such that the Euclidean distance between every pair of adjacent vertices vi, vj

equals to the prescribed weight dij .

SDP and Graph Realization NUS, January, 2006 7

Figure 1: 50-node Graph Realization in 2D

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

SDP and Graph Realization NUS, January, 2006 8

Applications

• Global Position System (GPS)

SDP and Graph Realization NUS, January, 2006 9

Applications

• Global Position System (GPS)

• Sensor network localization

SDP and Graph Realization NUS, January, 2006 10

Applications

• Global Position System (GPS)

• Sensor network localization

• Molecular conformation

SDP and Graph Realization NUS, January, 2006 11

Applications

• Global Position System (GPS)

• Sensor network localization

• Molecular conformation

• Data dimension reduction

SDP and Graph Realization NUS, January, 2006 12

Applications

• Global Position System (GPS)

• Sensor network localization

• Molecular conformation

• Data dimension reduction

• Euclidean ball parking

SDP and Graph Realization NUS, January, 2006 13

Related Work

• Schoenberg and Young/Householder studied the case where all pairwise

distances are given, which formed the basis of various multidimensional

scaling algorithms.

SDP and Graph Realization NUS, January, 2006 14

Related Work

• Schoenberg and Young/Householder studied the case where all pairwise

distances are given, which formed the basis of various multidimensional

scaling algorithms.

• Barvinok and Alfakih/Wolkowicz used SDP models to show that the problem

is solvable in polynomial time if the dimension of the realization is not

restricted. Moreover, they have given bounds on the dimension needed to

realize the given distances.

SDP and Graph Realization NUS, January, 2006 15

Related Work

• Schoenberg and Young/Householder studied the case where all pairwise

distances are given, which formed the basis of various multidimensional

scaling algorithms.

• Barvinok and Alfakih/Wolkowicz used SDP models to show that the problem

is solvable in polynomial time if the dimension of the realization is not

restricted. Moreover, they have given bounds on the dimension needed to

realize the given distances.

• However, if we require the realization to be in Rd for some fixed d, then the

problem becomes NP–complete (Aspnes, Goldenberg, and Yang 2004).

SDP and Graph Realization NUS, January, 2006 16

Related Work

• Schoenberg and Young/Householder studied the case where all pairwise

distances are given, which formed the basis of various multidimensional

scaling algorithms.

• Barvinok and Alfakih/Wolkowicz used SDP models to show that the problem

is solvable in polynomial time if the dimension of the realization is not

restricted. Moreover, they have given bounds on the dimension needed to

realize the given distances.

• However, if we require the realization to be in Rd for some fixed d, then the

problem becomes NP–complete (Aspnes, Goldenberg, and Yang 2004).

• Identify families of graph instances that admit polynomial time algorithms for

computing a realization in the required dimension (Biswas, So, Toh, and Ye

2004-2005; SODA’05, ACM, IEEE).

SDP and Graph Realization NUS, January, 2006 17

d–Realizable Graphs

A graph is d–realizable if it can always be realized in Rd whenever it is realizable

(the edge weights are Euclidean metric).

SDP and Graph Realization NUS, January, 2006 18

d–Realizable Graphs

A graph is d–realizable if it can always be realized in Rd whenever it is realizable

(the edge weights are Euclidean metric).

• Connelly and Sloughter have recently given a complete characterization of

the class of d–realizable graphs, where d = 1, 2, 3

SDP and Graph Realization NUS, January, 2006 19

d–Realizable Graphs

A graph is d–realizable if it can always be realized in Rd whenever it is realizable

(the edge weights are Euclidean metric).

• Connelly and Sloughter have recently given a complete characterization of

the class of d–realizable graphs, where d = 1, 2, 3

• It is trivial to find a realization of an 1–realizable graph, since a graph is

1–realizable iff it is a forest.

SDP and Graph Realization NUS, January, 2006 20

d–Realizable Graphs

A graph is d–realizable if it can always be realized in Rd whenever it is realizable

(the edge weights are Euclidean metric).

• Connelly and Sloughter have recently given a complete characterization of

the class of d–realizable graphs, where d = 1, 2, 3

• It is trivial to find a realization of an 1–realizable graph, since a graph is

1–realizable iff it is a forest.

