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The Graph Realization Problem

Given a graph G = (V, E) and a set of non–negative edge weights

{dij : (i, j) ∈ E}, and the goal is to compute a realization of G in the

Euclidean space Rd for a given dimension d, i.e. to place the vertices of G in Rd

such that the Euclidean distance between every pair of adjacent vertices vi, vj

equals to the prescribed weight dij .
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Figure 1: 50-node Graph Realization in 2D
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Applications

• Global Position System (GPS)
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Applications

• Global Position System (GPS)

• Sensor network localization

• Molecular conformation

• Data dimension reduction

• Euclidean ball parking
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Related Work

• Schoenberg and Young/Householder studied the case where all pairwise

distances are given, which formed the basis of various multidimensional

scaling algorithms.
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Related Work

• Schoenberg and Young/Householder studied the case where all pairwise

distances are given, which formed the basis of various multidimensional

scaling algorithms.

• Barvinok and Alfakih/Wolkowicz used SDP models to show that the problem

is solvable in polynomial time if the dimension of the realization is not

restricted. Moreover, they have given bounds on the dimension needed to

realize the given distances.

• However, if we require the realization to be in Rd for some fixed d, then the

problem becomes NP–complete (Aspnes, Goldenberg, and Yang 2004).

• Identify families of graph instances that admit polynomial time algorithms for

computing a realization in the required dimension (Biswas, So, Toh, and Ye

2004-2005; SODA’05, ACM, IEEE).
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d–Realizable Graphs

A graph is d–realizable if it can always be realized in Rd whenever it is realizable

(the edge weights are Euclidean metric).
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d–Realizable Graphs

A graph is d–realizable if it can always be realized in Rd whenever it is realizable

(the edge weights are Euclidean metric).

• Connelly and Sloughter have recently given a complete characterization of

the class of d–realizable graphs, where d = 1, 2, 3

• It is trivial to find a realization of an 1–realizable graph, since a graph is

1–realizable iff it is a forest.

• A polynomial time algorithm for realizing 2–realizable graphs exists:

trilateralization.

• Finding a corresponding algorithm for 3–realizable graphs is posed as an

open question.
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3–realizable graph I

A graph is 3–realizable iff it does not contain K5 or K2,2,2 as a minor (Connelly

and Sloughter 2004).
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Figure 2: K-5
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Figure 3: K-2-2-2
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3–realizable graph II

Then, it either

• contains an V8 or an C5 × C2 as a minor



SDP and Graph Realization NUS, January, 2006 26

Figure 4: V-8
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Figure 5: C-5×C-2
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3–realizable graph II

Then, it either

• contains an V8 or an C5 × C2 as a minor

• or does not contain either graphs as a minor.
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3–realizable graph II

Then, it either

• contains an V8 or an C5 × C2 as a minor

• or does not contain either graphs as a minor.

If it is the latter, G is a partial 3–tree.

An k-tree is defined recursively as follows. The complete graph on k vertices is

an k–tree. An k–tree with n + 1 vertices (where n ≥ k) can be constructed from

an k–tree with n vertices by adding a vertex adjacent to all vertices of one of its

k–vertex complete subgraphs, and only to those vertices.

A partial k–tree is a subgraph of an k–tree.
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Our Contributions

We resolve the above open question by giving a polynomial time algorithm for

(approximately) realizing 3–realizable graphs.
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Our Contributions

We resolve the above open question by giving a polynomial time algorithm for

(approximately) realizing 3–realizable graphs.

The main bottleneck in the proof is to show that two graphs, V8 and C5 × C2,

are 3–realizable.

There exists a realization p of H ∈ {V8, C5 × C2} such that the distance

between a certain pair of non–adjacent vertices (i, j) is maximized. Such a

realization induces a non–zero equilibrium stress on the graph H ′ obtained from

H by adding the edge (i, j). Then use this equilibrium force to prove that H ′

must be in R3.

Our main result is to show that the problem of computing the desired p can be

formulated as an SDP. More interesting is that the optimal dual multipliers of our

SDP give rise to a non–zero equilibrium stress.
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Preliminaries

Let G = (V, E;d) be a weighted connected graph that contains neither loops

nor multiple edges, such that dij ≥ 0 for all (i, j) ∈ E.
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Preliminaries

Let G = (V, E;d) be a weighted connected graph that contains neither loops

nor multiple edges, such that dij ≥ 0 for all (i, j) ∈ E.