• A polynomial time algorithm for realizing 2–realizable graphs exists:

trilateralization.

SDP and Graph Realization NUS, January, 2006 21

d–Realizable Graphs

A graph is d–realizable if it can always be realized in Rd whenever it is realizable

(the edge weights are Euclidean metric).

• Connelly and Sloughter have recently given a complete characterization of

the class of d–realizable graphs, where d = 1, 2, 3

• It is trivial to find a realization of an 1–realizable graph, since a graph is

1–realizable iff it is a forest.

• A polynomial time algorithm for realizing 2–realizable graphs exists:

trilateralization.

• Finding a corresponding algorithm for 3–realizable graphs is posed as an

open question.

SDP and Graph Realization NUS, January, 2006 22

3–realizable graph I

A graph is 3–realizable iff it does not contain K5 or K2,2,2 as a minor (Connelly

and Sloughter 2004).

SDP and Graph Realization NUS, January, 2006 23

Figure 2: K-5

SDP and Graph Realization NUS, January, 2006 24

Figure 3: K-2-2-2

SDP and Graph Realization NUS, January, 2006 25

3–realizable graph II

Then, it either

• contains an V8 or an C5 × C2 as a minor

SDP and Graph Realization NUS, January, 2006 26

Figure 4: V-8

8 1

2

3

45

6

7

SDP and Graph Realization NUS, January, 2006 27

Figure 5: C-5×C-2

1

3

5

7

102

4

6

8

9

SDP and Graph Realization NUS, January, 2006 28

3–realizable graph II

Then, it either

• contains an V8 or an C5 × C2 as a minor

• or does not contain either graphs as a minor.

SDP and Graph Realization NUS, January, 2006 29

3–realizable graph II

Then, it either

• contains an V8 or an C5 × C2 as a minor

• or does not contain either graphs as a minor.

If it is the latter, G is a partial 3–tree.

An k-tree is defined recursively as follows. The complete graph on k vertices is

an k–tree. An k–tree with n + 1 vertices (where n ≥ k) can be constructed from

an k–tree with n vertices by adding a vertex adjacent to all vertices of one of its

k–vertex complete subgraphs, and only to those vertices.

A partial k–tree is a subgraph of an k–tree.

SDP and Graph Realization NUS, January, 2006 30

Our Contributions

We resolve the above open question by giving a polynomial time algorithm for

(approximately) realizing 3–realizable graphs.

SDP and Graph Realization NUS, January, 2006 31

Our Contributions

We resolve the above open question by giving a polynomial time algorithm for

(approximately) realizing 3–realizable graphs.

The main bottleneck in the proof is to show that two graphs, V8 and C5 × C2,

are 3–realizable.

SDP and Graph Realization NUS, January, 2006 32

Our Contributions

We resolve the above open question by giving a polynomial time algorithm for

(approximately) realizing 3–realizable graphs.

The main bottleneck in the proof is to show that two graphs, V8 and C5 × C2,

are 3–realizable.

There exists a realization p of H ∈ {V8, C5 × C2} such that the distance

between a certain pair of non–adjacent vertices (i, j) is maximized. Such a

realization induces a non–zero equilibrium stress on the graph H ′ obtained from

H by adding the edge (i, j). Then use this equilibrium force to prove that H ′

must be in R3.

SDP and Graph Realization NUS, January, 2006 33

Our Contributions

We resolve the above open question by giving a polynomial time algorithm for

(approximately) realizing 3–realizable graphs.

The main bottleneck in the proof is to show that two graphs, V8 and C5 × C2,

are 3–realizable.

There exists a realization p of H ∈ {V8, C5 × C2} such that the distance

between a certain pair of non–adjacent vertices (i, j) is maximized. Such a

realization induces a non–zero equilibrium stress on the graph H ′ obtained from

H by adding the edge (i, j). Then use this equilibrium force to prove that H ′

must be in R3.

Our main result is to show that the problem of computing the desired p can be

formulated as an SDP. More interesting is that the optimal dual multipliers of our

SDP give rise to a non–zero equilibrium stress.

SDP and Graph Realization NUS, January, 2006 34

Preliminaries

Let G = (V, E;d) be a weighted connected graph that contains neither loops

nor multiple edges, such that dij ≥ 0 for all (i, j) ∈ E.

SDP and Graph Realization NUS, January, 2006 35

Preliminaries

Let G = (V, E;d) be a weighted connected graph that contains neither loops

nor multiple edges, such that dij ≥ 0 for all (i, j) ∈ E.

A tensegrity G(p) is a graph G = (V, E) together with a configuration

p = (pi) ∈ RD × · · · ×RD = R|V |D such that each edge is labelled as a

cable, strut, or bar, and each vertex is labelled as pinned or unpinned. G(p) is

the realization of G in RD obtained by locating vertex i at point pi ∈ RD .

SDP and Graph Realization NUS, January, 2006 36

Preliminaries

Let G = (V, E;d) be a weighted connected graph that contains neither loops

nor multiple edges, such that dij ≥ 0 for all (i, j) ∈ E.

A tensegrity G(p) is a graph G = (V, E) together with a configuration

p = (pi) ∈ RD × · · · ×RD = R|V |D such that each edge is labelled as a

cable, strut, or bar, and each vertex is labelled as pinned or unpinned. G(p) is

the realization of G in RD obtained by locating vertex i at point pi ∈ RD .

The label on each edge is intended to indicate its functionality: cables

(resp. struts) are allowed to decrease (resp. increase) in length (or stay the same

length), but not to increase (resp. decrease) in length; bars are forced to remain

the same length.

A pinned vertex is forced to remain where it is.

SDP and Graph Realization NUS, January, 2006 37

Equilibrium Stress

An equilibrium stress for G(p) is an assignment of real numbers ωij = ωji to

each edge (i, j) ∈ E such that for each unpinned vertex i of G, we have∑
j:(i,j)∈E ωij(pi − pj) = 0. Furthermore, we say that the equilibrium stress

ω = {ωij} is proper if ωij = ωji ≥ 0 (resp.≤ 0) if (i, j) is a cable

(resp. strut).

SDP and Graph Realization NUS, January, 2006 38

A Semidefinite Programming (SDP) Formulation

Consider a simple model with C (or S) is a set of cables (or strut):

max
∑

(i,j)∈S ‖xi − xj‖2 −
∑

(i,j)∈C ‖xi − xj‖2
s.t. ‖xi − xj‖2 = d2

ij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 = d2
kj , ∀ (k, j) ∈ Na.

SDP and Graph Realization NUS, January, 2006 39

Matrix Representation

Let X = [x1 x2 ... xn] be the d× n matrix that needs to be determined. Then

‖xi−xj‖2 = eT
ijX

T Xeij and ‖ak−xj‖2 = (ak; ej)T [I X]T [I X](ak; ej),

where eij is the vector with 1 at the ith position,−1 at the jth position and zero

everywhere else; and ej is the vector of all zero except−1 at the jth position.

SDP and Graph Realization NUS, January, 2006 40

Matrix Representation

Let X = [x1 x2 ... xn] be the d× n matrix that needs to be determined. Then

‖xi−xj‖2 = eT
ijX

T Xeij and ‖ak−xj‖2 = (ak; ej)T [I X]T [I X](ak; ej),

where eij is the vector with 1 at the ith position,−1 at the jth position and zero

everywhere else; and ej is the vector of all zero except−1 at the jth position.

max
∑

(i,j)∈S eT
ijY eij −

∑
(i,j)∈C eT

ijY eij

s.t. eT
ijY eij = d2

ij , ∀ i, j ∈ Nx, ∀ (i, j) ∈ Nx, i < j,

(ak; ej)T

 I X

XT Y

 (ak; ej) = d2

kj , ∀ k, j ∈ Na,

Y = XT X.

where Y denotes the Gram matrix XT X .

SDP and Graph Realization NUS, January, 2006 41

SDP Relaxation

Change

Y = XT X

to

Y º XT X.

This matrix inequality is equivalent to (e.g., Boyd et al. 1994)

 I X

XT Y

 º 0.