A tensegrity G(p) is a graph G = (V, E) together with a configuration

p = (pi) ∈ RD × · · · ×RD = R|V |D such that each edge is labelled as a

cable, strut, or bar, and each vertex is labelled as pinned or unpinned. G(p) is

the realization of G in RD obtained by locating vertex i at point pi ∈ RD .

The label on each edge is intended to indicate its functionality: cables

(resp. struts) are allowed to decrease (resp. increase) in length (or stay the same

length), but not to increase (resp. decrease) in length; bars are forced to remain

the same length.

A pinned vertex is forced to remain where it is.
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Equilibrium Stress

An equilibrium stress for G(p) is an assignment of real numbers ωij = ωji to

each edge (i, j) ∈ E such that for each unpinned vertex i of G, we have∑
j:(i,j)∈E ωij(pi − pj) = 0. Furthermore, we say that the equilibrium stress

ω = {ωij} is proper if ωij = ωji ≥ 0 (resp.≤ 0) if (i, j) is a cable

(resp. strut).
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A Semidefinite Programming (SDP) Formulation

Consider a simple model with C (or S) is a set of cables (or strut):

max
∑

(i,j)∈S ‖xi − xj‖2 −
∑

(i,j)∈C ‖xi − xj‖2
s.t. ‖xi − xj‖2 = d2

ij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 = d2
kj , ∀ (k, j) ∈ Na.
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Matrix Representation

Let X = [x1 x2 ... xn] be the d× n matrix that needs to be determined. Then

‖xi−xj‖2 = eT
ijX

T Xeij and ‖ak−xj‖2 = (ak; ej)T [I X]T [I X](ak; ej),

where eij is the vector with 1 at the ith position,−1 at the jth position and zero

everywhere else; and ej is the vector of all zero except−1 at the jth position.
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Let X = [x1 x2 ... xn] be the d× n matrix that needs to be determined. Then

‖xi−xj‖2 = eT
ijX

T Xeij and ‖ak−xj‖2 = (ak; ej)T [I X]T [I X](ak; ej),

where eij is the vector with 1 at the ith position,−1 at the jth position and zero

everywhere else; and ej is the vector of all zero except−1 at the jth position.

max
∑

(i,j)∈S eT
ijY eij −

∑
(i,j)∈C eT

ijY eij

s.t. eT
ijY eij = d2

ij , ∀ i, j ∈ Nx, ∀ (i, j) ∈ Nx, i < j,

(ak; ej)T


 I X

XT Y


 (ak; ej) = d2

kj , ∀ k, j ∈ Na,

Y = XT X.

where Y denotes the Gram matrix XT X .
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SDP Relaxation

Change

Y = XT X

to

Y º XT X.

This matrix inequality is equivalent to (e.g., Boyd et al. 1994)

 I X

XT Y


 º 0.
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SDP standard form

Z =


 I X

XT Y


 .

Find a symmetric matrix Z ∈ R(2+n)×(2+n) such that

sup
(∑

(i,j)∈S(0; eij)(0; eij)T −∑
(i,j)∈C(0; eij)(0; eij)T

)
• Z

s.t. Z1:d,1:d = I

(0; eij)(0; eij)T • Z = d2
ij , ∀ i, j ∈ Nx, i < j,

(ak; ej)(ak; ej)T • Z = d2
kj , ∀ k, j ∈ Na,

Z º 0.
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The Dual of the SDP Relaxation

inf I • V +
∑

i<j∈Nx
wijd

2
ij +

∑
k,j∈Na

wkjd
2
kj

s.t.


 V 0

0 0


 +

∑
i<j∈Nx

wij(0; eij)(0; eij)T

+
∑

k,j∈Na
wkj(ak; ej)(ak; ej)T º

∑
(i,j)∈S(0; eij)(0; eij)T −∑

(i,j)∈C(0; eij)(0; eij)T ,

where variable matrix V ∈Md, varaible wij is the weight on edge from xi to

xj , and wkj is the weight on edge from ak to xj . As we shall see, the optimal

wij are closely related to an equilibrium stress for a certain realization of G.
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Analysis of the SDP Formulation

Theorem 1. Let X̃ = [x̃1, . . . , x̃n] be the positions of the unpinned vertices

obtained from the optimal primal matrix Z̄ , and let {θ̄ij , w̄kj} be a set of optimal

dual multipliers. Suppose that we assign the stress θ̄ij (resp. w̄kj ) to the bar

(i, j) ∈ Nx (resp. (k, j) ∈ Na), a stress of 1 to all the cables, and a stress of

−1 to all the struts. Then, the resulting assignment yields a non–zero proper

equilibrium stress for the realization {(a1;0), . . . , (am;0), x̃1, . . . , x̃n}.

Proof: The primal is feasible and the dual is strictly feasible. Let Z̄ (resp. Ū ) be

the optimal primal (resp. dual) solution matrix. Then, the absence of a duality gap

implies complementarity:

Z̄Ū = 0.
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Algorithm Tasks

1. Realizing a partial 3–tree;
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Algorithm Tasks

1. Realizing a partial 3–tree;

2. finding a subdivision of V8 or C5 × C2 in an 3–realizable graph;

3. realizing an V8 and its subdivisions;

4. realizing an C5 × C2 and its subdivisions.
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1: Realizing Partial 3–Trees

Suppose that we are given a 3–tree G with feasible edge lengths, and that G is

constructed by adding the vertices v1, v2, . . . , vn, in that order. Then, to find a

realization of G in R3 can be done in linear time. A partial 3–tree can be

completed into a 3–tree by solving an SDP.
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2: Finding a Subdivision of V8 or C5 × C2

Let G be an 3–realizable graph. We now show how the algorithm of Matouvsek

and Thomas can be used to obtain a subgraph of G that is a subdivision of V8 or

C5 × C2. We shall also use the term “homeomorphic” for subdivision – a graph

H1 is homeomorphic to H2 if H1 is a subdivision of H2.

1. (Asano) For an 3–connected graph H , a graph H ′ has a subgraph

homeomorphic to H iff there is an 3–connected component of H ′ that has a

subgraph homeomorphic to H .

2. (Connelly and Sloughter) If an edge is added between a non–adjacent pair of

vertices of V8 (resp. C5 ×C2), then the resulting graph has K5 (resp. K5 or

K2,2,2) as a minor.

3. (Connelly and Sloughter) Let G be an 3–realizable graph. Suppose that G

contains a subdivision of H , where H ∈ {V8, C5 × C2}. Remove the

subdivision of H from G and consider the components of the resulting graph.
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Then, each component is connected in G to exactly one of the subdivided

edges of H .

Theorem 2. Let G be an 3–realizable graph containing a subgraph

homeomorphic to H ∈ {V8, C5 × C2}. Then, one of the triconnected

components of G is isomorphic to H .

Algorithm: First, decompose G into triconnected components. Then, we check

each of the triconnected components for the presence or absence of V8 or

C5 × C2. For this we can run the algorithm on each of those components and

see if the component reduces to a null graph or not. If the component does not

reduce to a null graph, then it is isomorphic to either V8 or C5 × C2, and the

number of vertices in the component will determine which one it is. The desired

subdivision can then be extracted from G.

Proposition 1. Let G be an 3–realizable graph with n vertices. Then, a

subdivision of V8 or C5 × C2 in G can be found in O(n) time.
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3: Realizing V8 and its Subdivisions

The graph V8 is 3–realizable. We first augment V8 to V ′
8 by adding a strut

between vertices 1 and 4 Then, we pin vertex 1 at the origin.

In other words, we would like to find a realization that maximizes the length of the

strut.

sup (0; e4)(0; e4)T • Z

s.t. Z1:3,1:3 = I3

(0; eij)(0; eij)T • Z = d2
ij (i, j) ∈ E(V8)

1 6= i < j

(0; ej)(0; ej)T • Z = d̄2
1j (1, j) ∈ E(V8)

Z º 0

(1)
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Figure 6: V-8
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4: Realizing C5 × C2 and its Subdivisions

The graph C5 ×C2 is 3–realizable. We first augment C5 ×C2 to G by adding a

strut between vertices 1 and 6, and we pin vertex 1 at the origin.
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Putting Everystep Together

Theorem 3. Therer is a polynomial time algorithm for (approximately) realizing

3–realizable graphs.
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Conclusion

• We have studied a connection between SDP and tensegrity theories, as well

as the notion of d–realizability of graphs.
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Conclusion

• We have studied a connection between SDP and tensegrity theories, as well

as the notion of d–realizability of graphs.

• We have shown that the problem of finding an equilibrium stress can be

formulated as an SDP. This gives a constructive proof of (a variant of) a result

in tensegrity theory that is previously established by non–constructive means.

• We then combine this result with other techniques to design an algorithm for

realizing 3–realizable graphs, thus answering an open question posed before.

• We believe that our techniques can be applied to derive some other

interesting properties of tensegrity frameworks.