SDP and Graph Realization NUS, January, 2006 42

SDP standard form

Z =

 I X

XT Y

 .

Find a symmetric matrix Z ∈ R(2+n)×(2+n) such that

sup
(∑

(i,j)∈S(0; eij)(0; eij)T −∑
(i,j)∈C(0; eij)(0; eij)T

)
• Z

s.t. Z1:d,1:d = I

(0; eij)(0; eij)T • Z = d2
ij , ∀ i, j ∈ Nx, i < j,

(ak; ej)(ak; ej)T • Z = d2
kj , ∀ k, j ∈ Na,

Z º 0.

SDP and Graph Realization NUS, January, 2006 43

The Dual of the SDP Relaxation

inf I • V +
∑

i<j∈Nx
wijd

2
ij +

∑
k,j∈Na

wkjd
2
kj

s.t.

 V 0

0 0

 +

∑
i<j∈Nx

wij(0; eij)(0; eij)T

+
∑

k,j∈Na
wkj(ak; ej)(ak; ej)T º

∑
(i,j)∈S(0; eij)(0; eij)T −∑

(i,j)∈C(0; eij)(0; eij)T ,

where variable matrix V ∈Md, varaible wij is the weight on edge from xi to

xj , and wkj is the weight on edge from ak to xj . As we shall see, the optimal

wij are closely related to an equilibrium stress for a certain realization of G.

SDP and Graph Realization NUS, January, 2006 44

Analysis of the SDP Formulation

Theorem 1. Let X̃ = [x̃1, . . . , x̃n] be the positions of the unpinned vertices

obtained from the optimal primal matrix Z̄ , and let {θ̄ij , w̄kj} be a set of optimal

dual multipliers. Suppose that we assign the stress θ̄ij (resp. w̄kj) to the bar

(i, j) ∈ Nx (resp. (k, j) ∈ Na), a stress of 1 to all the cables, and a stress of

−1 to all the struts. Then, the resulting assignment yields a non–zero proper

equilibrium stress for the realization {(a1;0), . . . , (am;0), x̃1, . . . , x̃n}.

Proof: The primal is feasible and the dual is strictly feasible. Let Z̄ (resp. Ū) be

the optimal primal (resp. dual) solution matrix. Then, the absence of a duality gap

implies complementarity:

Z̄Ū = 0.

SDP and Graph Realization NUS, January, 2006 45

Algorithm Tasks

1. Realizing a partial 3–tree;

SDP and Graph Realization NUS, January, 2006 46

Algorithm Tasks

1. Realizing a partial 3–tree;

2. finding a subdivision of V8 or C5 × C2 in an 3–realizable graph;

SDP and Graph Realization NUS, January, 2006 47

Algorithm Tasks

1. Realizing a partial 3–tree;

2. finding a subdivision of V8 or C5 × C2 in an 3–realizable graph;

3. realizing an V8 and its subdivisions;

SDP and Graph Realization NUS, January, 2006 48

Algorithm Tasks

1. Realizing a partial 3–tree;

2. finding a subdivision of V8 or C5 × C2 in an 3–realizable graph;

3. realizing an V8 and its subdivisions;

4. realizing an C5 × C2 and its subdivisions.

SDP and Graph Realization NUS, January, 2006 49

1: Realizing Partial 3–Trees

Suppose that we are given a 3–tree G with feasible edge lengths, and that G is

constructed by adding the vertices v1, v2, . . . , vn, in that order. Then, to find a

realization of G in R3 can be done in linear time. A partial 3–tree can be

completed into a 3–tree by solving an SDP.

SDP and Graph Realization NUS, January, 2006 50

2: Finding a Subdivision of V8 or C5 × C2

Let G be an 3–realizable graph. We now show how the algorithm of Matouvsek

and Thomas can be used to obtain a subgraph of G that is a subdivision of V8 or

C5 × C2. We shall also use the term “homeomorphic” for subdivision – a graph

H1 is homeomorphic to H2 if H1 is a subdivision of H2.

1. (Asano) For an 3–connected graph H , a graph H ′ has a subgraph

homeomorphic to H iff there is an 3–connected component of H ′ that has a

subgraph homeomorphic to H .

2. (Connelly and Sloughter) If an edge is added between a non–adjacent pair of

vertices of V8 (resp. C5 ×C2), then the resulting graph has K5 (resp. K5 or

K2,2,2) as a minor.

3. (Connelly and Sloughter) Let G be an 3–realizable graph. Suppose that G

contains a subdivision of H , where H ∈ {V8, C5 × C2}. Remove the

subdivision of H from G and consider the components of the resulting graph.

SDP and Graph Realization NUS, January, 2006 51

Then, each component is connected in G to exactly one of the subdivided

edges of H .

Theorem 2. Let G be an 3–realizable graph containing a subgraph

homeomorphic to H ∈ {V8, C5 × C2}. Then, one of the triconnected

components of G is isomorphic to H .

Algorithm: First, decompose G into triconnected components. Then, we check

each of the triconnected components for the presence or absence of V8 or

C5 × C2. For this we can run the algorithm on each of those components and

see if the component reduces to a null graph or not. If the component does not

reduce to a null graph, then it is isomorphic to either V8 or C5 × C2, and the

number of vertices in the component will determine which one it is. The desired

subdivision can then be extracted from G.

Proposition 1. Let G be an 3–realizable graph with n vertices. Then, a

subdivision of V8 or C5 × C2 in G can be found in O(n) time.

SDP and Graph Realization NUS, January, 2006 52

3: Realizing V8 and its Subdivisions

The graph V8 is 3–realizable. We first augment V8 to V ′
8 by adding a strut

between vertices 1 and 4 Then, we pin vertex 1 at the origin.

In other words, we would like to find a realization that maximizes the length of the

strut.

sup (0; e4)(0; e4)T • Z

s.t. Z1:3,1:3 = I3

(0; eij)(0; eij)T • Z = d2
ij (i, j) ∈ E(V8)

1 6= i < j

(0; ej)(0; ej)T • Z = d̄2
1j (1, j) ∈ E(V8)

Z º 0

(1)

SDP and Graph Realization NUS, January, 2006 53

Figure 6: V-8

8 1

2

3

45

6

7

SDP and Graph Realization NUS, January, 2006 54

4: Realizing C5 × C2 and its Subdivisions

The graph C5 ×C2 is 3–realizable. We first augment C5 ×C2 to G by adding a

strut between vertices 1 and 6, and we pin vertex 1 at the origin.

SDP and Graph Realization NUS, January, 2006 55

Putting Everystep Together

Theorem 3. Therer is a polynomial time algorithm for (approximately) realizing

3–realizable graphs.

SDP and Graph Realization NUS, January, 2006 56

Conclusion

• We have studied a connection between SDP and tensegrity theories, as well

as the notion of d–realizability of graphs.

SDP and Graph Realization NUS, January, 2006 57

Conclusion

• We have studied a connection between SDP and tensegrity theories, as well

as the notion of d–realizability of graphs.

• We have shown that the problem of finding an equilibrium stress can be

formulated as an SDP. This gives a constructive proof of (a variant of) a result

in tensegrity theory that is previously established by non–constructive means.

SDP and Graph Realization NUS, January, 2006 58

Conclusion

• We have studied a connection between SDP and tensegrity theories, as well

as the notion of d–realizability of graphs.

• We have shown that the problem of finding an equilibrium stress can be

formulated as an SDP. This gives a constructive proof of (a variant of) a result

in tensegrity theory that is previously established by non–constructive means.

• We then combine this result with other techniques to design an algorithm for

realizing 3–realizable graphs, thus answering an open question posed before.

SDP and Graph Realization NUS, January, 2006 59

Conclusion

• We have studied a connection between SDP and tensegrity theories, as well

as the notion of d–realizability of graphs.

• We have shown that the problem of finding an equilibrium stress can be

formulated as an SDP. This gives a constructive proof of (a variant of) a result

in tensegrity theory that is previously established by non–constructive means.

• We then combine this result with other techniques to design an algorithm for

realizing 3–realizable graphs, thus answering an open question posed before.

• We believe that our techniques can be applied to derive some other

interesting properties of tensegrity frameworks.

